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Abstract. Quaterns are a new measure of rotation. Since they are defined

in terms of rectangular coordinates, all of the analogue trigonometric func-

tions become algebraic rather than transcendental. Rotations, angle sums and
differences, vector sums, cross and dot products, etc., all become algebraic.

Triangles can be solved algebraically. Computer algorithms use truncated in-

finite sums for the transcendental calculations of these quantities. If rotations
were expressed in quaterns, these calculations would be simplified by a few

orders of magnitude. This would have the potential to greatly reduce com-

puting time. The archaic Greek letter koppa is used to represent rotations in
quaterns, rather than the traditional Greek letter theta. Because calculations

utilizing quaterns are algebraic, simple rotation in the first two quadrants can
be done ”by hand” using ”pen and paper.” Using the approximate methods

outlined towards the end of the paper, triangles may be approximately solved

with an error of less than 3% using algebra and a few simple formulas.

1. Introduction

This hypertext links to a previous paper [1] entitled
Rotation without imaginary numbers, transcendental functions, or infinite sums.
This previous paper defined quaterns along with their analogue trig functions. The
archaic Greek character koppa Ϟ is used to represent rotation in quaterns. This
current paper will demonstrate the ideas presented in the previous paper by using
the Ϟ analogue trig and inverse-trig functions to solve triangles. First, exact defini-
tions and solutions will be presented, providing links to calculators that use quatern
rotation. Then, a triangle will be approximately solved using simple approximate
quatern formulas that a person might memorize.

2. Defining rotation in quaterns

2.1. The universal definition in all four quadrants. Assume the coordinates
(, y) of a point that is anywhere on the cartesian plane. Assume the origin is
the vertex of the angle, and that the point (, y) is at the terminus of the angle’s
terminal side. Equation 1 is the function Ϟ(, y) that defines the quatern measure
of the positive (counter-clockwise) angle between point (, y) and the positive 

axis. The distance from the origin to the point (, y) is r. r =
Æ

2 + y2.
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2.2. Simpler version for solving triangles. Equation 1 is simpler than it looks.
Note that in quadrants  and , it reduces to the equations in table 1, which are
the only versions needed to solve triangles.

Acute rotations (Quadrant I) Obtuse rotations (Quadrant II)

Ϟ =
�

y−
r

�

+ 1 Ϟ =
�−y−

r

�

+ 3

Table 1. Defining rotation in quaterns with Ϟ in quadrants  and 

When r = 1, then the angle terminates on the unit circle. This means that the
 coordinate is equal to the analogue cosne of Ϟ, and the y coordinate is equal
to the analogue sne of Ϟ. The definitions of the the analogue sne and cosne
functions are given in section 3. Yϟ(Ϟ) symbolizes the analogue sne function,
and Xϟ(Ϟ) symbolizes the analogue cosne function. On the unit circle, the point
(, y) is therefore equivalent to (Xϟ(Ϟ), Yϟ(Ϟ)) These facts will help to define
quatern addition and subtraction, which are explained in subsection 4.

3. Exact analogue trigonometric functions for the first two
quadrants

Table 2 lists the Ϟ analogue Yϟ(Ϟ) (sne) and Xϟ(Ϟ) (cosne) functions for use
with acute or obtuse angles respectively. The online calculator is entitled Triangles
[2].

Acute angles Obtuse angles (Quadrant II)

YAϟ(Ϟ) =
1
2

�p

−ϟ2 + 2ϟ+ 1 + ϟ− 1
�

YOϟ(ϟ) =
1
2

�p

−ϟ2 + 6ϟ− 7 − ϟ+ 3
�

XAϟ(Ϟ) =
1
2

�p

−ϟ2 + 2ϟ+ 1 − ϟ+ 1
�

XOϟ(ϟ) =
1
2

�

−
p

−ϟ2 + 6ϟ− 7 − ϟ+ 3
�

Table 2. Analogue trig functions

Table 3 lists the Ϟ analogue Ϟ(Yϟ) (rcsne) and Ϟ(Xϟ) (rccosne) functions
to find acute or obtuse angles. In this notation Yϟ, for example, would mean
”trigonometric sne ratio”, and Xϟ would mean ”trigonometric cosne ratio”.

There are universal versions of these analogue trigonometric functions and in-
verse functions. The universal version of the sne and cosne functions are
available at the Desmos site called Rotation in Quaterns [3]. For inverse trig
functions there are two options. First, if one has  and y coordinates, one can
simply use the definition of Ϟ given in equation 1 to find any quatern measure.
If one is solving a triangle without knowing any coordinates, then one can in-
stead use the sne and cosne ratios as inputs for equation 1 by just letting r
�

or, in other words
Æ

2 + y2
�

be equal to 1. The output will be the quatern ro-

tation, Ϟ. Doing this in equation 1 works in all four quadrants. Table 3 is simply
the adaptation of equation 1 to just the first two quadrants. One can enter these

https://www.desmos.com/calculator/5xjwvxf194
https://www.desmos.com/calculator/eyomfqgttk
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Acute angles Obtuse angles (Quadrant II)

Ϟ(YAϟ) = Yϟ −
Ç

1 − Y2
ϟ
+ 1 ϞO(YOϟ) =

Ç

1 − Y2
ϟ
− Yϟ + 3

Ϟ(XAϟ) =
Ç

1 − X2
ϟ
− Xϟ + 1 ϞO(XOϟ) = −

Ç

1 − X2
ϟ
− Xϟ + 3

Table 3. Analogue inverse-trig functions

sne and cosne ratios into the graphing calculator mentioned above in order to
do these calculations quickly and easily.

4. Adding and subtracting rotations measured in quaterns

Angles in degrees or radians can be simply added or subtracted. Note that
Quaterns can be added just like traditional angle measure if one is satis-
fied with an approximate result. The algebraic equations below demonstrate
how to add or subtract quaterns exactly. They are based upon the analogue trigono-
metric angle addition and subtraction formulas for sne and cosne of Ϟ. The
symbol for quatern addition will be ‡, and quatern subtraction will be indicated
with + . Let us first consider the sum: Ϟ3 = Ϟ1 ‡ Ϟ2. Equation 2 is used to find
the 3 coordinate for Ϟ3 on the unit circle. The equations in this section are valid
in all four quadrants:

(2) 3 = Xϟ(Ϟ3) = Xϟ(Ϟ1)Xϟ(Ϟ2) − Yϟ(Ϟ1)Yϟ(Ϟ2)
Then, equation 3 is used to find the y3 coordinate for Ϟ3 on the unit circle:

(3) y3 = Yϟ(Ϟ3) = Yϟ(Ϟ1)Xϟ(Ϟ2) + Xϟ(Ϟ1)Yϟ(Ϟ2)

Then the coordinates of point (3, y3) (which is on the unit circle, making
r = 1) are plugged into equation 1 to yield Ϟ3, as shown in equation 4

(4) Ϟ3 = Ϟ1 ‡Ϟ2 = Ϟ(3, y3)

Subtraction follows a similar pattern using analogue trigonometric angle sub-
traction. Ϟ4 = Ϟ1 + Ϟ2. Equation 5 is used to find the 4 coordinate for Ϟ4 on
the unit circle:

(5) 4 = Xϟ(Ϟ4) = Xϟ(Ϟ1)Xϟ(Ϟ2) + Yϟ(Ϟ1)Yϟ(Ϟ2)

Equation 6 is used to find the y4 coordinate for Ϟ4 on the unit circle:

(6) y4 = Yϟ(Ϟ4) = Yϟ(Ϟ1)Xϟ(Ϟ2) − Xϟ(Ϟ1)Yϟ(Ϟ2)
Then the coordinates of point (4, y4) (which is on the unit circle, making

r = 1) are plugged into equation 1 to yield Ϟ4, as shown in equation 7

(7) Ϟ4 = Ϟ1 + Ϟ2 = Ϟ(4, y4)
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These calculations can be done very easily at the Desmos graphing calculator
site entitled: Add or subtract quaterns [4].

5. Solving an ambiguous case triangle exactly

Figure 1. Ambiguous case triangle

Solving triangles has a long history. Van Brummelen [5] recounts the history
of trigonometry in his book Heavenly mathematics: The forgotten art of spherical
trigonometry. This page on the website Math is fun [6] summarizes the standard
way trigonometry is used to solve triangles. This section presents a new approach
to an old problem.

Figure 1 presents an ambiguous case triangle – Angle-Side-Side. The first step
would be to exactly convert angle A = 42.9◦ to quaterns. The graphing calculator
site From Theta to Koppa [7] will convert degrees into quaterns. The accuracy
of the conversion is dependent upon the value of k entered at this site. For our
purposes a value of 1,000 for K will be more than sufficient. Using this site we find
that angle A = A = 42.9◦ ≈ .9482 quaterns. Now we can use the acute version
of the sne function from table 2 to compute Yϟ(A) in equation

(8) Yϟ(A) =
1

2

�q

−(.9482)2 + 2(.9482) + 1 + (.9482) − 1
�

= .6807

Note that all of the trigonometric functions and inverse functions for the first
two quadrants may be performed easily at the site entitled triangles [2]. The next
step is to use the quatern analogue law of sines in the traditional way. Doing this,
we set up equation 9.

5.1. The acute option.

(9) Yϟ(C) =
cYϟ(A)


=
(12.86)(.6807)

8.98
= .9748

https://www.desmos.com/calculator/kmnwnkaevq
https://www.mathsisfun.com/algebra/trig-solving-triangles.html
https://www.desmos.com/calculator/pwkq9qmfqt
https://www.desmos.com/calculator/60cvceprwn
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Figure 1 tells us that there are two different options for angle C. One of them is
acute, and one of them is obtuse. We will begin with the acute option. We select
the acute rcsne option from table 3. This calculation (and any other inverse-
trig calculation) may also be done at the site mentioned above, and it is shown in
equation

(10) Ϟ(Yϟ)(.9748) = (.9748) −
q

1 − (.9748)2 + 1 = 1.752

We must now use the rules of quatern angle addition demonstrated in equations
2 and 3 to find the sum of angle A and the acute option for angle C. This is shown
in equations 11 and 12.

(11) ‡ = Xϟ(Ϟ‡) = Xϟ(.9482)Xϟ(1.752) − Yϟ(.9482)Yϟ(1.752) = −.5004

Then, equation 3 is used to find the y3 coordinate for Ϟ3 on the unit circle:

(12) y‡ = Yϟ(Ϟ‡) = Yϟ(.9482)Xϟ(1.752) + Xϟ(.9482)Yϟ(1.752) = .8658

Using these values in equation 1 yields a value of 2.635 quaterns. Now for
the exception that proves the rule. If angles are added according to quatern angle
addition rules, then the angles of every triangle in the plane must add up to 4
quaterns, which is the exact equivalent of 180◦. Since we have found that the
sum of angles A and C is 2.635, might we assume that in this case 4 − 2.635 =
4+ 2.635 = 1.365? In this case the answer is yes. If one has found the sum of
two angles in a triangle through the proper rules of quatern angle addition, then it
logically follows that the remaining angle must be 4 − (A ‡ C) = 4+ (A ‡ C). So
angle B = 1.365. Now that we know all three angles, we find the remaining side
by setting up the analogue law of sines in equation 13. Note that we can use the
site mentioned previously to find the quantity Yϟ(B) = .8656.

(13) b =
Yϟ(B)

Yϟ(A)
=
(8.98)(.8656)

.6807
= 11.42

The solution to the acute option is angle B = 1.365, angle C = 1.752, and
side b = 11.42. We can use the calculator site From Koppa to Theta [8] to find
that angle B = 59.96◦ and angle C = 77.12◦ in traditional measure. This is also
the result if the acute option is solved using traditional trigonometry.

6. The obtuse option

We begin with the knowledge that the measure of angle A in quaterns is .9482,
and Sϟ(A) = .6807. We also know that Yϟ(C) = .9749, because it will be the
same whether angle C is acute or obtuse. This time, we will use the obtuse analogue
rcsne function from table 3 to find angle C. This is done in equation 14 . Note
that all calculations can be done at the websites mentioned previously.

(14) ϞO(Yϟ) =
q

1 − (.9749)2 − (.9749) + 3 = 2.248

We now use the quatern addition rule illustrated in equations 11 and 12 to find
the quantity A ‡ C. This is done in equations 15 and 16.

https://www.desmos.com/calculator/lnrdio1gwy
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(15) ‡ = Xϟ(ϞB) = Xϟ(.9482)Xϟ(2.248) − Yϟ(.9482)Yϟ(2.248) = −.8269

(16) y‡ = Yϟ(ϞB) = Yϟ(.9482)Xϟ(2.248) + Xϟ(.9482)Yϟ(2.248) = .5624

These values are then used in equation 1 to find that A‡C = 3.264. ∴ B = 4−
(3.264) = .736 Duplicating similar work done previously, we find that Yϟ(B) =
Yϟ(.736) = .5627 ∴

(17) b =
Yϟ(B)

Yϟ(A)
=
(8.98)(.5627)

.6807
= 7.42

The solution to the obtuse option is angle B = .736, angle C = 2.248, and side
b = 7.42. Using the same calculator site, we find that angle B = 34.24◦ and angle
C = 102.9◦ in traditional measure. This is also the result if the obtuse option
is solved using traditional trigonometry. The next section will show abbreviated,
approximate methods to solve a triangle algebraically using simple formulas that
might be memorized.

7. Approximately solving a triangle

Figure 2. Triangle example 1

7.1. Given triangle.
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7.2. Approx. conversions between traditional and quatern angle mea-
sure. The formulas in this subsection allow approximate conversions between tra-
ditional angle measure and quaterns. These conversions are all accurate to within
3%.

The formulas in table 4 will be used to approximately convert back and forth
between degrees and quaterns. These same approximations can also be done at the
site Approx convert to quaterns [9]:

θ ≤ 1
2
◦ 1

2
◦
< θ < 30◦ 30◦ ≤ θ ≤ 180◦

Ϟ ≈ (.0175)θ Ϟ ≈ (.00012)θ2 + (.0175)θ Ϟ ≈
�

1
45

�

θ

Ϟ ≤ .01 .01 < Ϟ < 2
3

2
3 ≤ Ϟ ≤ 4

θ ≈
�

180
π

�

Ϟ θ ≈
�

180
π

� �

− 1
5Ϟ

2 + .95Ϟ
�

θ ≈ 45Ϟ

Table 4. Approximate conversions for degrees and quaterns

The formulas in table 5 will be used to approximately convert back and forth
between radians and quaterns.

θ ≤ (.01) .01 < θ < π
6

π
6 ≤ θ ≤ π

Ϟ ≈ θ Ϟ ≈
�

2
5

�

θ2 + θ Ϟ ≈
�

4
π

�

θ

Ϟ ≤ .01 .01 < Ϟ < 2
3

2
3 ≤ Ϟ ≤ 4

θ ≈ Ϟ θ ≈
�

− 1
5Ϟ

2 + .95Ϟ
�

θ ≈
�π
4

�

Ϟ

Table 5. Approximate conversions for radians and quaterns

7.3. Approximate solution of the given triangle.

7.3.1. Converting the given angles into quaterns. We will use 4 significant figures
in our calculations, and then round our final answers to 3 significant figures.

(18) ∠A = 42.9◦
42.9◦

45◦
≈ .9533 quaterns

(19) ∠B = 34.1◦
34.1◦

45◦
≈ .7578 quaterns

https://www.desmos.com/calculator/lqkuq04bb2
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Strictly speaking, quaterns can not be added if one is looking for exact solutions.
But if one is satisfied with an approximate solution to a triangle, the angles may be
added and they should sum to approximately 4 quaterns, which is exactly 180◦.
This means that angle C ≈ 4− (A+B) = 4− (.9533+ .7578) = 2.289 quaterns.

7.3.2. Using the analogue Law of Sines to solve for side A.

(20)  =
bYϟ(A)

Yϟ(B)

(21)

Yϟ(A) =
1

2

�q

−(.9533)2 + 2(.9533) + 1 + (.9533) − 1(.9533)
�

= .6834

(22)

Yϟ(B) =
1

2

�q

−(.7578)2 + 2(.7578) + 1 + (.7578) − 1(.7578)
�

= .5756

Therefore the approximation for side  would be:

(23)  =
bYϟ(A)

Yϟ(B)
=
(7.4)(.6834)

.5756
= 8.786

Rounding our result for side  to three significant figures gives a length of 8.79.
The true value rounded to three significant figures is 8.98. This is an error of
approximately 2%.

7.3.3. Using the quatern analogue Law of Cosines to solve for side C. The quatern
analogue Law of Cosines (for an obtuse angle) is:

(24) c =
q

2 + b2 − 2bXOϟ

(25)

XOϟ(2.289) =
1

2

�

−
q

−(2.289)2 + 6(2.289) − 7 − (2.289) + 3
�

= −.2557

(26) c =
q

8.7862 + 7.42 − 2(8.786)(7.4)(−.2557) = 12.85

The true value for length c is 12.86. This is an error less than one part in a
thousand.

8. Conclusion: The potential uses for quatern measure

8.1. Graphics performance. Programmers continue to seek better graphics per-
formance, as shown by Rohlf [10]. Three dimensional rendering uses vectors and
the rotation of vectors; calculating results depends upon trigonometry. Technology
typically relies upon truncated infinite Taylor series [11]. Programmers are always
open to new algorithms that might represent these functions more efficiently, as in
Kumar [12].

Quaterns represent rotations and their related trig functions in an algebraic
manner. Graphics representations can be entirely done in quaterns, rapidly giving
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algebraic exact answers, where the only truncation would be rounding. This would
be very different, and much simpler than traditional approaches like the one men-
tioned by Cook [13]. Programs requiring large quantities of calculations involving
position and rotation might be orders of magnitude faster using quaterns rather
than traditional angle measure.

8.2. physics simulations at the quantum level. A circle drawn by a compass
upon a piece of paper is not actually an ideal circle. If one were able to zoom in un-
der a microscope, and then under an electron microscope, and then still further (in
theory), one would discover that at the quantum level, everything is discrete. One
might guess that at the smallest possible scale, even space and time are quantized.
Lindemann and Weierstrass proved [14] that π was transcendental. This means
that there is something unreal about a circle in the sense that the circumference of
any real circle will forever be an approximation. Because traditional angle measure
relies upon a transcendental relationship with the circle, there is something unreal
about it.

This suggests that simulations of quantum processes might better be represented
by quaterns, because it is a description of rotation that would represent discrete
rational relationships very well.

8.3. pencil and paper calculations. It is true that a person might memorize
the first few terms of appropriate Taylor series to obtain ”pencil and paper” simple
memorized formulas for the trig functions and their inverses.

But the quatern equivalents are intuitive, related to  and y coordinates, and
their exact versions are potentially memorizable as well. Especially in the first
quadrant.

Ϟ =
�

y−
r

�

+ 1 is simple.

Please see the references to find the full written-out URL of each of the websites
mentioned in this paper. The author provides a video demonstration of solving the
ambiguous case triangle [15].
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