¹⁴N Needles in the Haystack for Near Ambient Superconductivity: Possible ¹⁵N Depletion at Lower Temperatures and Pressures

Reginald B. Little Dept of Natural Science Stillman College Tuscaloosa, Alabama 35401

Abstract

The author has previously noted the effects of stable isotopes having different nuclear magnetic moments on chemistry, catalysis, biochemistry, thermodynamics, optics, superconductivity and more [1]. In this controversy surrounding reported room temperature superconductivity at near ambient pressures by nitrogen doped lutetium hydride, the author hopes to convince and reason that the different synthesis conditions of the original work of Dias and coworkers [2] at low temperature, mild pressures, diamond anvil cell compression and prolong annealing may lead to selective doping of the lutetium hydride by ¹⁴N. The later attempted replication of Dias and coworkers by Hai-hu Wen and coworkers [3] may have caused different outcomes as Hai-hu Wen and coworkers appeared to try Dias work and then switched to a different synthetic method whereby Wen and coworkers instead applied high pressures and high temperatures to the reacting hydrogen, nitrogen and lutetium to produce a nitrogen doped lutetium hydride with similar lattice structure as the originally reported by Dias and coworkers [2] but lacking observed superconductivity and evidence of superconductivity by diamagnetism. The author here by his theory notes the possibility that the different later high pressure, high temperature synthesis by Wen and coworkers doped their sample with ¹⁵N rather than ¹⁴N as originally enriched in Dias's sample. Thereby the author notes by his theory [1] that whereas ¹⁴N doped lutetium hydride manifests higher superconductivity due to its positive nuclear magnetic moment (NMM), the ¹⁵N doped lutetium hydride of Wen and coworker should not manifest superconductivity at the higher temperatures due to its positive NMM. Thereby the authors' theory gives account of both Dias' and Wen's experiments.

The Unique Role of Hydrogen Due to Its Lack of Core Electrons

Hydrogen lacking core electrons interacts in presence of other protons under high mechanical pressure in dense protons by altering electrons of Cooper pairs to produce negative magnetic moments (NMMs) to bind the protons and by such action of the protons the electrons superconduct. The dense protons under high mechanical pressure induce backward or dark (Dk) motions of electrons and rarefactions of wavefunctions for assisting superconductivity. The NMMs are significant as most atoms of known elements have null or zero NMMs. It is discovered by the author that the few isotopes with positive and negative NMMs manifest substances that can superconduct. Hydrogen and helium are unique among the elements as they have no core electrons and their nuclei act directly on the valence electrons for special properties of hydrogen and helium atoms. Hydrogen (protium) is even more special as it has only one nucleon in its nucleus and the p^+ of its nucleus acts directly on the valence electrons of hydrogen for uniqueness of hydrogen even relative to helium. Due to such hydrogen can behave as metal

and nonmetal. It is this complexity of hydrogen that caused me to re draft this paper as the author realized that in interacting with ¹H, ¹⁵N and its negative NMMs would not serve the same role as ¹⁷O (and its negative NMMs) in cuprates as the ¹⁷O in cuprate acts upon e^-e^- of ⁶⁵Cu and ⁶³Cu of positive NMMs and having intervening nucleons and core electrons of the Cu between its quarks and valence electrons and conduction electrons. But in N doped LuH, the ¹⁵N would be acting on H and H lacks nucleons and core electrons between its quark and valence electrons from perturbations and the ¹⁴N (and its positive NMMs) is the needle and not the ¹⁵N with its negative NMMs (as ¹⁷O and its negative NMMs as in cuprates) in the N doped LuH_x that causes the high temperature superconductivity at ambient. Thereby the protons interact with the Copper pairs to prevent their dissipations of energy for sustaining superconductivity at higher temperatures.

The Lutetium and Its Role by its filled 4f subshell

The 4f electrons of the lutetium experience to protons to host the superconductivity. Lutetium has positive NMMs, see Table I. The ungerard symmetry of the p and f subshells by the authors theory provides both Br and Dk symmetry for chirality for superconductivity. Ungerade has both bright and dark essence of space and time.

The Role of ¹⁵N for Supporting Higher Superconductivity

The ¹⁵N has negative NMMs and by the author's theory [1] the - NMM provides nuclear pressure for backward motions of the electrons for rarefying and not supporting superconductivity. In the presence of the ¹⁵N, the superconductivity occurs at higher required hydrogen content and mechanical pressure. The ¹⁵N pulls the protons to rarefy interactions with the e⁻ e⁻ Cooper pairs for assisting and facilitating dissipations of the e⁻ e⁻ pairs during conduction. ¹⁵N pushes away e⁻ e⁻ but pulls p⁺ with rarefying molecular orbitals and inducing continua states, disorder and dissipation. But unlike ¹⁵N and its negative NMMs pulling p⁺ and pushing e⁻ e⁻ pairs to ¹⁴N with increasing the denseness of orbitals and the compression of the e⁻ e⁻ and p⁺ by the ¹⁴N for superconductivity at higher temperatures as the higher temperatures cannot jar the e⁻ e⁻ away from the quantum state.

Different Syntheses of Dias and Wen and Different ¹⁵N Enrichments

The original synthesis of Dias and coworkers [2] may more likely enrich and dope the forming lutetium hydride with ¹⁴N and the attempted replication of Wen and coworkers [3] may less likely enrich with ¹⁴N and instead dope their lutetium hydride with ¹⁵N. Wen and coworkers form the same structure (with therefore the same diffraction pattern) as dictated by the lutetium and hydrogen, but they have different isotopes of nitrogen. Dias originally synthesized the room temperature near-ambient pressure superconducting nitrogen doped lutetium hydride by compressing a gaseous mixture of hydrogen with 1% nitrogen with lutetium between two diamonds of a diamond anvil cells to pressure of 10,000 atm and warm temperature of 65 °C over night [2].

Wen's Attempted Replication

But Wen used different conditions of much higher pressures and higher temperatures upon nitrogen, hydrogen gaseous reactant with lutetium solid with laser heating [3]. Wen did not use

diamond anvil cell, but they used "a piston cylinder type high pressure apparatus (LP 1000-540/50, Max Voggenreiter)". The chemistry employed by Wen and co-workers is different from Dias's original synthesis. Wen and coworkers perform a solid state high pressure synthesis by reacting:

 $2NH_2Cl(2) + CaH_2(s) \rightarrow CaCl_2 + 2NH_3 + H_2$

These reactants are compressed into a solid pellet and mixed with separation by a BN with solid lutetium tablets and sealed inside a gold container. The resulting gold contained was placed inside a BN capsule and heated to 300 °C for 1 hours at 2 GPa (19,738 atm). These conditions are much different from the original conditions used by Dias. The starting materials are different as the reactants by Wen have different NMMs and the formed NH₃ is likely enriched with ¹⁵N relative to ¹⁴N due to positive NMM of proton and its lack of valence favoring ¹⁴N over ¹⁵N on the basis of Little's Effect at low pressures. But at high pressure as during Wen's synthesis the proton favors ¹⁵N over ¹⁴N due to the p⁺ fissing quarks and the quarks transforming excess electrons fields to Dk and – NMM in rarefaction which bind e e. of the ¹⁵N. The positive NMM of ³⁵Cl and ³⁷Cl would favor it binding ¹⁵N due to negative NMM of ¹⁵N on the basis of Little's Effect. These reactions were performed in BN interface and Au container. The B and Au all have positive NMMs to favor interacting with ¹⁵N and cause ¹⁵N enrichment in the starting NH₄Cl and BN with subsequent ¹⁵N release to NH₃ on basis of Little's Effect. These many factors would diminish the ¹⁵N doping with the forming LuH₂.

Dias Original Synthesis

Dias did not report laser heating his reactants. The different conditions of lower pressures and temperature inside diamond anvil cell caused greater reactivity of the ¹⁴N (due to its negative NMM) from N₂ in the ¹⁵N and ¹⁴N gaseous mixture of Dias for more ¹⁴N atoms and ¹⁴NH_v species for combining with Lu for selective doping of the forming lutetium hydride with ¹⁴N [2] as the nitrogen composition is maintained low and ¹⁵N is only 0.38 % of the nitrogen. On the other hand, Wen and coworkers [3] used much higher temperatures and pressures with laser heating so the harsher conditions more activated ¹⁵N from N₂ for ¹⁵N doping the forming lutetium hydride. Dias originally synthesized the room temperature near-ambient pressure superconducting nitrogen doped lutetium hydride by compressing a gaseous mixture of hydrogen with 1% nitrogen with lutetium between two diamonds of a diamond anvil cells to pressure of 10,000 atm and warm temperature of 65 °C overnight [2]. The ¹H favors ¹⁴N over ¹⁵N by Little Effect. The ¹H favors the ¹⁴N as the p^+ has no valence electrons and the positive NMM of the proton acts directly on the e⁻ e⁻ of ¹⁴N and the positive NMM of ¹⁴N to more strongly bind the ¹⁴N but more weakly bind ¹⁵N and to release the ¹⁵N for less ¹⁵N in the product. The ¹⁷⁵Lu and ¹⁷⁶Lu have positive NMMs and many core electrons and the Lu nuclei having many nucleons transform the nucleon moments in the nucleus to act differently than the bare p^+ by Little Effect so the Lu favors binding ¹⁴N and more ¹⁴N is doped into the Lu as the ¹⁴N compresses e⁻ e⁻ of p⁺ and induces negative magnetic moments that couple to the Lu positive NMMs well.. The lower temperature and lower pressures of Dias synthesis also favors ¹⁴N as the ¹⁵N \equiv ¹⁵N triple bond is weaker relative to ${}^{14}N \equiv {}^{14}N$ triple bond due to the negative NMMs of the ${}^{15}N$ and positive NMM of the ¹⁴N by Little Effect. Therefore the amount of N is very low 1% to prevent the 15N incorporation in Dias' synthesis. The ¹⁴N is more inclined to combine with ¹H to chemically combine with Lu to form ^{14}N doped LuH_v.

Re-Analyze considering H as Nonmetal at Low Pressure and Metal at High Pressure to Alter Interpretation

Dias reaction involved the following in diamond anvil cell under mild heating and 10,000 bars.

 $H_2(g) + N_2(g) + Lu(s) \rightarrow N: LuH_x(s)$

 ${}^{15}N \equiv {}^{15}N$ triple bond with 0.38 % relative abundance is weaker due to its negative NMM for rarer molecular orbitals. The bond ${}^{14}N \equiv {}^{14}N$ triple bond is stronger due to ${}^{14}N$ and its positive NMM for more dense molecular orbitals. ${}^{14}N$ is 99.62% relative abundance. ${}^{15}N \equiv {}^{14}N$ triple bond is strongest as the positive and negative NMMs both increase molecular orbital density between the nuclei of the atoms.

Negative NMM bonded to negative (-) NMM is weaker covalent bond due to rarefied electron. The sp hybridization in ${}^{15}N \equiv {}^{15}N$ has negative NMM opposing the gerard 2s orbital of the sp hybrid orbitals in the case of ${}^{15}N$ triple bond N₂. But in general this is a general effect of negative NMM weakening Gerard orbitals containing molecular orbitals as discovered by RB Little.

The positive (+) NMM bonded to + NMM is weaker covalent bond due to denser molecular orbitals. The + NMM bonded to negative NMM is strongest covalent bond due to positive NMM coupling favorable to negative NMM. Picture? There is denser region of wavefunctions between the bound atoms to strength the bond. As the - NMM increases e⁻ denseness about + NMM increasing e⁻ e⁻ between nuclei.

So does the ¹⁵N compress eⁱ eⁱ on the ¹H? Yes - NMM pushes ¹⁵N electron from ¹⁵N to ¹H and pulls p⁺ into ¹⁵N core. ¹⁵N fisses to many p⁺ and n^o it is the n^o that goto p⁺ and eⁱ and excess eⁱ about Hⁱ and N has 2p ungerard.

But ¹⁴N also fisses to many p⁺ without n^o and not excess e⁻ more acidic pulling e⁻ e⁻ into ¹⁴N and many p⁺ and pushes H⁻ away. N has 2p ungerard symmetry. Not the positive NMM alter the ungerade orbital as it causes imbalance of the + vs - lob. So when positive NMM fisses from nuclei the p and f orbitals experience imbalance. The imbalance shifts the electrons in the p and f orbitals. And when negative NMMs fiss they also shift the imbalance in p and f orbitals. When positive NMMs fiss they compress the s and d orbitals. And when negative NMMs fiss they rarefy s and s orbitals. Phonons can cause these shifts by positive and negative NMMs on gerade and ungerade atomic and molecular orbitals. So s and d orbitals rarefy and compress and p and f orbitals become imbalanced by nonzero NMMs. This can alter the transport of e e for superconductivity as when the e⁻ e⁻ collide with nuclei rather than dissipating the motion the collision induces compression and rarefactions of s and d and imbalanced p and f orbitals with altered wavefunctions and bond polarities for preventing the creations of phonons. Vibrations cannot occur during the imbalance as it would require huge energies to vibrate against the nuclear fissing. It is as if the collisions create local electric and magnetic fields to reaccelerate the electrons.

Fissed ¹⁴N is more powerful and many p^+ to compress $e^-e^-of^{-14}N$ and H^- for superconductivity; pull e^-e^- into ¹⁴N, how can e^-e^- hop under different isotopes for differing conduction and resistance?

But fiss ¹⁵N pushes e⁻ e⁻ away and pulls in p⁺ and then the p⁺ fisses to push e⁻ e⁻ away and help e⁻ e⁻ hop from H⁻ to ¹⁵N⁻. ¹⁵N fiss push e⁻ e⁻ into H⁻ and then ¹H fisses to transmute its + NMM to - NMM, using e⁻ e⁻ to push e⁻ e⁻ away to ¹⁵N. + NMM an - NMM fiss and fuse out of sync so as ¹⁵N fuses, ¹H fisses and as ¹H fuses ¹⁵N fuses.

Yes the point is to metalize the p^+ --- $e^-e^-to induce - NMM$ and push e^-e^-away as metals. Faster s orbitals and $e^-e^-covalence$ by s orbitals so orbitals rarefy as by p^+ transmute to cause e^-e^-to produce - NMM or what RBL has called asymmetric orbital of e^-CW and $e^-counterclockwise$ (CCW) in s orbital. One $e^-moving$ Clockwise (CW) and other $e^-moving$ CCW for asymmetric orbital. In such asymmetric orbital the H is metallic as e^-e^- orbitals can overlap with transfer of $e^-between$ overlapping orbitals as s gerard goes to s ungerard. H can occlude inside ¹⁴N as the asymmetry opposes the repulsions. Not only do orbitals get fatter from nuclear fissing but in some cases

they are bigger and denser in the bigness. In other cases, they are bigger and rarer. The may be smaller and denser or smaller and rarer due to nuclei fissing and fusing. But in ¹⁵N the p⁺ occludes and ¹⁵N is not allowing e⁻ e⁻ compaction. But p⁺ currents may be induced by ¹⁵N.

H confounded as it is metal and nonmetal at low pressure. it behaves as metal at high pressure and it behaves as nonmetal at low pressure by its altered NMM and altered NMM by e e.under compression. ¹⁴N pulls and compresses H⁺ to replace mechanical pressure. ¹⁵N pulls and compresses p⁺ to require mechanical pressure. So now in cupratess Cu --- ¹⁷O + NMM of Cu pull e⁺ e⁺ to copper to compress e⁺ e⁺ to superconduct. So in cuprates the e⁺ e⁺ superconduct as ⁶³Cu ⁶⁵Cu pull e⁺ e⁺ into it by + NMM and ¹⁷O pushes e⁺ e⁺ negative charge in Cu 4s orbital the e⁺ e⁺ are compressed to superconduct by fiss + NMM of Copper. So - NMM of ¹⁷O is needed on Cu. But - NMM by ¹⁵N is not needle on H as H has quark acting on e⁺ e⁺ but Cu has nucleon acting on e⁺. So nucleons acting on e⁺ e⁺ by + NMM cause e⁺ e⁺ to superconduct by nuclear pressure.

By compression by + NMM, there are many protons compressing the e⁻e⁻ to cause asymmetric orbital. But now in arsenides, Fe As ----O are similar as As has + NMM and ¹⁷O pushes e⁻e⁻ into As. But Hg has + NMM and - NMM and liquid Hg associates + NMM and - NMM as temp goto o Kelvin. So - NMM Hg pushes e⁻e⁻ into + NMM Hg. So now with ²⁵MgB₂ the magnesium pushes e⁻ into B of positive NMM. to cause superconductivity by compression of e⁻e⁻.

Now ReInterpret Wen on Basis of Metal H with Induced Negative Magnetic Moments on Electrons

So with ¹⁵N LuH , ¹⁵N would push e⁻e⁻ into Lu and under pressure many H⁻ would induce - NMM to cause e⁻e⁻ go into Lu but requires high pressure. Wen probably enriched with ¹⁵N and did not see superconductivity. So also Wen used NH₄Cl + CaH₂ \rightarrow CaCl₂ + NH₃ + H₂. So in NH₄Cl Cl is positive NMM and would favor - NMM of ¹⁵N. So at high pressure ¹⁴NH unstable. So at high pressure ¹⁵NH stable . Also BN has ¹⁵N enriched in it. So the high pressure of Wen with ¹⁵N enriched the NH₄Cl and BN with ¹⁵N and would cause NH₄Cl + Lu + NH₃ to \rightarrow ¹⁵N: LuHx

As the high pressure causes H to act as metal. This is the purpose to metalize H and it is to become superconductor. And - NMM of high pressure metallic H then binds Lu and its + NMM covalently. At high pressure 15 N interacts with 1 H? As H gives e⁻e⁻ to 15 N then 15 N-H is concentrated. But 14 N interacts with H to take e⁻ from p⁺ for 14 N --- p⁺. RBL notes the fissing proton produce backward moving space that binds electrons. But the backward moving space bends so the vibrations transform to rotating smaller e⁻e⁻ back into orbitals so as not to dissipate the conduction energy.

So ¹⁵NH is enriched in NH₄Cl as H acts as nonmetal at low pressure. But at high pressure H acts as metal so ¹⁵N is enriched with e⁻e⁻ to cause - NMM of [¹⁵NH₄] to bind Cl⁻ and its + NMM. Thereby Wen lutetium hydride is enriched with ¹⁵N.

It is important to note that the ¹⁴N is as ¹³C as they both have positive NMMs; and the both act on protons in these recent superconductor for rasing Tc and lowering needed mechanical pressure. The older superconductors of cuprate family have ¹⁷O acting on ⁶³Cu ⁶⁵Cu

Possible Similar Isotopic Effects for Carbonaceous Hydride Controversy

In considering the isotopic effects here, isotopic effects may give sound scientific basis for why researchers have had tough time replicating the carbonaceous hydride work of Dias [4]. Carbon has two stable isotopes in larger relative abundances: ¹²C and ¹³C. The ¹²C makes up 99% of carbon by relative abundance on earth. ¹³C makes up about 1% of the carbon on earth by relative abundance. During syntheses different synthetic conditions may enrich samples differently with ¹³C for variation in superconducting properties and other properties made from different laboratories. The doping of sulfur hydride with ¹³C is important as ¹³C has nonzero positive NMM, but 12 C has null (0) NMM. The positive NMM of 13 C may contribute to superconductivity of the hydrogen sulfide.

References

- 1. Little RB. The needle in the haystack for theory of high temperature superconductivity: Negative nuclear magnetic moments. Journal of Superconductivity and Novel Magnetism 33 (7567), 1-10 (2020).
- 2. Dasenbrock-Gammon, N. et al. Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature 615, 244-250 (2023).
- 3. Ming, X. et al. Absence of near-ambient superconductivity in $LuH_{2+/-x}N_y$. arXiv:2303.08759v2 [cond-mat.supr-con].
- 4. Hiranya, P. et al. Observation of conventional near room temperature superconductivity in carbonaceous sulfur hydride. arXiv:2302.08622v2 [cond-mat.supr-con] (2023).
- 5. Webelements website for NMMs.

Hydro	gen	00.080/		117		2 70
	2H	0.01%	0	1 1⁄2	0.85	2.79
Heliur	n					
	3He	.00001	1/2		-2.12	
	4He	99.99%		0		0
Lithiu	m					
	6Li	7.59%	1		0.82	
	7Li	92.4%	3/2		3.52	
Beryll	ium					
5	9Be	100%	3/2		-1.17	
Boron						
	10B	19.9%	3		1.80	
	11B	80.1	3/2		2.68	
Carbo	n					
	12C	98.9%	0		0	
	120	01 070/		1/2		0.702
	150	01.07%		12		
Nitrog	isc.	01.07%		12		
Nitrog	jen 14N	99.6%	1	72	0.40	
Nitrog	rsc jen 14N 15N	99.6% 0.36%	1 ½	72	0.40 283	
Nitrog Oxyge	rsc gen 14N 15N en	99.6% 0.36%	1 ½	72	0.40 283	
Nitrog Oxyge	13C gen 14N 15N en 16O	99.6% 0.36% 99.7%	1 ½	, 2	0.40 283 0	
Nitrog Oxyge	13C gen 14N 15N en 16O 17O	99.6% 0.36% 99.7% 0.03	1 ½ 0 5/2	, 2	0.40 283 0 -1.89	
Nitrog Oxyge	13C gen 14N 15N en 16O 17O 18O	99.6% 0.36% 99.7% 0.03 0.21%	1 1/2 0 5/2 0	, 2	0.40 283 0 -1.89 0	
Nitrog Oxyge Fluorin	13C gen 14N 15N en 16O 17O 18O ne	99.6% 0.36% 99.7% 0.03 0.21%	1 1/2 0 5/2 0	, 2	0.40 283 0 -1.89 0	
Nitrog Oxyge Fluorii	risc en 14N 15N en 16O 17O 18O ne 19F	01.07% 99.6% 0.36% 99.7% 0.03 0.21% 100%	1 1/2 0 5/2 0		0.40 283 0 -1.89 0 2.62	
Nitrog Oxyge Fluorit	13C gen 14N 15N m 16O 17O 18O ne 19F	01.07% 99.6% 0.36% 99.7% 0.03 0.21% 100%	1 1/2 0 5/2 0		0.40 283 0 -1.89 0 2.62	
Nitrog Oxyge Fluorin Neon	13C gen 14N 15N m 16O 17O 18O ne 19F 20Ne	01.07% 99.6% 0.36% 99.7% 0.03 0.21% 100%	$ \begin{array}{c} 1 \\ \frac{1}{\frac{1}{2}} \\ 0 \\ 5/2 \\ 0 \\ \frac{1}{\frac{1}{2}} \end{array} $		0.40 283 0 -1.89 0 2.62	
Nitrog Oxyge Fluorin Neon	13C en 14N 15N m 16O 17O 18O ne 19F 20Ne 21Ne	99.6% 0.36% 99.7% 0.03 0.21% 100% 90.5% 0.27%	$ \begin{array}{c} 1 \\ \frac{1}{2} \\ 0 \\ 5/2 \\ 0 \\ \frac{1}{2} \\ 0 \\ 3/2 \\ 3/2 \end{array} $		0.40 283 0 -1.89 0 2.62 0	
Nitrog Oxyge Fluorin Neon	13C 9en 14N 15N 9n 16O 17O 18O ne 19F 20Ne 21Ne 22Ne	99.6% 0.36% 99.7% 0.03 0.21% 100% 90.5% 0.27% 9.25	$ \begin{array}{c} 1 \\ \frac{1}{\frac{1}{2}} \\ 0 \\ 5/2 \\ 0 \\ \frac{1}{\frac{1}{2}} \\ 0 \\ \frac{1}{\frac{1}{2}} \\ 0 \\ \frac{3}{2} \\ 0 \\ 0 \\ 0 \end{array} $		0.40 283 0 -1.89 0 2.62 0 -0.66 0	

Table I – Nuclear Magnetic Moments of Stable Isotopes of Elements (from Webelements)

Sodiur	n			
	23Na	100%	3/2	2.21
Magne	esium			
U	24Mg	78.99	0	0
	25Mg	10.0%	5/2	-0.86
	26Mg	11.0%	0	0
Alumi	num			
	27A1	100%	5/2	3.64
Silicor	1			
	28Si	92.2%	0	0
	29Si	4.68%	1/2	0.55
	30Si	3.08	0	0
Phospl	norus			
	31P	100%	1/2	1.31
Sulfur				
	32S	94.9%	0	0
	33S	0.76	3/2	0.64
	34S	4.29	0	0
Chlori	ne			
	35C1	75.8%	3/2	0.82
	37C1	24.22	3/2	0.68
Argon				
U	36Ar	0.33%	0	0
	38Ar	0.06%	0	0
	40Ar	99.6	0	0
Potass	ium			
	39K	93.9%	3/2	0.39
	40K	0.012%	4	-1.2
	41K	6.7%	3/2	0.21
Calciu	m			
	40Ca	97%	0	0
	42Ca	.65%	0	0
	43Ca	.14%	7/2	-1.31
	4Ca	2.09%	0	0

Scandium

	45Sc	100%	7/2	4.76
Titaniu	ım			
	46Ti	8.35%	0	0
	47Ti	7.4%	5/2	-0 79
	48Ti	73.7%	0	0
	4011	5 10/2	7/2	1 10
	4911 50T:	J.470 5 10	0	-1.10
	5011	5.18	0	0
Vanad	ium			
	50V	.25%	6	3.35
	51V	99.8%	7/2	5.15
Chrom	ium			
Chion	50Cm	1 2	0	0
	50Cr	4.3	0	0
	52Cr	83.8	0	0
	53Cr	9.5	3/2	-0.47
	54Cr	2.4%	0	0
Manga	nese			
-	55Mn	100%	5/2	3.45
Iron				
			0	0
	54Fe	5.85%	0	0
	54Fe 56Fe	5.85% 91.75%	0 0	0 0
	54Fe 56Fe 57Fe	5.85% 91.75% 2.12%	$0 \\ 0 \\ \frac{1}{2}$	0 0.091
	54Fe 56Fe 57Fe 58Fe	5.85% 91.75% 2.12% 0.28%		0 0.091 0
Cobalt	54Fe 56Fe 57Fe 58Fe	5.85% 91.75% 2.12% 0.28%	0 0 ^{1/2} 0	0 0.091 0
Cobalt	54Fe 56Fe 57Fe 58Fe	5.85% 91.75% 2.12% 0.28%	0 0 ^{1/2} 0	0 0.091 0
Cobalt	54Fe 56Fe 57Fe 58Fe 59Co	5.85% 91.75% 2.12% 0.28%	0 0 1/2 0 7/2	0 0.091 0 4.63
Cobalt	54Fe 56Fe 57Fe 58Fe 59Co	5.85% 91.75% 2.12% 0.28%	0 0 1/2 0 7/2	0 0.091 0 4.63
Cobalt Nickel	54Fe 56Fe 57Fe 58Fe 59Co 58Ni	5.85% 91.75% 2.12% 0.28% 100% 68.1%	0 0 ^{1/2} 0 7/2 0	0 0.091 0 4.63 0
Cobalt Nickel	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2%	0 0 1/2 0 7/2 0 0	0 0.091 0 4.63 0 0
Cobalt Nickel	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1%	0 1/2 0 7/2 0 0 0 3/2	0 0.091 0 4.63 0 0 75
Cobalt Nickel	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63	0 1/2 0 7/2 0 0 3/2 0	0 0.091 0 4.63 0 0 75 0
Cobalt Nickel	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63	0 1/2 0 7/2 0 0 3/2 0	0 0.091 0 4.63 0 0 75 0
Cobalt Nickel Coppe	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni r	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63	0 1/2 0 7/2 0 0 3/2 0 2/2	0 0.091 0 4.63 0 0 75 0
Cobalt Nickel Coppe	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni r 63Cu 65Cu	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63 69.17	0 1/2 0 7/2 0 0 0 3/2 0 3/2 2/2	0 0.091 0 4.63 0 0 75 0 2.22 2.22
Cobalt Nickel Coppe	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni r 63Cu 65Cu	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63 69.17 30.8	0 1/2 0 7/2 0 0 3/2 0 3/2 3/2 3/2	0 0.091 0 4.63 0 0 75 0 2.22 2.38
Cobalt Nickel Coppe	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni r 63Cu 65Cu	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63 69.17 30.8	0 1/2 0 7/2 0 0 3/2 0 3/2 3/2 3/2	0 0.091 0 4.63 0 0 75 0 2.22 2.38
Cobalt Nickel Coppe	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni r 63Cu 65Cu	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63 69.17 30.8	0 1/2 0 7/2 0 0 3/2 0 3/2 3/2 3/2	0 0.091 0 4.63 0 0 75 0 2.22 2.38
Cobalt Nickel Copper	54Fe 56Fe 57Fe 58Fe 59Co 58Ni 60Ni 61Ni 62Ni r 63Cu 65Cu 64Zn	5.85% 91.75% 2.12% 0.28% 100% 68.1% 26.2% 1.1% 3.63 69.17 30.8 48.6	0 1/2 0 7/2 0 0 3/2 0 3/2 3/2 3/2 0	0 0.091 0 4.63 0 0 75 0 2.22 2.38 0

67Zn	4.10	5/2	.87
Gallium			
69Ga	60.1	3/2	2.01
71Ga	39.9%	3/2	2.56
Germanium			_
70Ge	20.84%	0	0
72Ge	27.5%	0	0
73Ge	7.7%	9/2	88
74Ge	6.3%	0	0
76Ge	7.61%	0	0
Arsenics			
75As	100%	3/2	1 43
10110	10070	5/2	1.15
Selenium			
74Se	.89	0	0
76Se	9.37%	0	0
77Se	7.63	1/2	.53
78Se	23.8	0	0
80Se	49.6	0	0
82Se	8.73	0	0
Bromine			
79Br	50.7%	3/2	2.11
81Br	49.3%	3/2	2.27
Visintan			
	250/	0	0
/8Kr	.33%	0	0
80Kr	2.28%	0	0
82Kr	11.0%	0	0
83Kr	11.5%	9/2	-0.97
84Kr	57.0%	0	0
86Kr	17.3%	0	0
Rubidium			
85Rh	72 1%	5/2	1 35
87Ph	27.8	3/2	2.75
0 / IXU	<i>4</i> /.0	JI 4	2.13
Strontium	0.0.60/		
86Sr	9.86%	0	0
87Sr	7.0%	9/2	-1.09
88Sr	82.6%	0	0

Yttrium			
89Y	100%	1/2	137
Zirconium			
90Zr	51.45%	0	0
91Zr	11.2%	5/2	-1.30
92Zr	17.15	0	0
94Zr	17.4%	0	0
96Zr	2.8%	0	0
Niobium			
93Nb	100%	9/2	6.17
Molydenum			
92Mo	14.8%	0	0
94Mo	9.25%	0	0
95Mo	15.9%	5/2	91
96Mo	16.7%	0	0
97Mo	9.5%	5/2	93
98Mo	24.13	0	0
100Mo	9.6%	0	0
Technetium Radioactive			
Radioactive			
Ruthenium			
96Ru	5.4%	0	0
99Ru	12.8%	5/2	64
100Ru	12.6%	0	0
101Ru	17.1%	5/2	72
102Ru	31.5%	0	0
104Ru	18.6%	0	0
Rhodium			
103Rh	100%	1/2	-0.088
Palladium			
104Pd	11.1%	0	0
105Pd	22.3%	5/2	64
106Pd	27.3%	0	0
108Pd	26.5%	0	0
110Pd	11.7%	0	0
Silver			

107Ag	51.8%	1/2	113
109Ag	48.2%	1/2	131
U U			
Cadmium			
110Cd	12.5%	0	0
111Cd	12.8%	1/2	59
112Cd	24.1%	0	0
113Cd	12.2%	1/2	62
114Cd	28.7%	0	0
116Cd	7.5	0	0
Indium			
113In	4 3%	9/2	5 53
115In	95 7%	9/2	5.55
115111	JJ.170)/2	J.J T
Tin			
116Sn	14.5%	0	0
117Sn	7.7	1/2	-1.00
118Sn	24.2%	0	0
119Sn	8.6%	1/2	-1.04
120Sn	32.6%	0	0
122Sn	4.6%	0	0
124Sn	5.8%	0	0
Antimony			
	57 20/	5/2	2.26
12150	<i>31.270</i> <i>42.80/</i>	3/2	2.50
12380	42.8%	112	2.33
Tellerium			
122Te	2.5%	0	0
123Te	0.9%	1/2	-0.7
124Te	4.7%	0	0
125Te	7.1%	1/2	89
126Te	18.8%	0	0
128Te	31.7%	0	0
130Te	34.1%	0	0
Iodine	•	-	-
127I	100%	5/2	2.81
Xenon	1.00/	0	0
128Xe	1.9%	0	0
129Xe	26.4%	1/2	-0.78
130Xe	4.1%	0	0
131Xe	21.2%	3/2	0.69
132Xe	26.9%	0	0

134Xe 136Xe	10.4% 8.9%	0 0	0 0
Casium			
133Cs	100%	7/2	2.58
Barium			
134Ba	2.4%	0	0
135Ba	6.6%	3/2	.83
136Ba	7.9%	0	0
137Ba	11.2%	3/2	0.93
138Ba	71.7%	0	0
Lanthanum			
138La	0.1%	5	3.7
139La	99.9	7/2	2.7
Cerium			
136Ce			
138Ce			
140Ce	88.4%	0	0
142Ce	11.1%	0	0
Praseodymium			
141Pr	100%	5/2	4.136
Neodymium			
142Nd	27.2%	0	0
143Nd	12.2%	7/2	-1.065
144Nd	23.8	0	0
145Nd	8.3	7/2	-0.65
146Nd	17.2%	0	0
148Nd	5.7	0	0
150Nd	5.6	0	0
Promethium			
Null			
Samarium			
147Sm	15%	7/2	-0.81
148Sm	11.2%	0	0
149Sm	13.8%	7/2	-0.67
150Sm	7.38%	0	0
152Sm	26.75	Õ	Õ

154Sm	22.75%	0	0
Europium			
	17 00/	5/2	2.4
151Eu 153Eu	47.070 52.2%	5/2	1.53
15524	52.270	512	1.55
Gadolinium			
154Gd	2.18	0	0
155Gd	14,8%	3/2	26
156Gd	20.5%	0	0
157Gd	15.7%	3/2	34
158Gd	24.8%	0	0
160Gd	21.8%	0	0
Terbium			
159ТЬ	100%	3/2	2.014
Dysprosium			
160Dv	2 34%	0	0
161Dy	18 91%	5/2	-0.4806
162Dy	25 51%	0	-0.4000
163Dy	23.3170	5/2	0 6726
163Dy 164Dy	28.18%	0	0.0720
10129	20.1070	0	0
Holmium			
165Но	100%	7/2	4.173
Erbium			
164Er	1.61%	0	0
166Er	33.61%	0	0
167Er	22.93%	7/2	-0.56
168Er	26.78%	0	0
170Er	14.93%	0	0
Thulium			
169Tm	100%	1/2	-0.2316

Ytterbium

170 172 172 173 174 176	0Yb 1Yb 2Yb 3Yb 4Yb 6Yb	3.04% 14.28% 21.83% 16.13% 31.83% 12.76%	0	¹ / ₂ 0 5/2 0 0	0	0.4919 0 -0.6776 0 0
Lutetium						
17: 170	3Lu 6Lu	97.41% 2.59%	7	7/2	3.19	2.23
Hafnium						
170 177 178 179 180	6Hf 7Hf 8Hf 9Hf 0Hf	5.26% 18.60% 27.28% 13.62% 35.08%	0	7/2 0 9/2 0	0	0.7936 0 -0.6409 0
Tantalum						
180 18	0Ta 1Ta	0.012% 99.98%		8 7/2		2.31
Tungsten						
182 183 184 186 Rhenium	2W 3W 4W 6W	26.50% 14.31% 30.64% 28.43%		0 ½ 0 0		0 0.1177 0 0
18: 18 [′]	5Re 7Re	37.40% 62.60%		5/2 5/2		3.18 3.21
Osmium						
180 187 183 189 190 192	6Os 7Os 8Os 9Os 0Os 2Os	1.59% 1.96% 13.24% 16.15% 26.26% 40.78%	0 ½	0 3/2 0 0	0 0.064	0 0.66 0 0

Iridium

	191Ir 193Ir	37.3% 62.7%	3/2 3/2		0.146 0.159	
Platin	ım					
	192Pt 194Pt 195Pt	0.72% 32.97% 33.83%	0	0 ½	0	0 0.61
	196Pt 198Pt	25.24% 7.16%	0	0	0	0
Gold						
	197Au	100%	3/2		0.148	
Thalliu	um 203T1 205T1	29.52% 70.48%		1/2 1/2		1.62 1.64
Lead						
	204РЬ 206РЬ 207РЬ 208РЬ	1.4% 24.1% 22.1% 52.4%	$\begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{array}$		0 0 0.58 0	
Bismu	th	1000/	0/2		4.1.1	
	209B1	100%	9/2		4.11	
Poloni	um Unstable					
Astati	ne unstable					
Radon	L					
	Unstable					
Franci	um					
Radiu	Unstable m					
	Unstable					
Actini	um Unstable					

Thoriu	m 232Th	100%	0	0
Protact	tinium			
	231Pa	100%	3/2	
Uraniu	m 235U	0.72%	7/2	-0.35
	238U	99.27%	0	0
Lawren	ncium			

Unstable

Rutherfordium Unstable

Dubnium

Unstable

Seaborgium Unstable