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Abstract

The title of this workshop is: ”What comes beyond standard mod-
els?”. Standard models are based on standard Poincare invariant
quantum theory (SQT). Here irreducible representations (IRs) of the
Poincare algebra are such that in each IR, the energies are either ≥ 0
or ≤ 0. In the first case, IRs are associated with particles and in the
second case — with antiparticles, while particles for which all addi-
tive quantum numbers (electric charge, baryon and lepton quantum
numbers) equal zero are called neutral. However, SQT is a special
degenerate case of finite quantum theory (FQT) in the formal limit
p→∞ where p is a characteristic of a ring in FQT. In FQT, one IR
of the symmetry algebra describes a particle and its antiparticle si-
multaneously, and there are no conservation laws of additive quantum
numbers. One IR in FQT splits into two standard IRs with positive
and negative energies as a result of symmetry breaking in the formal
limit p→∞. The construction of FQT is one of the most fundamen-
tal (if not the most fundamental) problems of particle theory.
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1 Introduction: problems with the physical inter-
pretation of the Dirac equation

Modern fundamental particle theories (QED, QCD and electroweak theory)
are based on the concept of particle-antiparticle. Historically, this concept
has arisen as a consequence of the fact that the Dirac equation has solutions
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with positive and negative energies. The solutions with positive energies
are associated with particles, and the solutions with negative energies -
with corresponding antiparticles. And when the positron was found, it was
treated as a great success of the Dirac equation. Another great success is
that in the approximation (v/c)2 the Dirac equation reproduces the fine
structure of the hydrogen atom with a very high accuracy.

However, now we know that there are problems with the physical in-
terpretation of the Dirac equation. For example, in higher order approxi-
mations, the probabilistic interpretation of non-quantized Dirac spinors is
lost because the coordinate description implies that they are described by
representations induced from non-unitary representations of the Lorenz al-
gebra. Moreover, this problem exists not only for the Dirac spinors but for
any functions described by relativistic covariant equations (Klein-Gordon,
Dirac, Rarita-Schwinger and others). As shown by Pauli [1] in the case of
fields with an integer spin there is no invariant subspace where the spectrum
of the charge operator has a definite sign while in the case of fields with a
half-integer spin there is no invariant subspace where the spectrum of the
energy operator has a definite sign. It is also known that the description of
the electron in the external field by the Dirac spinor is not accurate (e.g.,
it does not take into account the Lamb shift).

Another fundamental problem in the interpretation of the Dirac equa-
tion is as follows. One of the key principles of quantum theory is the
principle of superposition. This principle states that if ψ1 and ψ2 are pos-
sible states of a physical system then c1ψ1 + c2ψ2, when c1 and c2 are
complex coefficients, also is a possible state. The Dirac equation is the
linear equation, and, if ψ1(x) and ψ2(x) are solutions of the equation, then
c1ψ1(x) + c2ψ2(x) also is a solution, in agreement with the principle of su-
perposition. In the spirit of the Dirac equation, there should be no separate
particles the electron and the positron. It should be only one particle which
can be called electron-positron such that electron states are the states of this
particle with positive energies, positron states are the states of this particle
with negative energies and the superposition of electron and positron states
should not be prohibited. However, in view of charge conservation, baryon
number conservation, and lepton numbers conservations, the superposition
of a particle and its antiparticle is prohibited.

Modern particle theories are based on Poincare (relativistic) symme-
try. In these theories, elementary particles are described by irreducible
representations (IRs) of the Poincare algebra. Such IRs have a property
that energies in them can be either strictly positive or strictly negative
but there are no IRs where energies have different signs. The objects de-
scribed by positive-energy IRs are called particles, and objects described
by negative-energy IRs are called antiparticles, and energies of both, par-
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ticles and antiparticles become positive after second quantization. In this
situation, there are no elementary particles which are superpositions of a
particle and its antiparticle, and as explained above, this is not in the spirit
of the Dirac equation.

In particle theories, only quantized Dirac spinors ψ(x) are used. Here,
by analogy with non-quantized spinors, x is treated as a point in Minkowski
space. However, ψ(x) is an operator in the Fock space for an infinite number
of particles. Each particle in the Fock space can be described by its own
coordinates (in the approximation when the position operator exists — see
e.g., [2]). In view of this fact, the following natural question arises:
why do we need an extra coordinate x which does not have any
physical meaning because it does not belong to any particle and so
is not measurable? Moreover, I can ask the following seditious question:
in quantum theory, do we need Minkowski space at all?

When there are many bodies, the impression may arise that they are
in some space but this is only an impression. In fact a background space-
time (e.g., Minkowski space) is only a mathematical concept needed in
classical theory. For illustration, consider quantum electromagnetic theory.
Here we deal with electrons, positrons and photons. In the approximation
when the position operator exists, each particle can be described by its
own coordinates. The coordinates of the background Minkowski space do
not have a physical meaning because they do not refer to any particle and
therefore are not measurable. However, in classical electrodynamics we do
not consider electrons, positrons and photons. Here the concepts of the
electric and magnetic fields (E(x),B(x)) have the meaning of the average
contribution of all particles in the point x of Minkowski space.

This situation is analogous to that in statistical physics. Here we do not
consider each particle separately but describe the average contribution of
all particles by temperature, pressure etc. Those quantities have a physical
meaning not for each separate particle but for ensembles of many particles.

A justification of the presence of x in quantized Dirac spinors ψ(x) is
that in quantum field theories (QFT) the Lagrangian density depends on
the four-vector x, but this is only the integration parameter which is used
in the intermediate stage. The goal of the theory is to construct the S-
matrix, and when the theory is already constructed one can forget about
Minkowski space because no physical quantity depends on x. This is in the
spirit of the Heisenberg S-matrix program according to which in relativistic
quantum theory it is possible to describe only transitions of states from the
infinite past when t→ −∞ to the distant future when t→∞.

The fact that the theory gives the S-matrix in the momentum repre-
sentation does not mean that the coordinate description is excluded. In
typical situations, the position operator in momentum representation ex-
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ists not only in the nonrelativistic case but in the relativistic case as well.
In the latter case, it is known, for example, as the Newton-Wigner position
operator [3] or its modifications. However, as pointed out even in textbooks
on quantum theory, the coordinate description of elementary particles can
work only in some approximations. In particular, even in most favorable
scenarios, for a massive particle with the mass m its coordinate cannot be
measured with the accuracy better than the particle Compton wave length
~/mc.

2 Is Poincare symmetry the most general symme-
try in particle theory?

The above discussion of the problems with Dirac spinors was based on the
assumption that Poincare (relativistic) symmetry is the most general sym-
metry in particle theory, and Standard Model is based on this assumption.
But suppose that I ask a question: why not to consider particle theory
based on Galilei (nonrelativistic) symmetry? Probably, most physicists
will immediately say that this question is silly because everybody knows
that Poincare symmetry is more general (fundamental) than Galilei one
and many facts in particle physics show that Galilei symmetry does not
work here. But suppose that I am not a physicist, I do not know exper-
imental data and I ask whether the fact that Poincare symmetry is more
general than Galilei one follows only from mathematics? Is this question
legitimate?

In his famous paper ”Missed Opportunities” [4] Dyson explains that the
fact that Poincare symmetry is more general than Galilei one follows from
pure mathematical considerations. The Poincare group is more symmetric
that the Galilei one: the former contains a formal parameter c (I even do
not discuss its physical meaning), and the latter can be obtained from the
former by a procedure called contraction when formally c→∞.

In view of this observation, I can ask whether Poincare symmetry is
most general, maybe there are groups more symmetric that Poincare one
such that the Poincare group can be obtained from these more symmet-
ric groups by contraction? In his paper Dyson explains that indeed the
de Sitter (dS) and anti-de Sitter (AdS) groups are more symmetric than
Poincare one and the transition from the former to the latter is described
by contraction when a parameter R (see below) goes to infinity. At the
same time, since dS and AdS groups are semisimple, they have a maximum
possible symmetry and cannot be obtained from more symmetric groups
by contraction.

The paper [4] appeared in 1972, i.e., 50 years ago, and, in view of
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Dyson’s results, a question arises why the fundamental particle theories
are still based on Poincare symmetry and not dS or AdS ones. The param-
eter R arises from particle theory but in the literature it is often interpreted
as the radius of the universe. Probably, physicists believe that, since R is
even much greater than sizes of stars, the dS and AdS symmetries can play
an important role only in cosmology and there is no need to use them for
describing elementary particles. I believe that this argument is not consis-
tent because usually more general theories shed a new light on standard
concepts, and my talk is a good illustration of this point.

In Sec. 3 I describe the concept of symmetry on quantum level. In
Secs. 7 and 8 I consider the concept of particle-antiparticle for dS and AdS
symmetries in standard quantum theory and in a quantum theory based on
finite mathematics (FQT). Here I give a popular explanation why standard
concepts of particle-antiparticle, electric charge and baryon number have
only a limited meaning when the symmetry in FQT is broken to Poincare
or standard AdS symmetries. Finally, Sec. 9 is discussion. I describe all
physical quantities in units c = ~ = 1.

3 Symmetry on quantum level

In the usual treatment of relativistic quantum theory, the approach to sym-
metry on quantum level follows. Since the Poincare group is the group of
motions of Minkowski space, quantum states should be described by rep-
resentations of this group. This implies that the representation generators
commute according to the commutation relations of the Poincare group Lie
algebra:

[Pµ, P ν ] = 0, [Pµ,Mνρ] = −i(ηµρP ν − ηµνP ρ),
[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1)

where µ, ν = 0, 1, 2, 3, Pµ are the operators of the four-momentum, Mµν

are the operators of Lorentz angular momenta, and ηµν is such that η00 =
−η11 = −η22 = −η33 = 1 and ηµν = 0 if µ 6= ν. This approach is in the
spirit of Klein’s Erlangen program in mathematics.

However, as noted in Sec. 1 and discussed in detail in [2], in quan-
tum theory, the concept of space-time background does not have a physical
meaning. As argued in [2, 5], the approach should be the opposite. Each
system is described by a set of linearly independent operators. By defi-
nition, the rules how they commute with each other define the symmetry
algebra. In particular, by definition, Poincare symmetry on quantum level
means that the operators commute according to Eq. (1). This definition
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does not involve Minkowski space at all. In particular, the fact that ηµν co-
incides with the metric tensor in Minkowski space, does not imply that this
space is involved. I am very grateful to Leonid Avksent’evich Kondratyuk
for explaining me this definition during our collaboration.

By analogy with the definition of Poincare symmetry on quantum level,
the definition of dS symmetry on quantum level should not involve the fact
that the dS group is the group of motions of dS space. Instead, the definition
is that the operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) describing the
system under consideration satisfy the commutation relations of the dS Lie
algebra, i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (2)

where ηab is such that η00 = −η11 = −η22 = −η33 = −η44 = 1 and ηab = 0
if a 6= b. The definition of AdS symmetry on quantum level is given by the
same equations but η44 = 1.

The procedure of contraction from dS and AdS symmetries to Poincare
one is defined as follows. If we define the operators P ν as P ν = Mν4/R
where R is a parameter with the dimension length then in the formal limit
when R→∞, Mν4 →∞ but the quantities P ν are finite, Eqs. (2) become
Eqs. (1). This procedure is the same for the dS and AdS symmetries.

The above contraction is analogous to the contraction from Poincare
symmetry to Galilei one, where the parameter of contraction is c. On
quantum level, R and c are only the parameters describing the relations
between Lie algebras of higher and lower symmetries. On classical level,
the physical meaning of c is well-known, while R is the radius of the dS or
AdS space. A detailed discussion of the both contractions is described in a
vast literature, in particular, in [2] where it has been proposed the following

Definition: Let theory A contain a finite nonzero parameter and theory
B be obtained from theory A in the formal limit when the parameter goes
to zero or infinity. Suppose that, with any desired accuracy, theory A can
reproduce any result of theory B by choosing a value of the parameter. On
the contrary, when the limit is already taken, one cannot return back to
theory A, and theory B cannot reproduce all results of theory A. Then theory
A is more general (fundamental) than theory B and theory B is a special
degenerate case of theory A.

As proved in [2], dS and AdS symmetries are more general (fundamen-
tal) than Poincare symmetry. The latter is a special degenerate case of the
former in the formal limit R→∞. As noted above, in contrast to Dyson’s
approach based on Lie groups, our approach is based on Lie algebras. Then,
as proved in [2], classical theory is a special degenerate case of quantum
one in the formal limit ~→ 0, and nonrelativistic theory (NT) is a special
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degenerate case of relativistic one (RT) in the formal limit c→∞. In the
literature the above facts are explained from physical considerations but, as
shown in [2] they can be proved mathematically by using properties of Lie
algebras. In particular, since, from mathematical point of view, de Sitter
symmetry is more general (fundamental) than Poincare one, there should
exist physical phenomena which can be explained by de Sitter symmetries
but cannot be explained by Poincare symmetry. Below I will discuss such
phenomena.

4 Problems with describing nature by classical
mathematics

Standard quantum theory (SQT) is based on classical mathematics involv-
ing limits, infinitesimals, continuity etc. Mathematical education at physics
departments develops a belief that classical mathematics is the most fun-
damental mathematics, while, for example, discrete and finite mathematics
is something inferior what is used only in special applications. And many
mathematicians have a similar belief.

Historically it happened so because more than 300 years ago Newton
and Leibniz proposed the calculus of infinitesimals, and, since that time, a
titanic work has been done on foundation of classical mathematics. This
problem has not been solved till the present time, but for most physicists
and many mathematicians the most important thing is not whether a rigor-
ous foundation exists but that in many cases standard mathematics works
with a very high accuracy.

The idea of infinitesimals was in the spirit of existed experience that
any macroscopic object can be divided into arbitrarily large number of
arbitrarily small parts, and, even in the 19th century, people did not know
about atoms and elementary particles. But now we know that when we
reach the level of atoms and elementary particles, standard division loses
its usual meaning and in nature there are no arbitrarily small parts and no
continuity.

For example, typical energies of electrons in modern accelerators are
millions of times greater than the electron rest energy, and such electrons
experience many collisions with different particles. If it were possible to
break the electron into parts, then it would have been noticed long ago.

Another example is that if we draw a line on a sheet of paper and
look at this line by a microscope then we will see that the line is strongly
discontinuous because it consists of atoms. That is why standard geometry
(the concepts of continuous lines and surfaces) can work well only in the
approximation when sizes of atoms are neglected, standard macroscopic
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theory can work well only in this approximation etc.
Of course, when we consider water in the ocean and describe it by dif-

ferential equations of hydrodynamics, this works well but this is only an
approximation since water consists of atoms. However, it seems unnatural
that even quantum theory is based on continuous mathematics. Even the
name ”quantum theory” reflects a belief that nature is quantized, i.e., dis-
crete, and this name has arisen because in quantum theory some quantities
have discrete spectrum (i.e., the spectrum of the angular momentum op-
erator, the energy spectrum of the hydrogen atom etc.). But this discrete
spectrum has appeared in the framework of classical mathematics.

I asked physicists and mathematicians whether, in their opinion, the
indivisibility of the electron shows that in nature there are no infinitesimals,
and standard division does not work always. Some mathematicians say that
sooner or later the electron will be divided. On the other hand, as a rule,
physicists agree that the electron is indivisible and in nature there are no
infinitesimals. They say that, for example, dx/dt should be understood as
∆x/∆t where ∆x and ∆t are small but not infinitesimal. I ask them: but
you work with dx/dt, not ∆x/∆t. They reply that since mathematics with
derivatives works well then there is no need to philosophize and develop
something else (and they are not familiar with finite mathematics).

One of the key problems of modern quantum theory is the problem of
infinities: the theory gives divergent expressions for the S-matrix in pertur-
bation theory. In renormalized theories, the divergencies are eliminated by
the renormalization procedure where finite observable quantities are for-
mally expressed as products of singularities. Although this procedure is
not well substantiated mathematically, in some cases it results in excellent
agreement with experiment. Probably the most famous case is that the re-
sults for the electron and muon magnetic moments obtained at the end of
the 40th agree with experiment at least with the accuracy of eight decimal
digits (see, however, a discussion in [6]). In view of this and other successes
of quantum theory, most physicists believe that agreement with the data is
much more important than the rigorous mathematical substantiation.

At the same time, in nonrenormalized theories, infinities cannot be elim-
inated by the renormalization procedure, and this a great obstacle for con-
structing quantum gravity based on quantum field theory (QFT). As the
famous physicist and the Nobel Prize laureate Steven Weinberg writes in his
book [7]: ”Disappointingly this problem appeared with even greater severity
in the early days of quantum theory, and although greatly ameliorated by
subsequent improvements in the theory, it remains with us to the present
day”. The title of Weinberg’s paper [8] is ”Living with infinities”.

In view of efforts to describe discrete nature by continuous mathematics,
my friend told me the following joke: ”A group of monkeys is ordered to
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reach the Moon. For solving this problem each monkey climbs a tree. The
monkey who has reached the highest point believes that he has made the
greatest progress and is closer to the goal than the other monkeys”. Is
it reasonable to treat this joke as a hint on some aspects of the modern
science? Indeed, people invented continuity and infinitesimals which do
not exist in nature, created problems for themselves and now apply titanic
efforts for solving those problems.

The founders of quantum theory and scientists who essentially con-
tributed to it were highly educated. But they used only classical mathe-
matics, and even now finite mathematics is not a part of standard education
for physicists. The development of quantum theory has shown that the the-
ory contains anomalies and divergences. Most physicists considering those
problems, worked in the framework of classical mathematics and did not
acknowledge that they arise just because this mathematics was used.

5 Quantum theory based on finite mathematics

Several well-known physicists, including the Nobel Prize laureates Gross,
Nambu and Schwinger, discussed approaches when quantum theory involves
finite mathematics. While classical mathematics starts from the ring of
integers Z = (−∞, ... − 1, 0, 1, ...∞), finite mathematics rejects infinities
from the beginning. It starts from the ring Rp = (0, 1, 2, ...p − 1) where
addition, subtraction and multiplication are performed as usual but modulo
p, and p is called the characteristic of the ring. In number theory, p is the
usual notation for the characteristic and this has nothing to do with the
fact that in particle theory the notation p is used for denoting a particle
four-momentum.

Since the operations in Rp are modulo p, then, if p is odd, one can say
that Rp contains the numbers (−(p−1)/2, ...−1, 0, 1, ...(p−1)/2). Then, if
elements of Z are depicted as integer points on the x axis of the xy plane,
the elements of Rp can be depicted as points of the circle in Figure 1 and
analogously if p is even.

The analogy between Rp and the circle follows from the following ob-
servations. If we take an element of Rp and successively add 1 to it, then
after p steps we will return to the original element because addition in Rp
is modulo p. This is analogous to the fact that if we are moving along the
circle in the same direction then, sooner or later, we will arrive to the initial
point.

Figure 1 is natural from the following historical analogy. For many
years people believed that the Earth was flat and infinite, and only after a
long period of time they realized that it was finite and curved. It is difficult
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Figure 1: Relation between Rp and Z

to notice the curvature when we deal only with distances much less than
the radius of the curvature. Analogously, when we deal with numbers the
modulus of which is much less than p, the results are the same in Z and Rp,
i.e., we do not notice the ”curvature” of Rp. This ”curvature” is manifested
only when we deal with numbers the modulus of which is comparable to p.

As proved in my book [2], as follows from Definition, classical math-
ematics (involving the concepts of limits, infinitesimals, continuity etc.) is
a special degenerate case of finite mathematics in the formal limit when
the characteristic p of the ring or field in the latter goes to infinity. There-
fore standard dS and AdS symmetries over the field of complex numbers
can be generalized to dS and AdS symmetries over a finite ring or field of
characteristic p.

We use the abbreviation FQT (finite quantum theory) to denote quan-
tum theory over the ring or field of characteristic p. Since mathematically
FQT is more general (fundamental) than SQT, there are physical phenom-
ena which can be explain only by FQT but cannot be explained by SQT.
An example of such a phenomenon is discussed in Sec. 8, for other examples
—see [2].

6 Particles and antiparticles in Poincare invariant
theories

As noted in Sec. 1, solutions of the Dirac equation with positive energies
are associated with particles and solution with negative energies — with
antiparticles. It has been noted that there are problems with the interpre-
tation of the non-quantized Dirac spinor ψ(x) and for the quantized Dirac
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spinor the problem is that the quantity x does not have the physical mean-
ing. Elementary particles in Poincare invariant theory are described by IRs
of the Poincare algebra by selfadjoint operators. Therefore a problem arises
whether the concept of particle-antiparticle can be defined proceeding only
from such IRs without mentioning the nonphysical parameter x.

Let pν be the four-momentum of a particle in Poincare invariant theory.
Define p2 = pνpν , where a sum over repeated indices is assumed. Then for
usual particles p2 ≥ 0 while for tachyons p2 < 0. The existence of tachyons
is a problem, and we will consider only usual particles. Then the mass of
the particle can be defined as a nonnegative number m such that m2 = p2.

The energy E of a particle with the momentum p and mass m equals
±(m2 + p2)1/2. The choice of the sign of the square root is only the matter
of convention but not the matter of principle. Depending on this sign,
there are IRs where energies can be only either positive or negative while
the probability to have zero energy is zero.

When we consider a system consisting of particles and antiparticles then
the energy sign of both, particles and antiparticles should be the same.
Indeed, consider, for example a system of two particles with the same mass
m and let the momenta p1 and p2 be such that the total momentum p1+p2

equals zero. Then, if the energy of particle 1 is positive, and the energy of
particle 2 is negative then the total four-momentum of the system would
be zero what contradicts experimental data. By convention, the energy
sign of all particles and antiparticles in question is chosen to be positive.
For this purpose, the procedure of second quantization is defined such that
after the second quantization the energies of antiparticles become positive.
Then the mass of any particle is the minimum value of its energy in the
case when the momentum equals zero.

Suppose now that we have two particles such that particle 1 has the
mass m1, spin s1 and is characterized by some additional quantum numbers
(e.g., electric charge, baryon quantum number etc.), and particle 2 has the
mass m2, spin s2 = s1 and all additional quantum numbers characterizing
particle 2 equal the corresponding additional quantum numbers for particle
1 with the opposite sign. A question arises when particle 2 can be treated as
an antiparticle for particle 1. Is it necessary that m1 should be exactly equal
m2 or they can slightly differ each other? In particular, can we guarantee
that the mass of the positron exactly equals the mass of the electron, the
mass of the proton exactly equals the mass of the antiproton etc.?

If particle 2 (for some reasons) is treated as an antiparticle for particle
1, and the particles are considered only on the level of IRs, then the rela-
tion between m1 and m2 is fully arbitrary. However, in QFT, m1 = m2

because IRs for a particle and its antiparticle are combined together in the
framework of a local field. For example, the Dirac spinor combines together
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two IRs for the electron and positron. However, as noted in Sec. 1, this
procedure encounters the following problems:

• The quantity x in quantized fields ψ(x) does not have a physical
meaning.

• There is no probabilistic interpretation of ψ(x) because it is described
by a non-unitary representation of the Poincare algebra.

• Although ψ(x) satisfies a linear equation, a superposition of solutions
with positive and negative energies is prohibited.

A usual statement in the literature is that in QFT the fact thatm1 = m2

follows from the CPT theorem which is a consequence of locality since we
construct local covariant fields from a particle and its antiparticle with
equal masses. However, as noted in Sec. 1, since on quantum level there
are problems with the physical interpretation of covariant fields and the
quantity x, the very meaning of locality on quantum level is problematic.

Also, a question arises what happens if locality is only an approxima-
tion: in that case the equality of masses is exact or approximate? Consider
a simple model when electromagnetic and weak interactions are absent.
Then the fact that the proton and the neutron have equal masses has noth-
ing to do with locality; it is only a consequence of the fact that the proton
and the neutron belong to the same isotopic multiplet. In other words,
they are simply different states of the same object—the nucleon.

Since the concept of locality is not formulated in terms of selfadjoint
operators, this concept does not have a clear physical meaning, and this fact
has been pointed out even in known textbooks (see e.g. [9]). Therefore,
QFT does not give a physical proof that m1 = m2. Note also that in
Poincare invariant quantum theories there can exist elementary particles
for which all additional quantum numbers are zero. Such particles are
called neutral because they coincide with their antiparticles.

In Secs. 7 and 8 I consider how the concept of particle-antiparticle in
treated for dS and AdS invariant theories, respectively.

7 Particles and antiparticles in dS invariant the-
ories

The descriptions of elementary particles in the dS and AdS cases are con-
siderably different. In the former case all the operators Mν4 (ν = 0, 1, 2, 3)
are on equal footing. Therefore, M04 can be treated as the Poincare analog
of the energy only in the approximation when R is rather large. In the
general case, the sign of M04 cannot be used for the classification of IRs.
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In his book [11] Mensky describes the implementation of dS IRs when
the representation space is the three-dimensional unit sphere in the four-
dimensional space. In this implementation, there exist one-to-one relations
between the northern hemisphere and the upper Lorentz hyperboloid with
positive Poincare energies and between the southern hemisphere and the
lower Lorentz hyperboloid with negative Poincare energies, while points on
the equator correspond to infinite Poincare energies. However, the oper-
ators of IRs are not singular in the vicinity of the equator and, since the
equator has measure zero, the properties of wave functions on the equator
are not important.

Since the number of states in dS IRs is twice as big as the number
of states in IRs of the Poincare algebras, one might think that each IR
of the dS algebra describes a particle and its antiparticle simultaneously.
However, a detailed analysis in [2] shows that states described by dS IRs
cannot be characterized as particles or antiparticles in the usual meaning.

For example, let us call states with the support of their wave func-
tions on the northern hemisphere as particles and states with the support
on the southern hemisphere as their antiparticles. Then states which are
superpositions of a particle and its antiparticle obviously belong to the
representation space under consideration, i.e., they are not prohibited.

As noted in Sec. 1, in the spirit of the Dirac equation, there should
be no separate particles the electron and the positron. It should be only
one particle which can be called electron-positron such that electron states
are the states of this particle with positive energies, positron states are
the states of this particle with negative energies and, as follows from the
principle of superposition in quantum theory, the superposition of electron
and positron states should not be prohibited. However, since in standard
particle theory, charge conservation is treated as more fundamental than the
principle of superposition, the superposition of a particle and its antiparticle
is prohibited.

However, we see that in the dS case the situation is in the spirit of
the Dirac equation: there are no independent particles and antiparticles,
there are only objects described by IRs of the dS algebra, and, if states
of each object with positive energies are called particle states and states
with negative energies — antiparticle states, superpositions of such states
are not prohibited. Therefore, in the dS case, the principle of superposi-
tion is stronger than the electric charge conservation. Note that the law
of electric charge conservation comes from classical physics. The existing
experimental data confirms that this law takes place. However, a problem
arises whether those data describe all possible situations. We discuss this
problem below.

As noted in Sec. 3, dS symmetry is more general than Poincare one,
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and the latter can be treated as a special degenerate case of the former
in the formal limit R → ∞. This means that, with any desired accuracy,
any phenomenon described in the framework of Poincare symmetry can
be also described in the framework of dS symmetry if R is chosen to be
sufficiently large, but there also exist phenomena for explanation of which
it is important that R is finite and not infinitely large (see [2]).

As shown in [2, 10], dS symmetry is broken in the formal limit R→∞
because one IR of the dS algebra splits into two IRs of the Poincare algebra
with positive and negative energies and with equal masses. Therefore, the
fact that the masses of particles and their corresponding antiparticles are
equal to each other, can be explained as a consequence of the fact that
observable properties of elementary particles can be described not by exact
Poincare symmetry but by dS symmetry with a very large (but finite) value
of R. In contrast to QFT, for combining a particle and its antiparticle
into one object, there in no need to assume locality and involve local field
functions because a particle and its antiparticle already belong to the same
IR of the dS algebra (compare with the above remark about the isotopic
symmetry in the proton-neutron system).

The fact that dS symmetry is higher than Poincare one is clear even
from the fact that, in the framework of the latter symmetry, it is not pos-
sible to describe states which are superpositions of states on the upper
and lower hemispheres. Therefore, breaking the IR into two independent
IRs defined on the northern and southern hemispheres obviously breaks
the initial symmetry of the problem. This fact is in agreement with the
Dyson observation (mentioned above) that dS group is more symmetric
than Poincare one.

WhenR→∞, standard concepts of particle-antiparticle, electric charge
and baryon and lepton quantum numbers are restored, i.e., in this limit,
superpositions of particle and antiparticle become prohibited because now
a particle and its antiparticle belong to different IRs. Therefore, those con-
cepts arise as a result of symmetry breaking, i.e., they are not universal.

8 Particles and antiparticles in AdS invariant the-
ories

In theories where the symmetry algebra is the AdS algebra, the structure
of IRs is known (see e.g., [2, 12]). The operator M04 is the AdS analog of
the energy operator. Let W be the Casimir operator W = 1

2

∑
MabMab

where a sum over repeated indices is assumed. As follows from the Schur
lemma, the operator W has only one eigenvalue in every IR. By analogy
with Poincare invariant theory, we will not consider AdS tachyons and then
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one can define the AdS mass µ such that µ ≥ 0 and µ2 is the eigenvalue of
the operator W .

As noted in Sec. 3, the procedure of contraction from the AdS algebra
to the Poincare one involves the definition of P ν such that Mν4 = RP ν .
This relation has a physical meaning only if R is rather large. In that case
the AdS mass µ and the Poincare mass m are related as µ = Rm, and
the relation between the AdS and Poincare energies is analogous. Since
AdS symmetry is more general (fundamental) then Poincare one then µ is
more general (fundamental) than m. In contrast to the Poincare masses and
energies, the AdS masses and energies are dimensionless. From cosmological
considerations (see e.g., [2]), the value of R is usually accepted to be of the
order of 1026m. Then the AdS masses of the electron, the Earth and the
Sun are of the order of 1039, 1093 and 1099, respectively. The fact that
even the AdS mass of the electron is so large might be an indication that
the electron is not a true elementary particle. In addition, the present
accepted upper level for the photon mass is 10−17ev. This value seems to
be an extremely tiny quantity. However, the corresponding AdS mass is of
the order of 1016, and so, even the mass which is treated as extremely small
in Poincare invariant theory might be very large in AdS invariant theory.

In the AdS case there are IRs with positive and negative energies, and
they belong to the discrete series [2, 12]. Therefore, by analogy with stan-
dard particle theory, one can define particles and antiparticles. Consider
first the construction of positive energy IRs. We start from ”the rest
state” where the AdS energy equals the AdS mass µ1. Then we obtain
the states with the AdS energies µ1, µ1 + 1, µ1 + 2, ...∞ (see Figure 2).
Analogously, if µ2 is the AdS mass of the antiparticle, we start from the
state where the energy equals −µ2 and obtain the states with the AdS en-
ergies −µ2,−µ2−1,−µ2−2, ...−∞. (see Figure 2) Therefore, the situation
is pretty much analogous to that in Poincare invariant theories, and there
is no way to conclude whether the mass of a particle equals the mass of the
corresponding antiparticle.

In view of the results in this and preceding sections, we conclude that
the descriptions of elementary particles in the cases of dS and AdS symme-
tries are considerably different. In the dS case, one IR describes particle
and antiparticle states simultaneously and their superpositions are not pro-
hibited, i.e. the principle of superposition is more fundamental than the
conservation of electric charge and other additive quantum numbers. On
the other hand, in the AdS case, the situation is analogous to that in
Poincare invariant theories; in particular the electric charge conservation is
more fundamental than the principle of superposition.

So, a question arises which of those possibilities in SQT is more physical.
However, as discussed in [2], FQT is more general (fundamental) than SQT,
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in FQT it is also possible to define the concepts of dS and AdS symmetries
and here the dS and AdS cases are physically equivalent. Below we will
consider a direct generalization of the AdS symmetry from SQT to FQT.

The description of the energy spectrum in standard IRs of the AdS al-
gebra has been given above. We will now explain why in FQT the spectrum
is different, and in FQT the situation is similar to that in standard dS case
but not standard AdS one because IRs in FQT contain both, positive and
negative energies. Let us note first that, while in SQT the quantity µ can
be an arbitrary real number, in FQT µ is an element of Rp. As noted above,
if p is odd then Rp contains the elements −(p− 1)/2, ...− 1, 0, 1, ...(p− 1)/2
(see Figure 1) and the case when p is even is analogous. For definiteness,
we consider the case when p is odd.

Figure 2: Spectrum of Energies of Elementary Particle

By analogy with the construction of positive energy IRs in SQT, in FQT
we start the construction from ”the rest state”, where the AdS energy is
positive and equals µ. Then we act on this state by raising operators and
gradually get states with higher and higher energies, i.e., µ + 1, µ + 2, ....
However, now we are moving not along the straight line but along the
circle in Figure 1 and, in contrast to the situation in SQT, we cannot
obtain infinitely large numbers. When we reach the state with the energy
(p−1)/2, the next state has the energy (p−1)/2 + 1 = (p+ 1)/2 and, since
the operations are modulo p, this value also can be denoted as −(p− 1)/2
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i.e., it may be called negative. When this procedure is continued, one gets
the energies −(p− 1)/2 + 1 = −(p− 3)/2,−(p− 3)/2 + 1 = −(p− 5)/2, ...
and, as shown in [2], the procedure finishes when the energy −µ is reached
(see Figure 2).

Therefore, in contrast to the situation in SQT, in FQT IRs are finite-
dimensional (and even finite since the ring Rp and its complex extension
Rp+ iRp are finite). By analogy with the dS case in SQT, one can say that
the states with the energies µ, µ+ 1, µ+ 2, ... refer to a particle and states
with the energies ... − µ − 2,−µ − 1,−µ — to an antiparticle. Therefore,
in FQT the mass of a particle automatically equals the mass of the corre-
sponding antiparticle. This is an example when FQT can solve a problem
which standard quantum AdS theory cannot. By analogy with the situa-
tion in the dS case, for combining a particle and its antiparticle together,
there is no need to involve additional coordinate fields because a particle
and its antiparticle are already combined in the same IR.

Then, since states which are superpositions of particles and antiparticles
belong to the representation space, we conclude by analogy with the situa-
tion in Sec. 7, that in FQT there are no superselection rules which prohibit
superpositions of states with opposite electric charges, baryon quantum
numbers etc. Moreover, the representation operators of the enveloping al-
gebra can perform transformations particle↔ antiparticle.

As shown in Ref. [2], in the formal limit p → ∞, one IR in FQT
splits into two standard IRs of the AdS algebra with positive and negative
energies. This result seems natural from Figure 2 since the spectrum of
positive energies becomes µ, µ+ 1, µ+ 2, ...∞ and the spectrum of negative
energies becomes −∞, ...−µ−2,−µ−1,−µ by analogy with the spectrum
in SQT (see Figure 2). Therefore, in this limit the concept of particle-
antiparticle and the superselection rules have the usual meaning. In turn, in
situations when one can define the quantity R such that the contraction to
the Poincare algebra works with a high accuracy, one can describe particles
and antiparticles in the framework of Poincare symmetry.

Even from the fact that in standard quantum theory, there are no super-
positions of states belonging to a particle and its antiparticle, it is clear that
symmetry described by one IR in FQT is higher than symmetry described
by two IRs obtained from one IR in FQT in the formal limit p→∞. There-
fore standard concepts of particle-antiparticle and superselection rules arise
as a result of symmetry breaking, i.e., they are not universal.
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9 Discussion

As explained in Sec. 6, in quantum theory based on Poincare symmetry,
the concept of particle-antiparticle arises because IRs have the property
that energies in them can be either positive or negative, and there are no
IRs where energies have different signs. Then IRs with positive energies
are associated with particles and IRs with negative energies — with an-
tiparticles, and superpositions of particles and antiparticles are prohibited
because they belong to different IRs. As shown in Sec. 8, in SQT based on
AdS symmetry, the situation is analogous.

On the other hand, as shown in Secs. 7 and 8, in SQT based on dS
symmetry and in FQT, IRs contain states with both, positive and negative
energies. If states with positive energies are called particle states and states
with negative energies — antiparticle states then their superpositions are
not prohibited because they belong to the same IR. The principle of super-
position is a fundamental principle of quantum theory but in SQT based
on Poincare and AdS symmetries, superpositions of particles and antiparti-
cles are prohibited because they contradict the electric charge conservation,
baryon number conservation etc. Therefore, in those cases, e.g., the electric
charge conservation is treated as more fundamental than the principle of
superposition but in SQT based on dS symmetry and in FQT the situation
is the opposite.

One might think that for this reason the latter theories are not physical
but in fact they are more physical than the former theories. The matter is
that, as explained in Secs. 7 and 8:

• Standard Poincare invariant theory arises as a result of symmetry
breaking at R → ∞ in dS invariant quantum theory because in this
limit one IR in the latter splits into two IRs in the former.

• Standard Poincare and AdS invariant theories arise as a result of
symmetry breaking at p→∞ in FQT because in this limit one IR in
the latter splits into two IRs in the former.

Then experimentally the electric charge conservation, baryon number
conservation etc. are observed with a very high accuracy as a consequence
of the fact that at the present stage of the universe the quantities R and p
are extremely high and then standard quantum theory based on Poincare
symmetry works with a very high accuracy. However, there are reasons to
think [2] that at early stages of the universe those quantities were much
less than now . That is why at those stages the conservation of the electric
charge and baryon quantum number did not take place. As argued in [13],
this is the reason of the baryon asymmetry of the universe.
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The present fundamental particle theories are based on Poincare invari-
ant QFT, and, as noted in Sec. 6, for solving the problem why a particle
and its antiparticle have equal masses, those theories involve local quan-
tized field ψ(x) where x does not belong to any particle and is simply a
parameter arising from the second quantization of a non-quantized field.
So, the physical meaning of x is not clear. Although QFT has many suc-
cesses, it also has problems because, as noted, for example, in the textbook
[9], ψ(x) is an operatorial distribution, and the product of distributions at
the same point is not a well defined mathematical operation.

As explained in Secs. 7 and 8, in quantum theories based on dS symme-
try and FQT, the masses of a particle and the corresponding antiparticle are
automatically equal, and this is achieved without introducing local quan-
tized fields. However, as noted above, in those theories the concepts of
particle-antiparticle and additive quantum numbers differ from standard
ones because one IR combines together a particle and its antiparticle. The
construction of such theories is one of the most fundamental (if not the
most fundamental) problems of particle theory.
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