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Abstract— Safety is critical in robotic tasks. Energy function
based methods have been introduced to address the problem.
To ensure safety in the presence of control limits, we need to
design an energy function that results in persistently feasible
safe control at all system states. However, designing such an
energy function for high-dimensional nonlinear systems remains
challenging. Considering the fact that there are redundant
dynamics in high dimensional systems with respect to the safety
specifications, this paper proposes a novel approach called
abstract safe control. We propose a system abstraction method
that enables the design of energy functions on a low-dimensional
model. Then we can synthesize the energy function with respect
to the low-dimensional model to ensure persistent feasibility.
The resulting safe controller can be directly transferred to other
systems with the same abstraction, e.g., when a robot arm holds
different tools. The proposed approach is demonstrated on a
7-DoF robot arm (14 states) both in simulation and real-world.
Our method always finds feasible control and achieves zero
safety violations in 500 trials on 5 different systems.

I. INTRODUCTION

Energy function-based methods have been extensively
studied to ensure control-level safety for robotic systems in
various applications, such as industrial robots in manufac-
turing or autonomous vehicles in transportation [1]. Typical
approaches include the control barrier function method and
the safe set algorithm (with safety index). These techniques
aim to map dangerous states to high energy and safe states
to low energy. Safety is guaranteed if a realizable control
always exists that dissipates the energy whenever the state is
in danger, which is known as persistent feasibility. Persistent
feasibility can be guaranteed by offline energy function syn-
thesis (known as the barrier function or the safety index) [2].
Formal guarantees can be provided for general nonlinear
systems with up to seven dimensions in states [3].

However, existing energy function-based methods face
challenges in ensuring persistent feasibility for general high-
dimensional applications. For example, rule-based methods
[4] only apply for specific types of system dynamics; evolu-
tionary optimization-based synthesis does not scale well for
high dimensions [2] due to the curse of dimensionality; ad-
versarial optimization lacks formal guarantees [5]; and Sum-
of-Square-based methods are restricted to certain polynomial
specifications [6], [7]. Thus, methods to formally ensure
safety for general high-dimensional applications are needed.
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Fig. 1: An illustration of abstract safe control to prevent
collision between a drill and a human. The conventional safe
control approach is to model the full kinematic chain of the
robot system with state x. Our proposed approach considers
abstract states z = [d, ḋ] (relative distance and velocity) and
a scalar M that considers constraints imposed by the full
kinematic chain (whose values are different for x1 and x2).

Our observation, as illustrated in fig. 1, is that high-
dimensional system models are typically redundant with re-
spect to the safety specification. For instance, if we only need
to ensure collision avoidance between a drill and a human,
there is no need to verify the feasibility of safe control for all
robot states. Similarly, when addressing collision avoidance
for a legged robot, the focus is primarily on its center of
mass rather than each leg’s states [8]. Hence, a simplified
model of the robot can be used to replace the full dynamic
model for safe control to reduce dimensionality.

A common approach to simplify dynamics is by em-
ploying a two-layer hierarchical architecture through sys-
tem abstraction [9]. The high-level system uses abstracted
dynamics, while the low-level system uses the original
concrete dynamics. However, existing system abstraction
methods [10], [11] can not be used for ensuring persis-
tent feasibility. Because they usually assume the abstract
model has uniform control constraints, which may lead to
an unrealizable abstract control that breaks the feasibility.
For instance, in fig. 1, although both situations correspond
to the same abstract state z, the feasible abstract control
(Cartesian acceleration of the drill) in these two situations
is different. In particular, at x2, the horizontal acceleration
of the drill is unrealizable due to singularity. To enable safe
control through system abstraction, the notion of abstraction
consistency is essential to ensure that the high-level objective
is always realizable by the concrete controller. Consistent
abstraction of controllability [9] and local accessibility [12]
have been studied. However, it remains unclear on how to
design a consistent abstraction for persistent feasibility, since
the constraint is state-dependent, and control limits must be
considered.



To address these challenges, we propose a consistent
abstraction for persistent feasibility, which allows us to
design and verify the energy function (in the following dis-
cussion, we call it as the safety index) on a low-dimensional
abstracted system. We specifically augment the abstract state
with a scalar to account for different control constraints
imposed by the concrete system for same abstract states.
For example, we extend z in fig. 1 to ẑ = [d, ḋ,M ], where
M = max |d̈|. By mapping x1 and x2 to different ẑ, we
can ensure that d̈ is always realizable by choosing it from
the range [−M,M ]. We will present a general method for
designing this extended abstraction. Then we prove that a
persistent feasible safety index synthesized on the extended
abstraction guarantees persistent feasibility in the concrete
system because all abstract controls are realizable. Lastly,
we discuss how to design a persistent feasible safety index
on the extended abstraction.

The abstraction not only reduces dimensionality but also
enhances the transferability of the synthesized safety index.
The safety index synthesized on such an extended abstraction
can be directly applied to other concrete systems that have
the same safety specifications (which implies same abstrac-
tion), as long as certain criteria is met. This transferability
is especially useful for systems with time varying structures,
such as a robot arm with changing end effectors. Once the
safety index is feasible for a robot arm on the extended
abstraction, it can be directly applied to the robot arm with
different end effectors, to be shown in section V.

II. FORMULATION

A. Safety index synthesis

Consider a control affine system

(Σ1) ẋ = f(x) + g(x)u (1)

where x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu . We assume U is a
polytope, which is a common case in practice.

Assumption 1 (Polytope U). The control limits U of the
concrete system is a polytope: U = {u | Au < b}.

A user-defined safety specification ϕ0(x) : Rn → R is
a continuous function and implicitly defines a connected
and closed set Xs := {ϕ0}<0 called the safe set. We are
interested in keeping the state in a subset of the user-defined
safe set: S ⊆ Xs. The problem can be expressed as a forward
invariance problem:

x(t0) ∈ S =⇒ ∀t > t0, x(t) ∈ S. (2)

In energy function-based methods, S is defined by a des-
ignable safety index ϕ: S := {ϕ}<0. The forward invariance
can be guaranteed if the safe control constraint: ϕ̇(x, u) <
γ(x) is persistently feasible, where γ(x) depends on the
method. This paper considers the safe control constraint
used in SSA [4], corresponding to the following persistent
feasibility condition:

Definition 1 (Persistent feasibility). A safety index ϕ is
persistently feasible if ∀x that ϕ(x) = 0, there always exists
u ∈ U such that ϕ̇(x, u) < 0.

However, designing a persistently feasible safety index to
ensure forward invariance is not easy, especially for high-
dimensional applications. Suppose ϕ is parameterized by θ,
the problem can be formulated as

min
θ

|B∗
θ | := min

θ

∣∣∣{x | ϕθ(x) = 0, inf
u

ϕ̇θ(x, u) ≥ 0}
∣∣∣ , (3)

where B∗
θ denotes the set of states on the boundary of ϕθ

that have no feasible safe control. The goal is to optimize θ
such that |B∗

θ | = 0. The task is difficult because computing
|B∗

θ | is generally intractable for high dimensional systems.

B. System abstraction

To design a persistent feasible safety index for high-
dimensional applications. We observe that, often, not all
states are needed to check the satisfaction or feasibility
of a safety specification as in eq. (3). For instance, when
considering collision avoidance of a tool held by a robot
arm (fig. 1), only the relative distance and velocity from the
tool to the obstacle (2 dimensions) are required, instead of
all 14 dimensions of the robot arm.

System Σ1 is called the concrete system. Suppose we want
to design the safety index on a space Z which is defined by
a smooth, surjective map z = Φ(x), where Φ : Rnx → Rnz ,
nz ≤ nx. Then we can define a system

(Σ2) ż = fz(z) + gz(z)v, (4)

where z ∈ Z ⊆ Rnz , v ∈ V ⊆ Rnv .

Assumption 2. We assume gz is of full column rank.
Otherwise, the dimension of abstract safe control can be
reduced. Therefore, gz(z)−1 always exists.

Definition 2 (Φ-related). A system Σ2 is Φ-related to a
system Σ1 if for every trajectory x(t), z(t) = Φ(x(t)) is
a trajectory of Σ2.

Σ2 is an abstraction of Σ1 if it is Φ-related to Σ1 [12]. [9]
proves that given a control system Σ and any smooth map
Φ, there always exists a control system which is Φ-related to
Σ. [12] provides a method to construct the smallest control
system Σ2 on Z that is Φ-related to Σ1. If fz(z) and gz(z)
are unknown, they can be constructed with this method.

However, Φ-relatedness is insufficient for designing the
safety index on the abstraction. Because an abstract control
at z may not be implementable at all states x = Φ−1(z)
by the concrete system. For example, as in fig. 1, a hori-
zontal acceleration is implementable at x1 but not at x2. To
enable designing safety index on the abstraction, we define
consistent abstraction of constraint feasibility as follows:

Definition 3 (Feasibility consistent abstraction). Let Σ1 and
Σ2 be two control systems and Φ : X → Z be a smooth
map. Given a safety index ϕ defined on X . Σ2 is a feasibility
consistent abstraction of Σ1 iff there exists a safety index ϕz

defined on Z such that the following conditions are satisfied:



1) ϕz(z) = ϕz(Φ(x)) = ϕ(x); 2) ∀z s.t. ϕz(z) = 0, if
∃v ∈ V, s.t. ϕ̇z(z, v) < 0, then ∃u ∈ U, s.t. ϕ̇(x, u) < 0,
∀x, s.t. Φ(x) = z.

Consistent abstraction w.r.t many properties has been
studied when there is no control limits[12], [9]. That is,
when U = Rnu and V = Rnv . But in reality, U is
usually a bounded set. How to design the abstraction under
control limits is still unknown. Besides, the safety constraint
ϕ̇(x, u) < 0 is state-dependent which introduces another
difficulty.

In the following, we first show how to construct feasibility-
consistent abstractions under control limits, and characterize
when persistent feasibility on the concrete system can be
guaranteed by ensuring persistent feasibility on the abstracted
system, that is, when condition 2) in definition 3 can be
satisfied. Then we show how to ensure persistent feasibility
on the abstracted system by designing a safety index.

III. CONSISTENT ABSTRACTION THEORY

A. Consistent abstraction under control limits

In order to construct a consistent abstraction under control
limits, we first show how to choose Φ, the corresponding
abstract space Z and ϕz . Then we pose a condition on the
abstract control limits to make the abstraction consistent.

Suppose ϕ0 is composed of some inner functions. That
is, ∃φ1(x), · · · , φk(x), s.t. ϕ0(x) = ϕ0(φ1(x), · · · , φk(x)).
For example, φi(x) can be the distance to obstacles, the
center of mass, etc. Inspired by [4], we can define Φ and
correspondingly Z by

Φ = φ1 × φ̇1 × · · · × φ
(n1)
1 × · · · × φk × · · · × φ

(nk)
k (5)

where the relative degree in the sense of Lie derivative from
φ
(ni)
i to the concrete control u is one. This choice of Φ

ensures the appearance of u in ż, which is a necessary
condition of persistent feasibility. zi are all features of
x. Therefore, we can restrict the safety index ϕ(x) to be
composite functions of Φ and let ϕz(z) := ϕ(z). Then
condition 1) in definition 3 is satisfied.

Definition 4 (Composition). ϕ(x) is a composite function of
Φ, that is, ϕ(x) = ϕ(Φ(x)) = ϕ(z).

For example, as shown in fig. 1, we can define φ(x) := d,
then ϕ0(x) := 1 − d = 1 − φ(x). We can let z =
[φ(x), φ̇(x)] = [d, ḋ] and ϕ(z) = ϕ(d, ḋ).

Next, we present the condition of consistent abstraction.
We start by proving that the abstract control v is an affine
transformation of the concrete control u.

Lemma 3 (Affine transformation of control). Consider a
control affine concrete system and a smooth map Φ. The
abstract control can be represented as an affine transforma-
tion of the concrete control, specifically, we can let v =
C(x)u + d(x), where C(x) = gz(Φ(x))

−1∇Φ(x)g(x), and
d(x) = gz(Φ(x))

−1[∇Φ(x)f(x) − fz(Φ(x))]. The proof is
in appendix A (on arxiv).

Definition 5 (Implementable abstract control limits). Given
a polytope concrete control limits U and a state x, based on

lemma 3, the implementable abstract control limits at x is
also a polytope set, defined as ΦU (x) := {C(x)u + d(x) |
∀u ∈ U}.

Theorem 4 (Feasibility consistency condition). Let Σ1 and
Σ2 be two control systems and Φ : X → Z be a surjective
smooth map. Suppose the abstract control limits V is a
state-dependent set, then condition 2) in definition 3 can be
satisfied if

∀z, V (z) ⊆ ∩x∈Φ−1(z)ΦU (x) (6)

Proof. For arbitrary x ∈ {ϕ(x)}=0, we can let z = Φ(x) and
have ϕ(z) = 0. If there exists a v ∈ V (z) such that ϕ̇(z, v) <
0. From eq. (6), we know this v ∈ V (z) ⊆ ΦU (x). Therefore,
based on definition 5, ∃u ∈ U such that v = C(x)u+ d(x).
And this u satisfies that ϕ̇(x, u) = ∂ϕ

∂x ẋ = ∂ϕ
∂z

∂z
∂x ẋ = ∂ϕ

∂z ż =

ϕ̇(z, v) < 0.

Theorem 4 states that the feasibility can be propagated
from Σ2 to Σ1 if all abstract control v ∈ V (z) at a given z
is always implementable on the concrete system at arbitrary
x ∈ Φ−1(z). However, V (z) is difficult to construct because
Φ−1(z) is difficult to compute. For example, Φ−1(z) may
correspond to all possible poses of a robot arm given an end-
effector status z. Besides, z = Φ(x) may aggregate x with
vastly different abstract control limits ΦU (x) into the same
class, making V (z) very tight and even empty. As shown in
fig. 1, if we design control using V (z) = ΦU (x1)∩ΦU (x2),
we will lose horizontal acceleration for both cases. Therefore,
we need a better method that is easy to construct and
improves conservativeness.

B. Non-conservative abstraction under control limits

To address this issue, we propose an extended abstraction
that only aggregates x with similar abstract control limits
ΦU (x). In the following, we first define a one-dimensional
under-approximation of ΦU (x), then define such an extended
abstraction.

Definition 6 (state-dependent radius of control constraints).
The radius of the largest zero-centered inner Lp-norm ball
of ΦU (x) is defined as:

M(x) = max
r

r s.t. Bp(r) ⊆ ΦU (x), (7)

where Bp(r) = {v | ∥v∥p ≤ r}.

Definition 7 (Extended abstraction). With M(x), we define
an extended abstraction for Σ1 as Φ̂(x) := Φ(x) × M(x),
and ẑ := z⊕M . The abstract control is defined as v̂ = v×m.
The abstract control limit is defined by V̂ (ẑ) := Bp(M)×R.
The corresponding extended abstraction space is Ẑ := Z×R,
which has only one more dimension than Z.

In this way, we keep the extended abstraction in low
dimension and gain flexibility in designing abstract control
under different control limits.

One prerequisite of this under-approximation is that
ΦU (x) must contain 0. Because M(x) = 0 when 0 /∈ ΦU (x).



Fig. 2: Left: Abstract control limit V (x) and its under-
approximation M . Right: Extended abstraction and extended
abstract safe set. The abstract space Z is extended with the
scalar M , representing the maximal inner Lp-norm ball of
ΦU (x). In this way, the abstract safe set is lifted from Z
to Ẑ = Z × R. Designing the safety index ϕ on Ẑ enables
different safe control under different control limits. Persistent
feasibility requires that there always exists a control that
leads to a system flow ˙̂z toward the interior of the invariance
set.

In this case, V̂ (ẑ) is an empty set which makes Σ2 ill-
defined. Therefore, we provide sufficient conditions of 0 ∈
ΦU (x).

Assumption 5 (0 ∈ ΦU (x)). We assume

∀x, ∃u, s.t. C(x)u+ d(x) = 0. (8)

To understand when the assumption holds, we present the
following three case studies:

Case 1. If 0 ∈ U and systems are driftless [13], that is
f(x) = 0 and fz(z) = 0. Then 0 ∈ ΦU (x) always holds.

Case 2. When v is a scalar, a sufficient condition of ΦU (x)
contains 0 is minu∈∂U ∥u∥ > maxx∈X ∥d(x)∥/∥C(x)∥.

Case 3. When v is a vector, a sufficient condition that
0 ∈ ΦU (x) is that minu∈∂U ∥u∥ > maxx∈X ∥C(x)Tw(x)∥,
where w(x) is a solution of C(x)C(x)Tw(x) + d(x) = 0.

The extended abstraction enables the design of abstract
controllers under varying control limits. Without the exten-
sion, an abstract controller will give us the same control
under different abstract control limits. But after the exten-
sion, we can define the safety index on Ẑ, which is abstract
control limits aware. For example, as in fig. 1, if the only
considering d, ḋ, an abstract controller will suggest the same
control for x1 and x2, but after the extension, it will suggest
different actions for x1 and x2.

IV. ABSTRACT SAFE CONTROL

The consistent abstraction theory shows that a persistent
feasible safety index defined on the extended abstraction
guarantees persistent feasibility for the concrete system.
Next, we show how to design a persistent feasible safety
index on the extended abstract space Ẑ.

A. Persistent feasibility on extended abstraction

As shown in fig. 2, a safety index defined on Z corre-
sponds to a disk invariance set on the Z plane. But a safety

index defined on Ẑ = Z ×R corresponds to a bucket shape
invariance set in Ẑ. Persistent feasibility requires that we can
always find a control on the boundary of the invariance set
that leads to a system flow towards the inside of the invariant
set. Formally, persistent feasibility requires the following
inequality holds for all x ∈ {ϕ}=0:

min
∥v∥<M

ϕ̇+ γ(ϕ) =
∂ϕ

∂z
ż +

∂ϕ

∂M
Ṁ < 0 (9)

=
∂ϕ

∂z(x)
[fz(z(x)) + gz(z(x))v] +

∂ϕ

∂M
Ṁ(x) < 0 (10)

The numerical method to verify persistent feasibility for
general nonlinear systems has an exponential growth time
complexity O(2n) [2], where n is the dimension of the state.
Therefore we wish to verify the feasibility on the abstracted
system and propagate the feasibility back to concrete system.
However, notice that Ṁ(x) does not depend on z but on x.
To guarantee the abstract control is consistent for all x ∈
Φ−1(ẑ). We propose the following method.

Suppose M(x) ∈ [Mmin,Mmax] := Rv , we instead verify
the following stricter inequality: ∀z ∈ {ϕ}=0,∀M, ∃v, such
that

min
∥v∥<M

∂ϕ

∂z
[fz(z) + gz(z)v] +

∣∣∣∣ ∂ϕ∂M
Ṁmax

∣∣∣∣ < 0. (11)

It is easy to see that eq. (11) =⇒ eq. (10). Intuitively,
eq. (11) says that we can always find a control u that
corresponds to a ż, whose combination with the largest
possible Ṁ (which is ˙̂z) still points towards the interior of
the invariant set. And because eq. (11) is x-independent, we
can verify it on the space Ẑ, which is a much smaller space
than X , therefore can be verified by numerical methods. We
can derive the following lemma from eq. (11):

Lemma 6. A safety index is persistently feasible if Ṁmax

satisfies the following condition:

Ṁmax < inf
z,M∈Z×Rv

−
min∥v∥<M

∂ϕ
∂z [fz(z) + gz(z)v] + γ(ϕ)∣∣∣ ∂ϕ

∂M

∣∣∣ .

In addition, eq. (11) can be relaxed when M =
Mmin. Because ∂ϕ

∂M is expected to be always negative
(the system is safer when the control limit is larger),
and Ṁ ≥ 0 because M can not be less. Therefore
∂ϕ
∂M |MminṀ |Mmin ≤ 0. Therefore, we only need to verify
that min∥v∥<M

∂ϕ
∂z [fz(z) + gz(z)v] < 0 when M = Mmin.

We can estimate Mmin and Mmax by sampling the state
space and computing M with the following lemma.

Lemma 7 (M computation). Suppose ΦU (x) is composed
of linear constraints ΦU (x) := {v | ai(x)v ≤ bi(x),∀i},
the maximal radius of the Lp−norm ball can be found by
solving the following convex optimization.

max
M

M s.t. ∥ai(x)∥1/pM ≤ bi(x),∀i. (12)

The proof is in appendix B (on arxiv).



B. Safety Index Synthesis and Execution

With dynamics abstraction, we can synthesize ϕ on a
low dimensional space. Therefore, we can use analytical or
numerical methods [2] to compute |B∗

θ | in eq. (3). During
online execution, we can find a safe control in the original
space by solving the following linear inequality:

ϕ̇(x, u) =
∂ϕ

∂z

∂z

∂x
ẋ+

∂ϕ

∂M

∂M

∂x
ẋ (13)

= (
∂ϕ

∂z

∂z

∂x
+

∂ϕ

∂M

∂M

∂x
)[f(x) + g(x)u] < 0. (14)

Due to the complex transformation, it can be difficult to
compute ∂M

∂x by analytical methods. But we can compute
∂M
∂x numerically by perturbing x: ∂M

∂x = limδ→0[M(x +
δ)−M(x)]/δ. The approximation error can be made up by
relaxing ∂M

∂x ẋ. Because Ṁ is bounded and the persistent
feasibility guarantees a safe control exists even for Ṁmax,
therefore safety always can be guaranteed by choosing the
most conservative safe control in the worst case.

With this safety constraint, we can choose a control u that
is close to a given reference control u0 with a QP objective
function as in most energy function based method [1]:
minu ∥u− u0∥ s.t. ϕ̇(x, u) < 0.

V. EXPERIMENT

Experiments are designed to show that 1. the prerequisite
of the method can be easily achieved; 2. the method ensures
persistent feasibility for high dimensional systems; 3. the
synthesized safety index can be transferred to systems with
different dynamics.

Our experiments are tested on a 7 degrees-of-freedom
(DoF) Franka Panda robot arm simulation platform with a
1.5GHz AMD EPYC 7H12 64-Core Processor, and a 7 DoF
FANUC LR Mate 200i real robot.

The robot’s task is to reach a goal while avoiding collision
with obstacles or humans. We consider a collision avoidance
constraint ϕ0 = dmin − d, where dmin = 0.05 and d is the
relative distance.

A. Distribution of M and Ṁ

We first show the distribution of M and Ṁ . The distribu-
tion in fig. 3a reveals that M is always above 0. Very few
states have a small range. Therefore, the extended abstraction
greatly reduced conservativeness. The distribution of Ṁ as
shown in fig. 4c shows that most states have a small Ṁmax,
which eases finding feasible safe control. It takes 14 hours
to sample 100000 Ṁ and estimate Ṁmax.

The figures in fig. 4 show the corresponding robot arm
poses for the extreme values of M and Ṁ . We can see that
these poses usually corresponds to singular states, such as
fully extended. Therefore, users may accelerate the system
property verification with their knowledge.

B. Persistent Feasibility

The safety index is designed as the following form:

ϕ = max(ϕ0, ϕ
∗), where ϕ∗ = d2min − d2 − kḋ/M. (15)

(a) M distribution (b) Ṁ distribution

Fig. 3: Distribution of M and Ṁ

(a) Mmin pose (b) Mmax pose (c) Ṁmax pose

Fig. 4: Poses for extreme values of M and Ṁ

The persistent feasibility of ϕ can be guaranteed by the
persistent feasibility of ϕ∗ as shown in [4]. Therefore, we
can use system abstraction to directly determine the value
of k that guarantees feasibility of ϕ∗ and ϕ. Assuming
d ∈ [0.0, 0.8]m and ḋ ∈ [−1.0, 1.0]m/s: ∀(d, ḋ,M), s.t.
ϕ∗ = 0, there exists d̈ ∈ [−M,M ] such that:

ϕ̇∗ = −2dḋ− kd̈/M + kḋṀ/M2 (16)

≤ −2dḋ− kd̈/M + k|ḋ|Ṁmax/M
2 ≤ 0 (17)

We choose d̈ = −M , then k ≥ −2dḋ + k|ḋ|Ṁmax/M
2.

Since ϕ∗ = 0, we have k = M(d2min − d2)/ḋ and

k ≥ −2dḋ+ |ḋ|/
(
d2min − d2

)
· Ṁmax

ḋM
(18)

≥ 2 | dḋ |max + | d2min − d2 |max ·Ṁmax

Mmin
(19)

which implies k ≥ 133.31. As shown in Table I, this
value of k ensures no collisions in 100 randomly generated
goal-obstacle pairs. In contrast, it is too complex to derive
the analytical condition for the concrete system, which has
hundreds of terms with nonlinear transformations such as
trigonometric functions and multiplication.

and the exponential time complexity of numerical methods
makes it infeasible to check for feasibility. For example, for
a 7 degree-of-freedom robot arm, even with only 10 samples
per dimension, it would require checking 1014 samples.

Case Collision Range of M Ṁmax

5 DoF + EE 1 0 [1.67, 114.37] 1052.93
6 DoF + EE 1 0 [3.26, 121.34] 891.80
7 DoF + EE 1 0 [4.13, 127.32] 847.42
7 DoF + EE 2 0 [4.53, 120.19] 710.97
7 DoF + EE 3 0 [3.82, 131.55] 856.18

TABLE I: Collision count in 100 randomly generated sce-
narios and dynamics sensitivity to DoF and End Effectors.
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Fig. 5: Experiments on FANUC with two different tools. The
baseline method ensures safety by considering a large sphere
that contains all possible tools. But our method can guarantee
safety by considering the nearest point from the tool to the
human, which is much less conservative than the baseline.

C. Transplant to other systems

In this experiment, we change robot’s degree-of-freedoms
(DoF) and end-effectors (EE) to discuss when the safety
index can be directly transferred to other systems. EE 1 is the
baseline. In EE 2, a 0.1kg-rod is attached to the end-effector.
In EE 3, the offset of the seventh joint has a 0.05m increment
in y-axis. In 6 DOF robot, the seventh joint is fixed. In the
5 DOF robot, both the sixth and seventh joints are fixed. As
shown in table I, Ṁmax decreases when the DoF increases,
and the range of M does not change too much with the
dynamics. We can conclude that if we consider a wide range
of M and a large enough Ṁmax during the design of the
safety index, the same safety index can ensure safety for a
wide range of unseen systems. This method is particularly
useful for robot arms with real-time tool switching.

D. Experiment on real robots

We also test the method on a real FANUC LR Mate 200i
robot with two different tools: a drill and a bat. These two
tools have different shapes and different kinematics. Our
method significantly reduces conservativeness when the tool
is unknown. As shown in fig. 5, to ensure safety during
tool use, the baseline method constructs a large sphere
space that covers all possible tools. However, this method
leads to conservative interaction with humans. But with our
method, we can consider the nearest point from the robot
to the human because the nearest points can be viewed as
different end effectors that our safety index can be directly
transplanted. Therefore we can provide safety guarantees for
both tools while remaining non-conservative, the profiles of
ϕ0 are shown in fig. 6.
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Fig. 6: ϕ0 profiles (−d). Our abstract safe control method
is much less conservative, allowing a closer distance to the
human while maintaining safety. The interaction sessions are
shaded in yellow.

VI. DISCUSSION

In conclusion, we propose a new method called abstract
safe control that enables ensuring persistent feasibility for
high dimensional systems by consistent system abstraction.
The method provides a promising solution for ensuring safety
in high-dimensional robotic tasks, with potential applications
in various domains. In the future, we will explore how to
derive the analytical upper bound of Ṁmax to avoid the
sampling-based estimation.
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APPENDIX

A. Lemma 3 proof

Proof. Based on eq. (4), we have

ż = fz(z) + gz(z)v = fz(Φ(x)) + gz(Φ(x))v (20)

And in the meantime, we have

ż =
∂Φ(x)

∂t
= ∇Φ(x)ẋ = ∇Φ(x)f(x) +∇Φ(x)g(x)u

(21)

Therefore, connect eq. (20) and eq. (21) we have

v =gz(Φ(x))
−1[∇Φ(x)f(x)− fz(Φ(x))]

+ gz(Φ(x))
−1∇Φ(x)g(x)u (22a)

=C(x)u+ d(x) (22b)

B. Lemma 7 proof

Proof. The radius of the maximum Lp-norm inner ball can
be found by

max
r

r s.t. ai(x)v ≤ bi(x),∀∥v∥p ≤ r. (23)

Based on Hölder’s inequality, for p, q that satisfy 1
p +

1
q = 1,

we have

|ai(x)v| ≤ ∥ai(x)∥q∥v∥p (24)

Therefore

max
∥v∥p≤r

ai(x)v = max
∥v∥p≤r

|ai(x)v| ≤ max
M

∥ai(x)∥qM (25)


