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Massive angle and square spinors are described as two-vectors with an index denoting their helicity sign category and 

the property that the order of the components must be swapped for negative sign. Relations between spinors can be 

written more compactly and several derivations are simplified. Three point amplitudes are investigated and it is shown, 

that their high energy limit can be obtained more easily for both helicity categories at once. 

 

 

 

 

1. Introduction 
 

The spinor helicity formalism, see for example the reviews in [1-4], is widely used for the calculation of amplitudes in 

particle physics. Massless states have only two helicities, positive and negative and exactly they are employed for 

amplitudes avoiding a lot of redundancy. Massive spinor helicity variables were introduced in [5], [6] and [7]. For 

massless particles the little group is U(1) and for massive particles the little group is SU(2). Massive particles are 

described by spinors I I,α αλ λ
ɺ
ɶ   where ,α αɺ  denote the SL(2, )ℂ  indices and I, J the SU(2) spin indices. Amplitudes 

within this new formalism were investigated in [8-14]. 

Amplitudes are usually considered in a certain helicity configuration and other helicity configurations are obtained by 

parity, cyclicity or other symmetries. In this work we describe massive helicity spinors together as two-vectors 

) ) )( )I

i
i i n

σ σσ
= −σ , where  σ denotes the helicity category of the spinors, which agrees with the helicity sign of 

the massless spinor )i
σ

 remaining in the high energy limit. For σ = +  the entries of the two-vectors are in the shown 

order, which must be swapped for σ = − . This property also applies to contractions of spinors and their products 

appearing in amplitudes. With this notation one can derive the high energy limit of amplitudes for both helicity sign 

categories more easily, as is shown in the following sections. 

 

 

2. Compact Notation for Massive Spinors 
 

We investigate massive spinors introduced in [7] and take over the notation of [12], [14], [15]. In Appendix A we 

provide an explicit representation of massive spinors using the two-vector notation of [16]. Massive spinors are given 

by a pair of massless spinors 
I I

iαλ =  and I Iiα λ = 
ɺɶ  (I=1,2) and we denote them together as )Ii

σ
. 

 

) ) )
,I

I I

I

i
i i

i

α

σσ σ
α

  σ = +  
= = =  

σ = −  

i

ɺ

, ( ( (
I

I I

,I

i
i i

i

α

σσ σ α

  σ = +  
= = =  

σ = −  

i
ɺ

  (1) 

 

The sign σ denotes the helicity category [13] of the massive spinor and corresponds to the helicity sign of the massless 

spinor remaining in the high energy limit. Contractions are only possible between spinors with the same sign σ 
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( )
I J

I J

i j

i j
σ

   σ = +  
=  

σ = −  

i j  (2) 

 

The momentum of a massive particle with momentum pi is given as ) (I

I
i i

−σσ
= −σ

i
p  or equivalently 

 

) (
[I

I i
I

I I

I i

i i ,
i i

i i ,

αα

σ αα−σ

 + = σ = + 
= σ =  

− = σ = −  
i

p
p

p

ɺ

ɺ
  (3) 

 

The relations between massive spinors given in [12] , [14] can be now written in a compact form ( )a, b , or ,= α β β αɺ ɺ . 

 

( )J K JK

i
i i m

σ
= σ ε ,  ( ) KJ JK i

i i m
σ
= −σ ε ,  ( )J J

K i Ki i m
σ
= −σ δ ,  ( )K K

J i J
i i m

σ
= σ δ  (4) 

( ) ( )J J

J J i
i i i i 2m

σ σ
= − = −σ ,  ) ( ) (J J b

J J i a
i i i i m

σ σσ σ
= − = σ δ   

) ( ) (J J

i J J
i i i i

−σ σσ −σ
= −σ = σp , ) )I I

i i
i m i

−σ σ
=p ,  ( (I I

i i
i m i

−σ σ
= −p  

 

Looking at the explicit representation in appendix A one asks if a more compact rewriting of all the spin-spinors in (A3) 

is possible.  First we introduce the helicity sign operator hσ , acting on spinors from the left, defined as ( )p̂ p / p=
� �

: 

 

( )
( )

* *

*

cc ss 2cs
ˆh p

2cs cc ss
σ

 −
 = ⋅σ =
 − − 

�
 (5)  

 

For conjugate spinors the helicity sign operator is h hσ σ= −  acting from the right. Then one obtains with (A3) the 

equations ] ] ] ]i i i ih i i , h i i , h n n , h n nσ σ σ σ= − = + = + = −  and similar equations for the conjugate 

spinors. The explicit expressions for these spinors can be obtained from appendix (A3). With the following 

abbreviations (similar for mirror spinors) 

 

)
]i

i
iσ

 σ = + 
=  

σ = −  
 , )

]i

i

i

n
n

nσ

 σ = + 
=  

σ = −  
 (6) 

 

the equations can be written in compact form (for what follows we note also the action on spinors with sign −σ ) 

   

) ) ) ) ( ( ( (i i i ih i i , h n n , i h i , n h nσ σ σ σσ σ σ σσ σ σ σ
= σ = −σ = σ = −σ  (7) 

) ) ) ) ( ( ( (i i i ih i i , h n n , i h i , n h nσ σ σ σ−σ −σ −σ −σ−σ −σ −σ −σ
= −σ = σ = −σ = σ  

 

In summary square i (conjugate) spinors have positive helicity sign and angle i (conjugate) spinors negative helicity 

sign, which is reversed for ni spinors. We note that for the spin-spinors in appendix A with upper index I, the first entry 

always has positive helicity and the second entry has negative helicity, while for spin-spinors with lower index I the 

situation is reversed. This suggests that the SU(2) indices I,J should run over { },+ − , see also [14] appendix A. With 

this convention one could now describe for example Ii   and 
I

i  together as ) ) )I I I

i
i i n −

σ σσ σσ
= δ −σ δ . It would 

however be cumbersome to work in amplitudes, containing contractions of these spinors or products of them, with these 
I

σδ terms.  We therefore suggest the following notation, mirror spinors are obtained by ) (→ : 
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) ) )( )I

i
i i n

σ σσ
= −σ , ) ) )( )I i

i n i
σ σ σ
= σ  (8) 

) ) )( )I

i
i n i

−σ −σ−σ
= σ , ) ) )( )I i

i i n
−σ −σ −σ

= −σ  

 

One can check that all spin-spinors in (A3) are correctly described by the first line. The two-vectors in (8) must be 

understood in the following way: for σ = +  the two entries of the vector are in the right order, while for σ = −  the two 

entries must be swapped. So we have for example ) ) )( ) ] ]( ) ( )I

i i i
i i n i n or n iσ=+ σ=−σ σσ

= −σ =  and 

similarly for the mirror spinors. Massive spinors with index −σ  in (8), which are needed in amplitudes, are also 

obtained by swapping the two entries. Of course ( ) ( )i i
i i n n 0

σ σ
= =  and we note the important relation obtained 

from (A3) 

 

( )i i
i n m

σ
= −σ  (9) 

 

With this notation it becomes very easy to prove several of the relations in (4) directly without using the explicit 

representation given in (A3), note that for σ = −  the two components of the vector must be exchanged. The momentum 

in (3) becomes ) ( ) )( ) ( (( ) ) ( ) (I

I i i i i
i i n i n i n n i i

σ σ −σ σ σ−σ −σ −σ −σ−σ
= σ = σ σ ⋅ σ = +

i
p , with a dot product 

between the two-vectors (we write 1σ = ±  in terms).  

 

) ( ) ( ) (I

I i i
i i i i n n

σ σ σ−σ −σ−σ
= σ = +

i
p  (10) 

 

 

3. High Energy Limit 

 

We discuss the high energy limit (HE) in the present notation. Up to order ( )2
O m  the i spinors are proportional 

2HE

2

m
E P 2E 1

8E

 
+ → − 

 
 and leading, while the ni spinors are proportional to 

2HE

2

m m m
E P 1 2E

2E8E2E

 
− → + ≈ 

 
 and 

can be neglected at first order in m. The high energy limit of the spinors in (8) up to 2O(m )  is therefore 

 

) )
2HE
i

02

i

m
i 1 i

8Eσ σ

 
→ − 

 
 , ) )

HE
i

i i0

i

m
n n

2Eσ σ
→  (11) 

 

where  )0i σ
 and )i0n

σ
 and its mirrors denote the same spinors as in (A3) but here with a pre factor of 

i
2E , i.e. 

] i

0 i

i

c
i 2E

s

 
=  

 
, 

*

i

0 i

i

s
i 2E

c

 −
=  

 
, ]

*

i

i0 i 0

i

s
n 2E i

c

 −
= − = − 

 
, ]i

i0 i 0

i

c
n 2E i

s

 
= = 

 
 

[ i

0 i

i

s
i 2E

c

− 
=  

 
, 

i

0 i *

i

c
i 2E

s

 
=  

 
, [ i

i0 i 0*

i

c
n 2E i

s

 
= = 

 
, [i

i0 i 0

i

s
n 2E i

c

− 
= − = − 

 
 

 

The high energy limit of spinor contractions up to 2O(m )   is thereby given as 

 

( ) ( )
22HE
ji

0 02 2

i j

mm
i j 1 i j

8E 8Eσ σ

 
→ − −  

 
 , ( ) ( )

HE
i

i i0 0

i

m
n j n j

2Eσ σ
→  (12) 

( ) ( )
HE

j

j j00

j

m
i n i n

2Eσ σ
→  , ( ) ( )

HE
i j

i j i0 j0

i j

m m
n n n n

4E Eσ σ
→  
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Momentum conservation for a general three point amplitude is given by 
j k

0+ + =
i

p p p  or more explicitly 

) ( ) ( ) ( ) ( ) ( ) (i i j j k k
i i n n j j n n k k n n 0

σ σ σ σ σ−σ −σ −σ −σ −σ−σ σ
+ + + + + = . Multiplying from the left with 

( ( (j
j , n ,

−σ −σ−σ
ς  ( ς  is an arbitrary spinor) and from right with )k

σ
, we can obtain with (9) several exact 

equations, which will turn out to be useful, when we consider amplitudes and especially their high energy limit. 

 

( ) ( ) ( ) ( ) ( ) ( )j j i i k kj i i k 0 m n k j n n k m j n
−σ σ σ −σ σ −σ

= −σ − −σ   (13) 

( ) ( ) ( ) ( ) ( ) ( )j j j i i k j kn i i k m j k n n n k m n n
−σ σ σ −σ σ −σ

= σ − −σ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i j j k k
i i k j j k n n k n n k m n

−σ σ −σ σ −σ σ σ −σ−σ
ς = − ς − ς − ς −σ ς  

 

In the high energy limit up to order ( )O m  only the first summand survives. We also write these equations in the 

important case of 
i j

m m m= =  and 
k

m 0= : 

 

( ) ( ) ( ) ( ) ( ) ( )2

j i ij i i k m n k j n n k 0 O m
−σ σ σ −σ σ

= −σ − ≈ +   (14) 

( ) ( ) ( ) ( ) ( ) ( ) ( )3

j j i in i i k m j k n n n k m j k O m
−σ σ σ −σ σ σ

= σ − ≈ σ +  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

i i j j
i i k j j k n n k n n k j j k O m

−σ σ −σ σ −σ σ σ −σ σ−σ
ς = − ς − ς − ς ≈ − ς +  

 

Also note that one can obtain ( ) ( ) ( ) ( )3

in k k j m i j O m
σ −σ −σ

≈ −σ +  from momentum conservation. 

In three point amplitudes with two equal mass particles 
i j

m m m= =  and one massless boson 
k

m 0=  one needs the so 

called x-factor [7] to write for example amplitudes of the form ( )3
x

σ

−σ
= i jA  (σ  is the helicity sign of the massless 

boson k, note that we write 1σ = ±  in terms). The x-factor is defined as: 

 

( )
( )

( ) ( )
( )

( ) ( )
( )
i i

i i k n n kk 1
x

m k m k k

−σ σσ −σ σ −σ σ

−σ −σ −σ

 ς ςς
= = +  ς ς ς 

i
p

 (15) 

 

From momentum conservation (14) one derives 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )2 2
i i j i k k k j i k1 1

x O m O m
m k i j m k i j

σ −σ σ σ −σ σ σ

−σ σ −σ σ

   ς ς
≈ + ≈ − +      ς ς   

 

 

( ) ( )
( )

( )
j k k i

x O m
m j i

σ σ σ

σ

≈ +  (16) 

 

 

4. Products of Spinor Contractions 

 

In amplitudes with massive spinors one encounters products of spinor contractions and therefore we write some of them 

down as preparation for their evaluation. First we note the contractions of massive spinors obtained from the 

expressions in (8). 

 

( ) ( )
( ) ( )
( ) ( )

j
I J

i i j

i j i n
i j

n j n n

σ σ

σ σ

σ σ

 −σ
 = =
 −σ 

i j  , ( )
( ) ( )

( ) ( )
i j i

I J

j

n n n j
i j

i n i j

σσ

σ

σσ

 σ
 =
 σ 

 

( ) ( )
( ) ( )

( ) ( )
i j i

I J

j

n n n j
i j

i n i j

−σ−σ

−σ −σ

−σ−σ

 σ
 = =
 σ 

i j , ( )
( ) ( )
( ) ( )

j

I J

i i j

i j i n
i j

n j n n

−σ −σ

−σ

−σ −σ

 −σ
 =
 −σ 

 (17) 
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These matrices according the comments after (8) should be interpreted as follows: if σ = +  the entries are in the right 

order, if σ = −  then the entries should be swapped according :σ + ↔ − , that means crosswise in this case. If σ = + , 

then the helicity assignments in the matrix ( )I Ji j
σ

 are according (7) 
+ + + − 

 − + − − 
, which is reversed for σ = − . The 

row denotes particle i and the column j. Recall from (7) that )i
σ

and )in
−σ

 have helicity sign σ , while )in
σ

 and 

)i
−σ

 have helicity sign −σ . The contraction of massive and massless spinors is  

 

( ) ( ) ( )( )I

ii j i j n j
σ σ σ
= −σ  , ( ) ( ) ( )( )J

j
i j i j i n

σ σσ
= −σ  (18) 

( ) ( ) ( )( )I

ii j n j i j
−σ −σ −σ

= σ , ( ) ( ) ( )( )J

i
i j n j i j

−σ −σ−σ
= σ  

 

Again the two-vectors are interpreted as follows: if σ = +  the entries are in the right order, if σ = −  then the entries 

should be swapped according :σ + ↔ − . 

Next we consider products of spinor contractions, which appear in massive amplitudes and start with 

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

j j2

i i j i i j

0
i j i n i j i n

0 00 0
n j n n n j n n

0

σ σσ σ

σ

σ σσ σ

+ + + + −    −σ −σ     = = + −    −σ −σ      − + − − − 

i j �   

Here the right matrix shows the helicity assignments of particles (i j) in the case of σ = + , in the case of σ = −  the 

entries must be swapped according + ↔ − . The “multiplication” �  of the two matrices is defined as follows: select one 

entry of each matrix, so that one gets the correct helicity of the corresponding boson displayed in the right matrix, and 

then multiply them. Rows are for i and columns for j. If there are several possibilities simply take the mean of them, this 

automatically gives the required symmetrisation of the little group indices. Examples are: ( ) ( )i j i j
σ σ

++ = , 

( ) ( )i i
n j n j

σ σ
−+ = −σ ⋅−σ , ( ) ( ) ( ) ( )( ) ( ) ( )j i j i j j j i j

1
0 i n n n n n i n i n n n

2 σ σ σ σ σ σ
− = −σ + ⋅−σ = −σ ,  

( ) ( ) ( ) ( )( )j i i j

1
00 i n n j i j n n

2 σ σσ σ
= −σ ⋅−σ + ⋅ . As final result one obtains 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

22

j j

2

i i j j i j i j

22

i i i j i j

i j i j i n i n

1
i j n j i j n n i n n j i n n n

2

n j n j n n n n

σ σ σ σ

σ σ σ σ σσ σ σ σ

σ σ σ σ

 −σ
 
 

= −σ + −σ 
 
  −σ 
 

i j  (19) 

 

For σ→ −σ  the entries must be swapped according + ↔ − .  In a similar manner one could derive 

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

i j i j

j i i j

n n n j i j i n

i n i j n j n n

−σ σ−σ σ

−σ σ

−σ σ−σ σ

   σ −σ
   =
   σ −σ   

i j i j �  

used for Higgs couplings and we have stated the result in Appendix A.  

Now we investigate a term needed for the coupling of two massive fermions and a massive boson ( ) ( )=i j k f  f  V  

( ) ( )
j k j i

k k k i

n n n k k i k n

j n j k n i n n

+ + + − + + + −

−σ −σ σ σ

−σ σ − + − − − + − −

−σ −σ σ σ

          σ −σ                    =
          σ −σ          

          

j k k i �  

As a memo we have here written as superscripts the helicity signs of each spinor in the case of σ = + , which may be 

helpful in selecting the correct entries giving the matrix with particle helicity assignments below. We can write down 

two matrices, one for ( )+
i  and one for ( )−

i  both of the form 
0

0

+ + + +− 
 −+ − −− 

, where the row corresponds to fermion j 
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and the column to boson k. For ( )+
i  one has to take the first column of matrix 2 and “multiply” it in the usual way with 

matrix 1, for ( )−
i  take instead the second column of matrix 2. This gives the following matrices: 

 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

j k j k k j j k

k k k k

n n k i n n n i n k k i n k n i
2

1
j n k i j n n i j k k i j k n i

2

−σ σ −σ σ −σ σ −σ σ
+

−σ σ −σ σ −σ σ −σ σ

σ − + − 
=  
 σ − + −σ 
 

i  (20) 

( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

j k i j k k i j i j k i

k i k k i i k i

1
n n k n n n n n n k k n n k n n

2

j n k n j n n n j k k n j k n n
2

−σ σ −σ σ −σ σ −σ σ
−

−σ σ −σ σ −σ σ −σ σ

 −σ − σ 
=  

σ − − 
 

i  

 

The high energy limit of the matrices in (17)-(20) up to 2O(m )  is now obtained by neglecting terms proportional 3,4n . 

Finally one should insert the expressions in equation (12). It is however much simpler to eliminate at first dependencies 

on )in  and )ς  spinors employing equations (13), (14) and (16) and to use (12) at the end, as we shall see when we 

discuss some examples for amplitudes in the next section. The nice feature is here, that we obtain expressions valid for 

all helicity signs and the symmetrisation of SU(2)  indices goes nearly automatically. 

 

 

5. Three Point Amplitudes 

 

Now we discuss several three point amplitudes and their high energy limit using the formalism of the previous sections, 

neglecting coupling constants or symmetry factors. 

 

We begin with two fermions of equal mass and a massless spin one boson (photon, gluon). The amplitude and its high 

energy limit are now obtained as 

( ) ( )
( ) ( )
( ) ( )

( )
( )

( )
( ) ( )

( ) ( )
( )

( )

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 2 1 1

3

2 2

2

2

2 3 3 1n n n 2 0 n 23
f , f ,A x O m

1 n 1 2 1 n 1 2m 3 m 2 1

0 3 1 / 2 10 m 1 3 3 11

m 2 3 2 3 0m 2 1 2 3 / 2 1 0

−σ σσ σ σ−σ −σ −σ
−σ

−σ −σ −σ −σ−σ σ

σ σσ σ

σ σσ σ σ

  σ   σ ς
= = ≈ +        σ σς    

 − 
 ≈ =       

1p
1 2A

where we used ( )1 2
n n 0

−σ
≈  from (11) as well as 2 1σ =  and from equation (14) ( ) ( ) ( )2

1 2 2 3 0 O m
−σ σ

≈ + ,  

( ) ( ) ( ) ( )3

1n 2 2 3 m 1 3 O m
−σ σ σ

≈ σ + , ( ) ( ) ( ) ( )3

21 n 3 1 m 2 3 O m
−σ σ σ

≈ σ + . After elimination of the 
i

n  

spinors the i  spinors should be replaced by their massless counterparts the 
0

i  spinors up to ( )2
O m , which we omitted 

for better readability. The sign differences in the amplitude compared to [10] are due to (9) with an opposite sign 

convention used there. 

 

The amplitude with two equal mass fermions and a massless graviton is then obtained from the final amplitude above 

by multiplying with 
Pl

x m / mσ ⋅   

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( )

2

2

3 2

Pl Pl

3 2

3 2

Pl

0 3 1 / 2 1 2 3 3 1m m
f , f ,G x

m m 2 1 m2 3 / 2 1 0

0 3 1 2 3 / 2 11

m 2 3 3 1 / 2 1 0

σ σ σ σ σ
−σ

σσ σ

σ σ σ

∂ σ σ σ

 −
 = ≈
 
 

 −
 =
 
 

1 2A
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Now we look at two spin one bosons of equal mass and a massless spin one boson ( ) ( )WW 3γ = 12  and employ (16) 

and (19), where ,+ −  entries were swapped and σ→ −σ  used. Terms proportional 
N

i
n  for N 3≥  can be neglected. The 

terms ( ) ( )1
0 1 2 n 2

σ σ
− = σ  and ( ) ( )2

0 1 2 1 n
σ σ

− = σ  in the matrix obtained from (19) must be multiplied with  

( )2 3
σ

 and because of (14) they achieve order ( )3
O m  and can be neglected. Then one obtains for the amplitude:  

 ( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )
( )

2

1

2

3 2 1 2

2 2

2

0 0 n 2
0

2 3 3 1x 1
W, W, 0 00 0 0 1 n n 2 0

m 2 m 2 1
0

1 n 0 1 2

−σ
σ

σ σ
−σ −σ −σ

σ

−σ −σ

 
+ + + + −   

   γ = = + − ≈   
   − + − − −   

 

1 2A  

With equation (14) ( ) ( ) ( ) ( ) ( ) ( )2

1 2 21 2 2 3 m n 3 1 n n 3 O m
−σ σ σ −σ σ

= −σ − =  and 
i

n m∼  one sees that all 

remaining terms in the left matrix have the correct order to cancel the 21/ m  from the factor x / mσ . Now we 

investigate the single entries in the matrix above using equation (14): 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )
( ) ( )

3

1 1

2 2

n 2 2 3 n 2 2 3 3 1 m 1 3 m 1 3 3 1 3 1

1 2 2 3m 2 1 2 3 m 2 1 2 3

−σ σ −σ σ σ σ σ σ σ

σ σσ σ σ σ

σ σ
+− = ≈ = −  

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1 2

2 2

n 2 2 3 1 n 3 1 m 1 3 m 2 3 2 3 3 11
00

2 1 22m 2 1 2m 2 1

−σ σ −σ σ σ σ σ σ

σσ σ

σ σ
= = =   

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( )
( ) ( )

3

2 2

2 2

n 1 3 1 n 1 1 3 2 3 m 2 3 m 2 3 2 3 2 3

1 2 3 1m 2 1 1 3 m 2 1 1 3

−σ σ −σ σ σ σ σ σ σ

σ σσ σ σ σ

−σ σ
− + = ≈ = −  

( ) ( ) ( )
( )

( ) ( ) ( )( )( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

2

1 2 2

2 2

2 2 3 3

m n 3 1 n n 3 1 2 2 3 3 11 2 2 3 3 1

m 2 1 m 2 1

1 2 3 1 1 2 3 2 1 2 1 3 3 1 2 3 3 2 2 1 2

3 2 2 1 3 1 2 1 2 3 3 1 1 2 2 1 2 3 3 1

σ −σ σ −σ σ σ−σ σ σ

σ σ

−σ σ −σ σ −σ −σ σ −σ σ −σ

−σ σ −σ σ −σ −σ −σ σ −σ −σ

−σ −
−− = = ≈

+
≈ + = ≈ −

  

where (14) and at last ( ) ( )a b
2p p a b b a

−σ σ
⋅ ≈  and ( )3 1 2

p p p= − +  were used. 

  

The amplitude for two massive bosons interacting with a massless graviton G is obtained from the amplitude above by 

multiplying the final result with 
( ) ( )

( )Pl

Pl

2 3 3 1
x m / m

m 2 1

σ σ σ

σ

⋅ ≈  giving ( ) ( ) 2

3

Pl

x m
V, V,G x

m m

σ
σ

−σ
≈ ⋅1 2A  and the 

lower right entry vanishes due to (14a). 

 

As an example for employing (18) we take a massive fermion, a massless fermion and a massive boson 

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )( )3 1 3

3 3

1

n n n 1 0
,2, 2 2 3 2 n

3 n 3 1 0

−σ −σ
−σ σ σ σ

−σ −σ

 σ  + + + +− 
= = −σ =    σ −+ − −−  

1 3 3 1 3 �A   

The row denotes particle 1 and the column particle 3 for σ = + . One obtains for the matrix 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

3 1 3 1 3 1 1 3

3

3 3 3 3

n n 2 3 n n 2 n 3 n 2 3 3 n 2 n
2

1
n 1 2 3 3 1 2 3 n 1 2 n 3 1 2 n

2

−σ σ −σ σ −σ σ −σ σ

−σ σ −σ σ −σ σ −σ σ

σ − + − 
=  
 σ − −σ 
 

A   

Neglecting higher orders in 
i

n , using (13) and multiplying −+  and +−  with ( ) ( )1 2 / 1 2
±σ ±σ

 one obtains 

( )

( ) ( ) ( ) ( )

1

3
2 2

3 3

m
0 1 2 0

2

m 2 3 / 1 2 0 m 3 1 / 1 2

σ

σ σ −σ −σ

σ 
 

≈  
 −σ −σ 

A  

For σ = −  the entries should be swapped according ++ ↔ −− , 0 0+ ↔ − , +− ↔ −+ . 

 

Finally we shortly investigate amplitudes with two massive fermions 1, 2 and one massive boson 3. The possible terms 

are given by ( ) ( ) ( )3 ′σ σ
=1,2,3 2 3 3 1A  with 'σ = ±σ  and consider here only 'σ = −σ . The matrices to be used for 



 8 

this amplitude were already written in (20) an we have here ( ) ( )=i, j,k 1,2,3 . Since the amplitude should be of order 

O(m)  we can neglect for the high energy limit all terms Nn∝  for N 2≥  and the term ( ) ( ) ( )2
2 3 3 1 O m

−σ σ
=  due 

to momentum conservation in equation (13), leaving us with:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )
( )

( )
( )

2

2
2 23

3 3 3 3

m
0 2 1 0

20 n 3 3 1 0
2

3 1 3 2
2 n 3 1 0 2 3 n 1 m 0 m

1 2 2 1

σ

+ −σ σ

σ −σ
−σ σ −σ σ

σ −σ

 
σ   

   ≈ ≈    σ −σ     
 

1A

 

 

where we employed for the second matrix (13b) ( ) ( ) ( ) ( )3

j jn i i k m j k O m
−σ σ σ

≈ σ +  or it’s pendant for σ→ −σ . 

For amplitudes consisting of three massive bosons ( ) ( ) ( )3 'σ σ σ
= 1 2 2 3 3 1A  with 'σ = ±σ  one could write 

matrices of the form (19) or (20) for ( )+
1 , ( )0

1 , ( )−
1 .  

 

One can see from the previous examples that it would be very difficult to get all signs correct from determining the 

amplitude for only one helicity sign category. 

 

 

6. Summary 
 

In summary we have described massive angle and square spinors together using an index connected to their helicity 

category agreeing with the helicity sign of the spinor remaining in the high energy limit. This allows writing many 

relations between the spinors in a compact form and simplifies several derivations. Massive spinors are defined as two-

vectors ) ) )( )I

i
i i n

σ σσ
= −σ  with the at first sight strange property, that the entries are in right order for σ = + , but 

must be swapped for σ = − . This property holds also for contractions and products of them and allows writing down 

amplitudes for different helicity categories at once. The high energy limit of three particle amplitudes 
3
A  is then 

obtained with much less effort as we have shown in the previous sections. Since the 
i

n  spinors scale with 
i

m , one sees 

immediately which terms can be neglected in an amplitude. Also remember that we work during the entire process with 

spinors ) i ii E P
σ
∝ +  and )i i in E P

σ
∝ −  and first after elimination of 

i
n  and ς  (coming from the x-factor) one 

should replace ) )0i i
σ σ
→ , which we omit for better readability. One also sees from the previous examples the 

crucial role played by the helicity category σ  respectively the helicity sign in relations between spinors or in 

amplitudes. Hopefully the suggested procedure turns out to be useful for application to further amplitudes. 

 

( )
( ) ( ) ( )3 1

1

0 0 00 0 0

m
0 2 3 3 n 0 0 1 2 0

2 2

−

−σ σ −σ

  
  ≈ ≈σ   −   

   

1A
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Appendix A:  Spinor Representations 

 

The explicit representation for massive spinors in [12][14] is based on the metric ( )+ − −−  and momentum 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )* * *p E Psin cos Psin sin P cos E P c s s Pi c s s P cc ssµ = θ φ θ φ θ = + − −  (A1) 

 

With the Pauli matrices we can write the momentum in bispinor form p p µ
µ= σ  or p p µ

µ= σ  using  

( )c cos / 2= θ , ( ) ( )s sin / 2 exp i= θ φ , ( ) ( )*s sin / 2 exp i= θ − φ  with *cc ss 1+ =  resulting in 

 
* *

*

E P (cc ss ) 2Pcs
p

2Pcs E P (cc ss )

 −σ − −σ
=  

−σ +σ − 
  (A2) 

 

We write massive spinors in the 2-vector notation used in [16] see also [17], which is better readable than enumerating 

all eight 2x2 matrices. Lowercase index spinors are obtained by 
J

I I Ji i= ε  and mirror spinors by →  and 

] [→ . One can obtain the expressions for ] ]i ii , i , n , n and its mirrors from the following equations.  

 

]( ] )
*

iI i

i i i i i

i i

c s
i i n E P E P

s c

  − 
 = − = + −         

 ( )
*

iI i

i i i i i

i i

c s
i n i E P E P

s c

  − 
= = − +        

 (A3) 

[( [ ) iiI

i i i i i *
i i

cs
i i n E P E P

c s

 −   
 = − = + − −         

 ( ) iiI

i i i i i *
i i

cs
i n i E P E P

c s

 −   
= = − − +        

  

] ] ]( )
*

ii

I i i i i i

ii

cs
i n i E P E P

sc

  −  
= = − − +        

 ( )
*

ii

I i i i i i

ii

cs
i i n E P E P

sc

  −  
= − = − + −        

 

[ [ [( ) i i

I i i i i i*
ii

c s
i n i E P E P

cs

 −   
= = − +        

 ( ) i i

I i i i i i*
ii

c s
i i n E P E P

cs

 −   
= − = − + − −        

 

 

With ) )ii , n
σ σ

 defined in (6), the momentum is ) ( ) ( ) (I

I i i
i i i i n n

σ σ σ−σ −σ−σ
= σ = +

i
p  leading to (A2) and one 

can check, that the equations in (4) and ( )i i
i n m

σ
= −σ  are satisfied.  

 

An interesting equivalent representation was given in [15], [5], [6]. With momenta in bispinor form p p p µ
αα µ= = σ
ɺ

  

one decomposes a massive momentum with 2 2p m=  in terms of two null momenta k, q: 
2m

p k q
2k q

= +
⋅

. Massive 

spinors then can be written as (raising and lowering of SU(2) indices I,J goes with the Levi-Civita symbols IK
ε  and 

I K
ε ) 

I m
p q k

k q

 
=   
 

, ]
[ ]

]I m
p k q

k q

 
 =    

 
, 

I

m
p k q

k q

 
= −  
 

, ]
[ ]

] ]I

m
p q k

k q

 
= −  
 

 

Conjugate spinors are obtained with ] [a a , a a→ → . One can then proove (4) and the connection with the 

representation above is n =
m

q
k q

, ]
[ ]

]n = −
m

q
k q

. With this we get as in (A4): k n m= , [ ]k n m= − . 

 

Here we note the result for the matrix ( ) ( )−σ σ
i j i j , see text below (19) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

i j i j j i i j

i j i j i i j j

j i j i j i i j

n n i j n n i n n j i j n j i n
2

n n n j i n i j 00 n j n n i j i n
2 2

i n n j i n n n i j n j i j n n
2

σ −σ σ −σ−σ −σ σ σ

σ σ −σ −σ−σ −σ σ σ

σ −σ σ −σ−σ −σ σ σ

σ − + − 
 
σ σ − + − 

 
σ − − 

 

 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )j j i i i i i i

1
00 i j i j i n i n n j n j n n n n

4 −σ σ −σ σ −σ σ−σ σ
= − − + . 
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