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Introduction Let My (Z) the ring of all square matrices of order 2 with coefficients in the ring Z. Recall that
GLs (Z) denotes the unit group of Ms (Z) and has the following caracterization:

GLy (Z) = {M € My (Z)|det(M) = +1}
We will make use of C' := (§ %) € GLy (Z). Let’s consider now
SLy(Z) = {M € My (Z)|det(M) = +1}

) and B := (19) two elements of SLy (Z). It is well known

which is a subgroup of GL, (Z); we define A := ({1
2 (Z); and from now on, we will use the following notation:

(for instance, see [1]) that A and B generates SL
(4,B) = SL, (Z)

Other pairs of generators can be considered; one can often find in the literature:

S:=B'AB'=(%§) and T:=B

Let M = (‘CI Z) € GLy (Z) and suppose d # 0 (the case d = 0 is elementary and will be treated separately). The
aim of this article is to demonstrate, using a funny induction, the following formula:

( J 1—det(M) p
M= (AB'A)"" L s )A(H ") B )(CAQ)iA(—l)Jsgn(d)(pjflc—qma)B—lA (1)
Here, [n1;n9,...,n;] represents the simple finite continued fraction associated to the rational & 7> where n; € Z
and n; € N*, Vz € [2,5]. Since [ni;1] = [n1 +1] and [ni;n9,...,nj,1] = [ni3ng,...,n; —|—1] every rational

number can be represented in two different ways and we will show that formula is independant of this choice of

representation. The terms p;_; and ¢;_1 come from the reduced fraction f " = [n1;n2,...,n,j_1] with the initial
condition (po, go) := (1,0). By definition of [n1;ns,...,n,], one has:
i _ b d—q;b=0 2
=g = pidogb= (2)
a;

Also, L%J denotes the integer part of J so that (—1 )L%J = 41, depending on the residue of j modulo 4. If we note
I:=(}9), then we verify by direct calculation that (AB_lA)2 = —I; therefore:

0

(ap-tayi= O e { ((ABlA) (3)

AB1A)? = -1 if (-1)

—(— Lqu n
As (AB’lA)1 (D)2 een(d) _ +7, this matrix commutes with any element of GL2 (Z) and we chose to write it

as a factor of the right member of formula . The basic theory of continued fractions also ensures that ¢, > 0,

VEk € [1, j] and so there is no ambiguity regarding the sign of p,;_; in case the ratio ?—:i is negative. Note that
1—det (M)

det (M) = +1 < M € SLy(Z), then (CA%) 2 = (CA2)O = I which means, as expected, that C' (which

doesn’t belong to SLy (Z)) vanishes from formula and we retrieve an expression of M as a word in (A, B).

An explicit example



1) Let M := (% _1171); we verify that det (M) =1 so that M € SLy (Z). We develop here what we call the first
represention of g — 2 which is [-2;2,5]. Explicitely,

17 1
T -2+ —7 = j:=3and (n1,n9,n3) =(-2,2,5)
9.4 =
+ 5
Then, (—1) L%Jsgn(d) (— 1)L%Jsgn(—11) = (=1)}(—1) = +1. The reduced fraction Z;:i 2 is then [-2;2] =
—2+ 3 = —3. As stated in the introduction, g, is necessarily a positive integer; thus (p2,q2) = (—3,2). Then

1 det (M)

bj = by = (—1)3sgn(—11) (=3 - 42 — 2 - (=65)) = 4. Also, det(M ):1 — M) _ g — (CA%) T =
(CcA? )0 = I. That’s it; we have everything to apply formula

M=I- A(A‘(2‘"1)B) (A=) B) (A—<2—”3>B)I -A»BT'A

= A(A"=D)B)(A~FB) (A~ B)A'B A
= ABA*BA®BA*B'A (4)
2) Let’s consider the same matrix M := (75 '{) but this time, let’s use the second representation of & =

—17 which is [-2;2,4,1] = (ni,n2,n3,n4) = (—2,2,4,1). This time, j := 4 and thus (—1)L%Jsgn(d) =

(— )L Jsgn(—ll) = (=1)%(=1) = —1. The reduced fraction zj—’l = Z—z is then [—2;2,4] = 72+2+% = f% ==
= T

(Pj-1,05-1) = (P3,q3) = (—14,9). Then, bj = by = (~1)*sgn (~11) ((~14)42 — 9(—65)) = 3. Then,

M = (AB7'4)* A(A- (=) B) (A4~ (3+m2) B) (A~ () B) (A~ (+m) B) AbiB~1 A

= (AB71A)? A(A~CCD)B) (A2 B) (A~ -9 B) (A~ B) A*B 1 A (5)
= AB'A’B 'A’A"*BA *BA’BA*BA*B~'A
= AB 'A’B 'A?2BA™*BA’BA*BA’B™'A (6)

Comparing and (B), we get two different expressions of M in (A, B) and formula works well in both
representations.

Some basic lemmas We list here all the requiered results used in the demonstration of formula .

Lemma 0.1 (Powers of A and B). For alln € Z,

o) e

Proof. Suppose n > 0. Forn = 0 or n = 1, are both verified. Suppose true for n > 1; one gets

(A= @FHGn) =" ) =47 (1) = A-A" = A" A = A", Regarding B, we have B - B" =
GHEYH=>04LY)=B""=B"-B. NowletscomputetheinverseofA" AN =) = () =A

n 1

and we get something similar for B: B™" = ( n 1) which proves (7)), Vn € Z.
Let’s now treat the case d := 0 separately.
Lemma 0.2 (The case d := 0). Let My :=(2%) € GLy(Z), then My € (A, B,C)
Proof. My = (2%) = det (My) = —bc = £1. Thus, there are four possibilities:
(b,¢) € {(1,1), (=1, =1), (1, =1), (=1, 1)}
(i) (b,c):=(1,1) = My=(9¢) = Mo € GL3(Z)\ SL3 (Z) as det (My) = —1. We check that, Va € Z:

OB 'AB* ' = (9})€ (A B,C) (8)

(it) (bc) == (-1,-1) = My = (%4 73") = Moy € GLy(Z)\ SLy(Z) as det (M) = —1. Note that
My =—(7"¢)- Using —I = (AB~*A)? as mentioned in the introduction and point (i), we get:

My =AB 'A’B 'ACB'AB “"' ¢ (A, B,C) (9)



(iii) (b,c)=(1,-1) = Mo = (% §) = det(My) =+1 = My € SLy(Z). We check that, Va € Z:
My=A""B 1A e (A B)C (A B,OC) (10)

(iv) (bye) =(-1,1) = My=({7') = det(My) =+1 = My € SLy(Z). We check that, Va € Z:
My=BA'B*™*¢c (A,B) C(A,B,C) (11)

Conclusion: as per equations (8), (9), and (11)), My € (A, B,C). On top of that, equations and show
that My € SLy (Z) = M, € (A, B), as expected. |

Lemma 0.3 (Some basic results on simple continued fractions). Let [n1;ns,...,n;] a simple and finite continued
fraction:

Pj 1

=L = [ny;na,...,njl =n1 +

% no + !

2 1
ns +
ng +
1
nj_l + %

The convergents are the rational numbers defined by % = [n1;na,...,n, Vi € [1, j] with the convention (po, qo) :=

(1,0). Let’s prove the following points:
(i) Vi € [2, j], we have p; = nip;—1 + pi—2 and q¢; = n;qi—1 + Gi—2

(i) pigi—1 — pi—1¢; = (—1)%, Vi € [1, j]
(#i7) The convergents % := [n1;na,...,n;] are such that p; and ¢; are coprime numbers, Vi € [1, j].
(tv) With qo := 0, one has ¢1 :==1< g2 and g2 < g3 < ...g;. In particular, g; > 0, Vi € [0, j].

(v) B~ = S0 vie [2, ]

qi qi—1 qiqi—1
Proof. (i) Aspo=1,¢ =1 and % = [n1] = F = n1, we have p; := ny. Then, napy + po = nang + 1. On the
other side, 22 = [n1;n2] = n1 + ;& = ™82 — (py,q2) = (mina + 1,n9) and this shows that (i) is valid

for ¢ := 2. Suppose that (7) is valid for ¢ > 2; we have:

Di 1
= = [n1,n2,...,ni—1, ] =y +
qi L N
’ 1
n3 +
g+
’ 1
”i—1+n%
And we see directly that [nl;n% sy M1 TH = [n1;n2,...,n;—1,n;]. Then,
Di
qi- = g, i) = [n1§n2,...,ni_1 + ni]
1
Pi—1 (n17n27 N 17| + ’n%)
qi—1 (nlvn27 [ (7| —+ ’n%)

B (m_1 + %) Di—2 + Pi-3
B (m—l + n%) Qi—2 + ;-3
B (ni—1pi—2 +pi-3) + n%,pi—z
 (ni1Gi—2 + qi-3) + n%qz‘—Q

(by inductive hypothesis)

_ Pi1t n%.pi—2
g ,L%Qifz
NP1+ Ppi2
C nigio1 + G2

(by inductive hypothesis)



(i1) For i := 1, (ii) is verified, as p1go —poq1 = n1-0—1-1 = —1 = (—1)'. Suppose (ii) is true for i > 1; one gets:

Pit1i — PiGiv1 = (Mig1pi +Pi—1) ¢ — Pi (Nig1Gi + gi—1) (using (1))
= Ni41PiGi + Pi-1Gi — Nit1¢iPi — PiGi—1 = — (PiGi—1 — Pi—14:)
= —(-1) (by inductive hypothesis)
= (-1

(i73) Both recurrence relations of point (i) show that n; € Z = (p;,q;) € Z2, Vi € [1, j]. Let’s write point
(i) as pi ((—1)'qi—1) + ¢; ((=1)*"'pi—1) = 1, Vi € [1, j] which is a Bézout relation. Therefore, p; and ¢; are
coprime numbers, Vi € [1, j].

(iv) Using the recurrence relation ¢; = n1q;—1 + gi—2, Vi € [2, j] from point (¢) with (go,q1) = (0,1), we show,
by induction, that ¢; > 1, Vi € [1, j]. Recall that ny € Z and n; € N*, Vi € [2, j]. For i := 2, we get
g2 = n2q1 +qo =n2-1+0 =ng > 1. Suppose that ¢; > 1 for i > 2, hence ¢;+1 = n;11¢; + g;—1; by induction
hypothesis, ¢;—1 > 1, g; > 1 and n;41 € N*. Therefore, n;11q; + ¢;—1 > 1; i.e, ¢;+1 > 1 and this shows that
gi > 1, Vi € [1, j]. Moreover, n;q;—1+qi—2 > gi—1+¢i—2 when ¢ > 2. Using point (i), we get ¢; > ¢i—1+¢i—2,
Vi € [2, j]. As g;—2 > 1 whenever ¢ > 3, we get finally ¢; > ¢;—1 + gi—2 > gi—1, Vi € [3, j].

(v) Point (iv) showed, in particular, that ¢; # 0, Vi € [1, j]. Hence, ¢;q;—1 # 0, Vi € [2, j]. It’s then possible to
divide point (i¢) relation by ¢;q;—1.
|

We will also make use of the following elementary result:

Lemma 0.4.
=

) = ol vken

Proof. Recall that Vo € R and Vn € Z, one has |z +n] = |z] +n. Let (k,k') € N? such k = 4k, then
|4] = L%’“/J =2 = (fl)L%J = (—1)?*" = +1. Suppose now (k,k’') € N2 such k = 4k’ + 1; then |&] =
(450 = |2 + 4] =2k + [4] =28 — (~1)1E) = (-1)? = +1. Suppose now (k, k") € N? such k = 4k’ +2;
then | %] = {#J =2 +1]=2+1 = (-1) 5] = (—=1)%'+1 = _1. Finally, suppose (k, k') € N2 such
ko= 4K +3; then [5| = |4543] = {L ZZ)HJ — 214l =1+ L] =21 = (—pls) =
(—=1)2¥+1 = —1. Hence we showed that, Vk € N:

(—1ls) =

{ 1 ifk=0orl mod4 (12)

@J_{ 1 ifk=0or3 mod4
—1 ifk=2o0r3 mod4 -

= (-5 1 ifk=1or2 mod4
Of course, Vk € N, we have:

(_1)k:{ 1 ifk=0o0r2 mod4

—1 ifk=2o0r3 mod4

That means (—l)k(—l)Lﬂ equals +1 when ((—1)L%J , (—1)"’) = (1,1) or (=1, —1) and this is the case if and only
if k=0 or 3 mod 4 and this is exactly what shows equation (12). |

The main result Let M := (¢%) € GL; (Z) with d # 0. Let’s define, Vk € [1, j],

{ ap(b,d) = (—1)L2] (akb — prd + (=1)* (qe_1b — pr_1d)) (13)
k

(b d) = (-1 5] (prd — i)

where, B& := [ny;na,...,nk], Yk € [1, j] are the convergents of the continued fraction g = [n1;ng,...,n;]. Let’s

also define:

ag(b,d) ag(b—a,d—c)

. A1 -1 o
Py:=A'MA™'B  and = Py := <7k(b7d) b —ad— o)

) V> 1 (14)

Then,
(1) Px € GL2(Z), Vk € [0, j]

1—det(M)

(it) P; = (—1)L%Jsgn(d) (CA%)" 2 AY; where b; := (—1)7sgn(d) (pj—1c — gj—1a)



(iid)

Proof.

(i)

P, = B 1A (V'p, | Ve [1, 4]

(i) For k := 0, it is clear, from its definition (GLs (Z) is a group), that Py € GLs (Z). Suppose k > 0;
from their definitions , we see that the coefficients of Py are integers. Therefore, the only thing we have
to check is det (Py) = £1, Vk € [1, j]. Let’s do it:
w(b—a,d—c)— (b, d)ar(b —a,d —¢)
5] (g — prd + (=) (gr-1b — pr1)) (pr(d — ©) — qi(b — a))
< 1215 (prd — qud) (@66 — @) = pr(d = ©) + (=1)" (gx-1(b— @) = pr_1(d — €)))
= quprb(d — ¢) — @2b(b — a) — pid(d — ¢) + prqed(b — a) + (=1)*prgr_1b(d — ¢)

— (=¥ qeqr—1b(b — a) — (=1)*prpr_1d(d — ¢) + (=1)"pr_1q1d(b — a) — prqrd(b — a) + ppd(d — c)
1)*prqr—1d(b — a) + (—1)*prpr—1d(d — ) + qib(b — a) — qrprb(d — ) + (—=1)* qrqe_1b(b — a)

det (Pk —ak(b d)
k
2

- (=
= (=1 qrpr-1b(d — )
= (=1)"b(d — ¢) (prar—1 — Gepr—1) — (=1)*d(b — @) (Peg—1 — Pr—1ax)
= (=1)" (prgr—1 — qrpr—1) (ad — be)
= (—1)*(—1)"det (M) (using lemma (0.3), point (i7))
=det (M)

=+1 (as M € GLy (Z))
Using (2)), we get directly v;(b,d) = 0 and this makes P; upper triangular. We have:

aj(b,d) = (=)L) (g0 —pyd + (=1 (@520 —p1)
= (-1) 4] (—1) (gj—1b —pj_1d) (using equation )
= (—1)L%J( 1)/ (qj 1 (dzj) Dj— 1d> (using equation again)

= (DI 1 Gygys — i)
_ (—1)l4] <_1)J'(_1)jg (using lemma (33), point (i1))
_ (i@
(-1 o (15)

From point (i), we know that P; € GLy (Z). Therefore, a;(b,d) € Z with d € Z* and this means that g;
divides d (let’s note this ¢; | d). Also,

(b= a.d =) =(~)LE) (p;(d ) = g0 — ) = (~1)L5] (pjd —pje — ;b +gj0)
=(-1) 4] (gja — pjc) (using equation (2))
:(fl)L%J (qja — (%b) c) (using equation again)
=D& (ad —be)
=(-nl L aer(ar) (16)

Using the same argument as for (15), we get d | ¢;. So, as ¢; > 0 (that is lemma (0.3), point (iv)), we have
(¢j | dand d | q;) = d=sgn(d ) . We have found:

ay(b,d) = (~1)1#)sgn(a) (17)

And, v
~vi(b—a,d—c) = (1)L 3] sgn(d)det (M) (18)



Finally,
aj (b—a,d—c) = (~1)13) (q;(b— a) = p;(d = &) + (~1) (gj-1(b — @) — pj—1(d — ¢)))
— —y(b—a,d—c)+ (1 >H< 1)? (gj—1(b— a) — pj—1(d — ¢))

=—7i(b—a,d—c)+ J(q ( %)—qg 1a—pj_1d+pj- 10) (using eq. (2))
l

==y —a,d—c)+ (-] J( (Pigj—1 — ijj—1)+pjflc—qj—1a)

=—~j(b—a,d—c)+ ) ( Y +pjic— qula) (using lemma (0.3)), point (7))

= b—ad—c)+(— 1>L%J§j+(—1ﬂﬂ<—1) (pj-1c — j10)

— —y(b—a,d—c)+ (=) Fsgn(@) + (—1)L 2] (1) ()_1c— q;_1a)  (using eq. (D5) and ([D)
— — (-1 sgn(d)det(M) + (1) [Esgn(@) + (1)) (=1)7 (p;_1c — gj-1a)  (using eq. (TB))

=(-1) 3] sgn(d) (1 — det(M) + (—1)?sgn(d) (pj_1¢c — qula)> (as (sgn(d))® = sgn(d)) (19)
Putting equations , and together, we found:
Pj = (—I)L%Jsgn(d) ((1) 1= det(M) + (_Bés(g]\][}(?) (pj-1e = qula)) (20)

Let’s write b; := (—1)7sgn(d) (pj_1c — gj—1a), we get:
(1) M € SLy(Z) = det (M) = 1; then, using lemma (0.1)), equation becomes:

P = () s (3 %) = (-1l sen(a) 4 (21)

(2) M € GLy (Z)\SLy (Z) = det (M) = —1; note that, Vn € Z, CA™ = (§ %) (§7) = (§ ™). Therefore,
equation becomes:

P = (-3 sgn(a) (é lebj) — (—1)t]sgn(@yc a2+t (22)

If we want to put equations and together, we note that %WM) = 0 when M € SLy(Z) and

124900 = 1 when M € GLy (Z) \ SLy (Z). Therefore,

1—det(M)

Py =(—1)Ltlsgn(a) (ca?) = At

i |_iJ 0 1—det(M)
= (AB*1A)1 ("3 sgn(d) (CA2) T oAb (using equation (3)) (23)
(#i7) Recall equation ; we have, by definition, Py = A"'M A~!B. By direct calculation, we get:
(b—d b+c—(a+d))
Py = ( d d—ec (24)

By induction on k > 1, we will show that P, = B-1A2F(=D"np vk e [1, j].
e Let k :=1; on one side, we have:
1424 (=D p [ 1 0)(1 2—n1)(b—d c—l—b—a—d)_(l 2—n1)(b—d c—i—b—a—d)
B4 PO_(A )\ 1 d d—c -1 om—1 d d—c
_(b+d—dn1 —c+d+b—a+(c—d)n1>

—b+dnq —b+a+ (d—c)n (25)

On the other side,
ar B
b= (71 51)
(—1)L4) ((qlb —pid+ (=)' (gob — pod))  (q1(b—a) — p1(d —c) + (=1)* (qo(b — @) — po(d — c))))

(p1d — q1b) (p1(d—c) —qi(b—a))

(b—nid+d b—a—ni(d—c)+(d—c) . Po Py _ (1m
_( nid—>b ni(d—c)—(b—a) > (using (55 6) = (o7)) (26)

The initialisation of the induction is valid as equations and are the same.



e Suppose that Py = B~1A2+(=D* 1 P, is true for k& > 1; we will show that it remains true for k + 1:

( 1)k+1nk+1) P,

12— )R g _ ( 1 O) (1 24+ (—
bA P={_1 1)\o 1
(1 0\/1 2+(71)k+1nk+1) (ak(b, d) ak(b—a,d—c)> . .
= (71 1) (0 1 velb.d) lb—a.d—c) (by inductive hyp.)
_ ( 1 24 (-1 ng ) (ak(b, d) ak(b—a,d—c)) . (s t)
T\l 14+ (D) \w(b,d) k(b—a,d—c)) T \u w

. ap41(b,d) ag b—a,d—c
We will show that (;£) = (2515 21 (=097 ):

s=1-ox(b,d) + (24 (=1 nxsr ) (b, d)
= (DL (b = prd + (=D (geo1b = proad) + (24 (=1 F e ) (prd — gib))
= (-pls! (ka — pred + (=1)*qe—1b — (—=1)*pr_1d + 2prd — 2qxb + (—=1)" ' ngpaprd — (—1)k+1nk+1qzcb>
= (~DLE) (prd = aub + (=) d (marapn + 1) = (<1 b (agran + ar1))
= (-DLE) (prd = qub + (~1)"* (dpiss — bgis1))  (using lemma ([0.3), point ()
= (DL DR (—1)* (prd — qib) + (barss — dprs))
= (DU (uab = prsad = (<" (@b~ prd))  (using lemma @)
= (-l (qze+1b — pesrd + (=) (qib *Pkd)>
= o 41(b, d)

From this, we get directly:

t=1-apb—a,d—c)+ (2+ (fl)lﬁlnk_i_l) Ye(b—a,d — ¢)
= agt1(b—a,d—c)

Then,
uw=(-1) ag(b,d) + (—1 + (—1)k+2nk+1) i (b, d)
= (*UL%J (—aqrb+ prd + (=) (go—1b — pr—1d) + (=1 + (=1)"2npi1) (ped — qid))
= (-1l4] (prd — qeb + (=) (quo1b — pr—1d) — prd + qeb — (=1)*  nggaped + (= 1) gebrp i)
= () D)R (0 (sran + ge1) = d (niyapr + pr))
= (—1)L%J (dprs1 — bgri1) (using lemma (0.3), point (i) and lemma (0.4))
= Y+1(b, d)

Finally, using above calculation for u:
0= (~D)arb - a,d =) + (—1 + (1) 1) (b — a,d — o)
= ’}/k-‘rl(b - a‘ad - C)
We just showed:

P = (B71A2+(71)jn]») (B71A2+(71)j*1nj_1) . (371A2+(71)1n1) Py

J
(T Bazcw )
k=1

Using equation and the definition of Py, we get:

i 1—det(M ‘7 .
)““”szsg“(d’ (CA?)~F 4v = (TI B a0 ) atatp (27)

k=1

(AB™'A

Solving this for M, we obtain formula . Note that we made, in above development, no assumptions on the
continued fraction’s length j; this shows that formula is independant of the chosen representation of the
continued fraction associated to the rational %. |



As another example, we can retrieve the fact that A™ = (} 1), Vn € Z from lemma (00.1)) simply by applying formula
to the matrix (§ 7). Here, j := 1 as 2 = [n] and by = (—1)'sgn(1) (po- 0 — qo - 1) = 0 (recall that gy := 0).
Thus,

ol
(1 ") = (AB~1A) V) g gmom AR A = 4424 = AT (28)
0 1 SR

=] =
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