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Net-Proton Number Fluctuations in the SST Nuclear Plasma

Sylwester Kornowski

Abstract: Here we show that the kurtosis multiplied by the squared standard deviation for 
net-proton distributions in nuclear collisions validate the nuclear-plasma structure described 
in the Scale-Symmetric Theory (SST). We also described the SST nuclear phase diagram.

1. Introduction
One of the fundamental goals in physics is to understand the properties of the nuclear 

plasma and hadronic phase of matter when we change the collision energy of ions, √sNN.
The complexity of the system formed in heavy-ion collisions forced scientists to use 

advanced statistical methods. They use the moments to describe the characteristic of a 
distribution.

If a function is a probability distribution, then the first moment is the expectation value (the 
arithmetic mean of a large number of independently selected outcomes of a random variable), 
the second moment is the variance (a measure of how far a set of the same physical quantity is 
spread out from their average value), the third standardized moment (normalized by a power 
of the standard deviation σ) is the skewness (positive skew indicates that the longer tail is on 
the right side of the distribution), the fourth standardized moment is the kurtosis (it 
describes how much of a probability distribution falls in the tails instead of its center), 
and so on.

The most important information about the nuclear structure of plasma is observed in the 
energy dependence of κσ2, where κ defines kurtosis, and σ is the standard deviation, of net 
proton distribution (i.e. number of protons minus number of antiprotons) from the 0 – 5% 
most central collisions because such dependence is non-monotonic.

But the Relativistic Heavy-Ion Collider (RHIC) data are incomplete and they sometimes 
differ from the theoretical predictions, so a new model is needed to explain discrepancies, 
deficiencies in description, and to predict results for missing energies of the central ion 
collisions.

Here we use the Scale-Symmetric Theory (SST) [1] to describe structure of the SST 
nuclear plasma, to describe the phase transitions in the SST plasma core and plasma corona, 
and to show how the function κσ2 = f (√sNN) should look, so we can verify our model.

2. The SST nomenclature and calculations

2.1. Reconstruction of proton, nuclear ionization and the SST nuclear-plasma core
In SST [1], nucleons (p and n) consist of the neutral core Ho = 724.776 MeV or 

positively charged core H+ = 727.439 MeV, and of a relativistic pion (neutral W(o),d=1 = 
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208.643 MeV or charged W(+–),d=1 = 215.761 MeV) in distance Rd=1 = A + B = 
1.199278 fm, where A = 0.6974425 fm is the equatorial radius of the baryonic core.

Reconstruction of the proton is a capture of the relativistic pion by the core of baryon.
Nuclear ionization is the emission of the relativistic pion by proton or neutron.
The charged core of baryons is most stable, so the SST nuclear-plasma core consists of the

baryonic cores, H+, packed to maximum.
To reconstruct a proton, first of all, we must reconstruct the Titius-Bode (TB) orbits for the 

nuclear strong interactions. According to SST, it is done by quanta with a mass MTB = 
750.296 MeV that are quadrupoles, so it can be also MTB/4, MTB/2, 2MTB, 4MTB, and so 
on.

2.2. Torus/electric-charge of proton and the SST nuclear-plasma corona
Torus/electric-charge of proton is localized in the core of baryons and its mass is X± = 

318.2955 MeV. By an analogy to the electron: e±
bare,real + (e+e–)virtual, where e±

bare,real is 
the real mass of bare electron, we have X±

real + (X+X–)virtual.
The X+X– pairs are the components of the SST nuclear-plasma corona.

2.3. Net-proton number
Net-proton number is the number of reconstructed protons minus number of reconstructed 

antiprotons. For the nuclear-plasma corona, such number distance, ΔN, is zero. Just 
reconstruction of nucleons from the X+X– pairs leads to the same number of protons and 
antiprotons.

Each baryonic core H+ can lead to one proton so we can normalize the function κσ2 = 
f(√sNN) for the nuclear-plasma core at very high energies as ΔNhigh = 1. But at lower 
collision energies, due to the reconstruction of nucleons, there are created locally the alpha 
particles and the 1p1n pairs, so ΔNlower = 1.5. At lowest collision energies, in the plasma 
core there can be created locally the cuboids 4p4n or 3p5n (it dominates is heavier nuclei), 
so ΔNlowest = 3.5.

2.4. The nuclear-strong constant
It is an analog of the gravitational constant, G, for the nuclear strong interactions:
GS = 5.45651·1029 m3/(kg s2).

2.5. The characteristic baryonic chemical potential μB,ch at T = 0
It is defined as energy needed to emit the relativistic pion in the d = 1 state (the nuclear 

ionization)

μB,ch = GS H+o W(+–o),d=1 / Rd=1 .                                             (1)

The upper and lower limits are

μB,ch,upper = 1417 MeV .                (2)

μB,ch,lower = 1365 MeV .                (3)
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Such energies are needed to “ionize” the nucleons, so at T = 0 for μB = 1417 MeV there 
appears the pure SST nuclear plasma (see Fig.1).

2.6 Temperature of the SST nuclear matter and the temperature of phase transition
Temperature T we define as follows

T  T kB [MeV] , (4)

where kB = 1.380648·10–23 J/K = 8.6173·10–11 MeV/K is the Boltzmann constant. The 
T we calculate from the Wien’s displacement law – it states that the black-body-radiation 
curve, for different temperatures, T, peaks at different wavelengths, λPeak, and λPeak is 
inversely proportional to T

λPeak ~ 1 / T , (5)

T λPeak = 2.8978·10–3 [K m] . (6)

To create the SST nuclear-plasma core, we must pack the baryonic cores to maximum, i.e. 
their distance must be λPeak = 2A = 1.395 fm. From (6) and (4) we obtain

Ttransition = 179 [MeV] . (7)

But instability of the nuclear matter starts for λPeak = Rd=2 = (A + 2B) = 1.7011 fm (it 
is the ground state for the nuclear strong interactions above the Schwarzschild surface for the 
nuclear strong interactions), so we have

Tinstability = 147 [MeV] . (8)

From SST follows that when distances between the components of the SST nuclear plasma 
are smaller (i.e. temperature T is higher) then the nuclear-ionization energy (i.e. the baryonic 



4

chemical potential μB) is lower, i.e. the energy needed to emit the relativistic pions by 
baryons is lower.

There is no critical point in the SST nuclear phase diagram, there is the critical line.
SST shows that the baryonic chemical potential (the energy of nuclear ionization) at T = 0

of the relativistic charged pion in the last d = 4 TB orbit is 1064 MeV.

2.7. Relationship between the collision energy √sNN and the characteristic masses 
created in the SST nuclear matter

New fermions created in matter must satisfy following formula

Mbare c = M v , (9)

where Mbare is the bare mass of the fermion mass M.
For the electron or the torus/electric-charge of proton (X±) or a particle containing such 

objects, we have [1]

v / c = Mbare / M = 1 / 1.0011596522 . (10)

Then the ratio of relativistic mass and rest mass is

F = mrel / mo = (1 – v2 / c2)–1/2 = √sNN / M = 20.78 . (11)

When energies of the exchanged particles have mass equal to Mi = MTB/4, MTB/2, MTB, 
2MTB, 4MTB, 8MTB, and so on, then the TB orbits of some H± cores are restored, so 
number of protons increase. It causes that the net-proton distribution increases as well, i.e. the 
plasma contains regions that are not nuclear plasma. From (11) we obtain that the masses Mi
relate to

(√sNN)Maxima = 3.9, 7.8, 15.6, 31.2, 62.4, 124.7 GeV . (12)

We can see that the SST nuclear plasma starts at energy ~3.9 GeV.
For such collision energies, we should observe some maxima in the function κσ2 = 

f(√sNN) because they partially restore the structure of nucleons.
On the other hand, we should observe some minima for following energies (then the SST 

nuclear-plasma corona dominates)

Ed = d (X+ + X–) , (13)

where d = 1, 2, 4, are the TB numbers [1].
From (11) we obtain that the masses Ed relate to

(√sNN)Minima = 13.2, 26.5, 52.9 GeV . (14)

But from experimental data follows that in the nuclear plasma are additionally produced, 
first of all, the pions and kaons, so for the collision energies related to π+π– and K+K– pairs 
we also should observe deep minima
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(√sNN)Minima = 5.8, 20.5 GeV . (15)

The baryonic chemical potential μB = 1417 MeV relates to the collision energy √sNN = 
29.4 GeV, so above such collision energy there is the pure SST nuclear plasma and there 
dominates the plasma core. It means that the net-proton κσ2 is close to 1 but lower than 1
because of very thin corona composed of the X+X– pairs.

At low energies, thickness of the plasma corona is relatively larger, so the annihilations of 
the X+X– pairs cause that we observe high particle yields in the low transverse momentum 
region.

2.8. Decays of the atomic-nucleus structures
According to SST, the bases of the cuboids interact due to the nuclear weak interactions, so 

the characteristic energy is Y = 424.12176 MeV – from formula (11) follows that such 
energy relates to the collision energy √sNN = F Y = 8.8 GeV. At such collision energy, the 
cuboids decay to alpha particles but also to the proton-neutron pairs because some of the 
bases consist of 1 proton and 3 neutrons. It means that the net-proton κσ2 decreases from 3.5
to 1.5.

The upper limit for the nuclear-ionization energy at T = 0 is μB,ch,upper = 1417 MeV, so it 
relates to √sNN = F μB,ch,upper = 29.4 GeV. At such collision energy, the alpha particles and 
the 1p1n pairs decay to the single nucleons (more precisely, to the single cores of baryons). It 
means that the net-proton κσ2 decreases from 1.5 to 1.

2.9. Kurtosis
Kurtosis is defined as

κ = <(δ N)4> / σ4 , (16)
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where δ N = N – M, M is the mean and σ is the standard deviation.

The central values of experimental data in Fig.2 (the red crosses) are from [2] and [3].

2.10. The SST chemical freeze-out
In SST, the nuclear strong interactions of nucleons in atomic nuclei at low energy follow 

from exchanges of the virtual non-relativistic pions πo = 135 MeV and π± = 139.6 MeV.
Here we define the SST chemical freeze-out as the baryonic chemical potential, μB,freeze-out, 

at which the virtual non-relativistic pions or gluons decouple from nucleons an atomic 
nucleus consists of.

The virtual π+π– pairs and gluons appear most frequently at the d = 1 state where is placed 
the relativistic pion. Radius of it is Rd=1 = 1.199278 fm. From (1) follows that to emit the 
virtual non-relativistic charged pion from such a distance (it is the SST nuclear ionization)
there is needed the baryonic chemical potential equal to μB,freeze-out,low = 917 MeV. Such 
freeze-out relates to √sNN = 19.1 GeV (see formula (11)). Such processes dominate at low 
temperatures.

When the collision energy increases, there appear gluons in the d = 1 state. With 
increasing collision energy, energy of the gluons increases from zero up to energy of the 
fundamental gluon loops (FGL, mFGL = 67.5444 MeV). From (1) follows that to emit the 
virtual FGLs from such a distance (it is the SST nuclear ionization) there is needed the 
baryonic chemical potential μB,freeze-out,high = 444 MeV. The baryonic chemical potential 
increases from zero up to 444 MeV. The upper limit of the potential of such freeze-out 
relates to √sNN = 9.2 GeV. Temperature for such interval of the baryonic chemical potential,
i.e. 0 MeV < μB,freeze-out < 444 MeV, is practically invariant because at high temperatures, 
the distances between the nucleons are close to Rd=2. We already calculated that the distance
Rd=2 relates to T = 147 MeV.

For other temperatures, there is a combination of the two described phenomena. At higher 
temperatures dominate the gluons while at lower temperatures dominate the virtual non-
relativistic charged pions (Fig.3).

Our results are consistent with experimental data presented in [2] (see Figure 2a in [2]).
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3. Summary
Orthodox methods used in physics are based on the search for a differential equation, 

which usually leads to a multi-parameter solution, and then the search for physical 
phenomena in order to interpret the appearing parameters. In the case of difficult problems 
such as the one described in this paper, such methods do not work at all because it is like a 
magician pulling a rabbit out of an empty hat. Often, new experimental data (and even known
results) do not match the obtained solution of the equation, which means that practically the 
entire model is useless.

In the Scale-Symmetric Theory, we use a much more efficient method. Based on known 
physical phenomena or highly probable phenomena (like, for example, phenomena described 
by formulae (1) and (11) in this paper), we search for statistical distributions leading to 
maxima, minima, plateaux, boundaries, resonances, quantized values, and so on, and then 
combine the obtained points. The advantage of this approach is the fact that the curve 
obtained in this way has a real physical interpretation right away, and any discrepancies with 
new experimental data do not make it necessary to reject the entire model, but to search for 
new phenomena. What’s more, unlike looking for solutions to complex differential equations 
taken out of the empty hat, the SST method applied to extremely non-monotonic changes is 
practically guaranteed to be 100% effective. It caused that the SST is the superior theory.

Here we showed that the SST core-corona model of nuclear plasma leads to very simple 
interpretation of the net-proton κσ2 distribution as a function of collision energy. Moreover, 
obtained theoretical results are consistent with still not numerous experimental data. We 
calculated the net-proton distribution for collision energies from 3.9 GeV (the SST nuclear 
plasma starts from such collision energy) up to 200 GeV (see Fig.2), so we can verify our 
model.

The SST plasma core consists of the cores of baryons packed to maximum, so the net-
proton distribution is higher than zero. The SST plasma corona consists of the torus-antitorus 
pairs (X+X–), so the net-proton distribution is zero.

In the cores of baryons and the tori/electric-charges are also created, first of all, pions, 
kaons, gluons and gluon loops, so mass density of the SST nuclear plasma is higher than 
mean energy density of the cores of baryons (> 0.79 GeV/fm3) or mean energy density of the 
tori (> 0.34 GeV/fm3) – it is consistent with experimental data (~ 0.4 – 1 GeV/fm3).

The gluons and exchanged particles quantize the distances between the components of the 
SST nuclear plasma, so the distances, via the Wien’s displacement law, define temperature of 
the SST plasma.

We showed that at collision energy 29.4 GeV of the plasma core, the nucleons in atomic 
nuclei decay to the single baryonic cores (they are not entangled but packed to maximum) – it 
suggests that it is the starting collision energy for the pure SST nuclear plasma.

To explain the discrepancy between QCD and experiment concerning the low transverse 
momentum region (we observe too much particles), in paper [4] is formulated an alternative 
core-corona model for nuclear plasma. But we claim that the SST core-corona model much 
better explains all unsolved problems.

By the way, discovery of very massive early galaxies defies prior understanding of 
evolution of the Universe [5]. Such discrepancy was predicted within the SST already many 
years ago. We mentioned it because we cannot separate the evolution of nuclear plasma from 
evolution of the early Universe. Both descriptions are closely related.
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