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Abstract Dirac erroneously tried to impose space-time symmetry on the time-skewed Schrödinger equation, which
is the time component of a Lorentz-covariant four-vector system of equations—that system’s three space-component
equations specify the quantum three-momentum operator in coordinate representation. Dirac’s misconception re-
sulted in a noninteracting-particle Hamiltonian that isn’t the time component of a Lorentz-covariant four-momentum
times c, and which causes the noninteracting particle to spontaneously undergo immense acceleration of the order
of c squared divided by the particle’s Compton wavelength, and to also have a fixed unphysical speed which is c
times the square root of three. Dirac’s Hamiltonian has a physically untenable unbounded-below set of negative
energy eigenvalues, which have been airily “reinterpreted” as (very questionably) implying propagation backward in
time. Dirac’s misconceived Hamiltonian is in any case irrelevant since a noninteracting particle’s Lorentz-covariant
four-velocity times its mass m times c has a time component which is a superbly-behaved Hamiltonian with a
simple space-time propagator for quantum wave functions. Via a Lorentz-invariant action integral, Lorentz long
ago extended this noninteracting-particle Hamiltonian to describe the particle’s interaction with an electromagnetic
four-potential. Here we modify Lorentz’s Lorentz-invariant action integral to accommodate the spin-1/2 particle
by adding the Lorentz-invariant extrapolation of the nonrelativistic spin-1/2 particle’s magnetic-moment potential
energy in a magnetic field. We also point out the important fact that when particles can be produced, perturbation
contributions become increasingly invalid with increasingly high virtual momentum values, which must be cut off.

1. The misconception about Lorentz covariance which produced the Dirac equation

Lorentz transformations of the coordinate-space vector r and time t leave the locus |r|2 − (ct)2 = 0 of
the expanding spherical-shell light-wave front invariant; indeed they leave the quadratic form (ct)2 − |r|2
invariant regardless of what its value is, somewhat as spatial rotations leave invariant the quadratic form |r|2
regardless of its value. This fundamental characteristic of Lorentz transformations spawned the notion that

the time entity x0
def
= ct is entirely equivalent for purposes of physics to the components of the space vector r;

however the minus sign which occurs in the Lorentz-invariant quadratic form (x0)2 − |r|2 indicates that this
can’t be entirely true, even notwithstanding the fact that Lorentz transformations intermingle x0 with the
components of r. Indeed, for any two space-time events there always exists some inertial frame of reference
in which they occur at the same space point sequentially in time, or else in which they occur at different
space points simultaneously, or else an expanding spherical-shell light-wave front that originates in one of
the events intersects the other. Just as mistaken as concluding that special relativity puts x0 on exactly the
same physical footing as the components of r is subscribing to the half-truth that special relativity requires
every relation of physical significance to exhibit space-time symmetry. However no single one of the four
Laws of electromagnetism (i.e., no single one of the four Maxwell equations) is space-time symmetric by
itself; those equations must be organized into one of two particular equation pairs or else converted to second
order in time and space derivatives before space-time symmetry emerges. But that surely doesn’t imply that
Coulomb’s Law by itself has no physical significance, or that Gauss’ Law is bereft of physical significance
until it is paired with Faraday’s Law.

Returning now to firmer ground, it is fairly straightforward to use the Lorentz-covariant four vec-
tor (x0, r) and its closely-related Lorentz-invariant entity (x0)2 − |r|2 to construct many other physically-
interesting Lorentz-invariant and Lorentz-covariant entities. One of these is obviously the Lorentz-invariant
differential quadratic form (dx0)2−|dr|2 = (c dt)2−|dr|2. Another is its Lorentz-invariant square root divided
by c (c is a constant that is obviously Lorentz invariant itself). The latter is called the Lorentz-invariant
differential time dτ because,(√

(c dt)2 − |dr|2
)
/c =

√
(dt)2 − |dr/c|2 = dt

√
1− |(dr/dt)/c|2 = dt

√
1− |ṙ/c|2 = dτ . (1.1)

The Lorentz-invariant differential time dτ is also called proper differential time because it is the shorter
differential time interval that is observed to be recorded by a clock traveling at velocity ṙ when the observer’s
own clock, which is at rest next to him, is observed to record the longer differential time interval dt—this
observed slowing of clock mechanisms which are in motion with respect to the observer is of course called
special-relativistic time dilation.

Since differential proper time dτ is Lorentz invariant, the entity,

(dx0/dτ, dr/dτ) = (c(dt/dt), dr/dt)/
√

1− |(ṙ/c|2 = (c, ṙ)/
√

1− |ṙ/c|2, (1.2a)
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Lorentz transforms exactly the same way as the space-time four-vector (x0, r) Lorentz transforms; we call
such entities Lorentz-covariant four-vectors. We in particular refer to the Lorentz-covariant four-vector
(dx0/dτ, dr/dτ) = (c, ṙ)/

√
1− |ṙ/c|2 as the proper-velocity four-vector, and note that its Lorentz-invariant

inner product with itself, namely (dx0/dτ)2 − |dr/dτ |2, which is equal to (c2 − |ṙ|2)/(1 − |ṙ/c|2), has the
constant value c2.

If we multiply a noninteracting particle’s Lorentz-covariant proper-velocity four-vector (dx0/dτ, dr/dτ)
by its Lorentz-invariant constant rest mass m, the result is the noninteracting particle’s Lorentz-covariant
relativistic-momentum four-vector (p0, p),

(p0, p)
def
= (mdx0/dτ, mdr/dτ) = (mc, mṙ)/

√
1− |ṙ/c|2, (1.2b)

whose Lorentz-invariant inner product with itself, (p0)2−|p|2, is of course equal to the constant value (mc)2.
That result implies that p0 =

√
(mc)2 + |p|2, which permits the noninteracting particle’s Lorentz-covariant

relativistic four-momentum (p0, p) to be expressed as,

(p0, p) = (
√

(mc)2 + |p|2, p) = (mc
√

1 + |p/(mc)|2, p). (1.2c)

The entity E = cp0 = mc2
√

1 + |p/(mc)|2 has the dimension of energy, and in the nonrelativistic limit
where |p/m| � c, which implies that |p/(mc)|2 � 1, E has the following approximation,

E = mc2 + (|p|2/(2m))(1 +O(|p/(mc)|2)), (1.2d)

which is the relativistic energy mc2 of the noninteracting particle’s rest mass m plus the noninteracting par-
ticle’s nonrelativistic kinetic energy and Hamiltonian (|p|2/(2m)) together with that nonrelativistic entity’s
relativistic corrections; those corrections vanish in the c→∞ nonrelativistic limit.

Since E = cp0 = mc2
√

1 + |p/(mc)|2 becomes a noninteracting particle’s Hamiltonian plus the constant
mc2 in the nonrelativistic limit c → ∞, and since E is the “time component” of a Lorentz-covariant four-
vector, namely of (E, cp) = (mc2

√
1 + |p/(mc)|2, cp) = (cp0, cp) = (mc(dx0/dτ), mc(dr/dτ)), E =

mc2
√

1 + |p/(mc)|2 consequently is a noninteracting particle’s relativistic Hamiltonian H(p).

Since this relativistic Hamiltonian H(p) = mc2
√

1 + |p/(mc)|2 for a noninteracting particle is the
“time component” of a Lorentz-covariant four-vector, it is obviously entirely skewed toward time. In fact, a
properly relativistic Hamiltonian is always the “time component” of a Lorentz-covariant four-vector whose
“space components” are cp, so a properly relativistic Hamiltonian is always entirely skewed toward time.

Since the Hamiltonian H(p) = mc2
√

1 + |p/(mc)|2 is entirely skewed toward time, and partial differ-
entiation with respect to time t is as well entirely skewed toward time, the Schrödinger equation,

ih̄(∂ψ(r, t)/∂t) = H(p)ψ(r, t), (1.2e)

is unobjectionable from the standpoint of special relativity. It isn’t clear, however, how the right side of this
Schrödinger equation, namely H(p)ψ(r, t) should be interpreted, but the fact that the Hamiltonian H(p) is
the “time component” of the Lorentz-covariant four-vector (H(p), cp) turns out to be helpful in that regard.
The reason this is so is that the partial derivative with respect to time (∂/∂t) is also the “time component”
of a Lorentz-covariant four-vector of partial derivatives, which in detail comes out to be ((∂/∂t),−c∇r). By
using the two Lorentz-covariant four-vector entities ((∂/∂t),−c∇r) and (H(p), cp), we can write down the
Lorentz-covariant four-vector version of the Eq. (1.2e) time-skewed Schrödinger equation,

ih̄((∂/∂t),−c∇r)ψ(r, t) = (H(p), cp)ψ(r, t). (1.2f)

Separation of this Lorentz-covariant four-vector Schrödinger equation into its entirely time-skewed time-
component equation and its entirely space-skewed three-vector of space-component equations produces,

ih̄(∂ψ(r, t)/∂t) = H(p)ψ(r, t) and −ih̄∇rψ(r, t) = pψ(r, t). (1.2g)

The Eq. (1.2g) entirely space-skewed three-vector equation, pψ(r, t) = −ih̄∇rψ(r, t), directly tells us how
pψ(r, t) is interpreted. That interpretation of the effect of the operator p on functions of r makes it
straightforward to verify the familiar fundamental quantum-mechanics operator commutation relation,

[(r)i, (p)j ] = ih̄δij . (1.2h)
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It is fascinating that the Eq. (1.2f) Lorentz-covariant four-vector version of the Schrödinger equation also
implies the Eq. (1.2h) fundamental quantum-mechanics operator commutation relation. This intimate inter-
twining of quantum mechanics with relativity is far too seldom pointed out.

The Eq. (1.2f) Lorentz-covariant four-vector version of the Schrödinger equation is clearly space-time
symmetric, but paradoxically its usefulness in quantum mechanics resides in its entirely time-skewed equation
ih̄(∂ψ(r, t)/∂t) = Hψ(r, t) and in its entirely space-skewed equation pψ(r, t) = −ih̄∇rψ(r, t).

Dirac unfortunately had never laid eyes on the space-time symmetric Eq. (1.2f) Lorentz-covariant four-
vector version of the Schrödinger equation, and furthermore was so imbued with the half-truth that in
special relativity every relation of physical significance must exhibit space-time symmetry that he was al-
together unable to deal appropriately with the noninteracting particle’s relativistic Hamiltonian H(p) =
mc2

√
1 + |p/(mc)|2, which, as the time component of the Lorentz-covariant four-vector (H(p), cp), is en-

tirely time-skewed, exactly as the Schrödinger equation it enters into is entirely time-skewed.
Dirac set about modifying H(p) in order to force physically-inappropriate space-time symmetry on the

entirely time-skewed Schrödinger equation it enters into. Noting that H(p) = cp0, and that cp0 is linear in
p0, Dirac declared that space-time symmetry requires that H(p) be superseded by an entity HD(p) which
is correspondingly linear in p. But in order to attempt to preserve in HD(p) the physical facts which
H(p) expresses, Dirac further declared that (HD(p))2 must be equal to (H(p))2. To facilitate achieving
(HD(p))2 = (H(p))2, Dirac proposed for HD(p) the following form, which is inhomogeneously linear in p,

HD(p) = mc2β + cp · ~α, (1.3a)

where β and ~α are dimensionless. The upshot of requiring that (HD(p))2 = (H(p))2 is that β2 = (α1)2 =
(α2)2 = (α3)2 = 1, and that β anticommutes with α1, α2 and α3, α1 anticommutes with α2 and α3, and α2

anticommutes with α3. Realization of this algebra, which is very similar to the Pauli algebra for the three
Hermitian matrices σ1, σ2 and σ3, requires Hermitian matrices for β, α1, α2 and α3 (the Dirac Hamiltonian
HD(p) must of course be Hermitian) whose dimension is at least 4×4; hence Dirac’s 4-spinor wave functions.

The linearity in p of the Dirac Hamiltonian HD(p), which Dirac insisted on, causes (HD(p), cp) to
fail to be Lorentz-covariant, and relatedly renders HD(p) utterly incapable of conforming to the physically-
correct energy-momentum relation HD(p) ≈ mc2+(|p|2/(2m)) of the nonrelativistic regime when |p/m| � c
because the nonrelativistic energy mc2 + (|p|2/(2m)) has no term whatsoever which is linear in p!

The failure of (HD(p), cp) to be Lorentz-covariant is devastatingly reflected by the Dirac particle’s speed
operator |ṙ|. To obtain its velocity operator ṙ we apply the two quantum commutation relations,

ṙ = (−i/h̄)[r, HD(p)] = (−i/h̄)[r, mc2β + cp · ~α] and [(r)i, (p)j ] = ih̄δij , (1.3b)

which yield ṙ = c~α. Therefore the Dirac particle’s speed operator |ṙ| is,

|ṙ| = c|~α| = c
√

(~α · ~α) = c
√

(α1)2 + (α2)2 + (α3)2 = c
√

3, (1.3c)

which always grossly violates special relativity’s speed limit |ṙ| < c for a particle of nonzero mass m.
Furthermore, the Dirac velocity operator ṙ = c~α doesn’t commute with the Dirac Hamiltonian HD(p) =

mc2β+cp·~α because, inter alia, every component of ~α anticommutes with β. Consequently, the noninteracting
Dirac particle undergoes acceleration whose order of magnitude is (mc3/h̄), which whenm is the electron mass
(mc2 = 0.511 MeV), is around 1028g, where g = 9.8m/s, the acceleration of gravity at the Earth’s surface.
This stupendous acceleration of the noninteracting Dirac particle of 1028g is yet another staggering defect of
Dirac’s Hamiltonian. Further study of the time behavior of the Dirac particle’s coordinate vector r under the
influence of the ostensibly noninteracting Dirac Hamiltonian HD(p) shows this immense acceleration to be
an aspect of a spontaneous violent oscillatory zitterbewegung motion of the Dirac particle. The speed of that
oscillatory motion is around the speed of light c, which is no doubt why the Dirac particle’s speed operator
|ṙ| has the fixed unphysical value c

√
3. Such spontaneous violent oscillatory motion on the part of the

noninteracting Dirac particle shows that Dirac erred in insisting that special relativity requires all physically
significant relations to exhibit space-time symmetry, in pursuit of which he created a noninteracting-particle
Hamiltonian HD(p) which is linear in p, heedless of the two related facts that a Hamiltonian which is linear
in p violates the nonrelativistic regime, and that (HD(p), cp) fails to be Lorentz-covariant.

Contrariwise, for the noninteracting-particle Hamiltonian H(p) = mc2
√

1 + |p/(mc)|2, (H(p), cp) is
Lorentz-covariant. Here the particle’s velocity operator ṙ also follows via the commutator of r with H(p),
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ṙ = (−i/h̄)
[
r, mc2

√
1 + |p/(mc)|2

]
= mc2∇p

(√
1 + |p/(mc)|2

)
= (p/m)

/√
1 + |p/(mc)|2, (1.4a)

where we have used the fact that in momentum representation r = ih̄∇p; the fundamental commutation
relation [(r)i, (p)j ] = ih̄δij implies that in coordinate representation p = −ih̄∇r and in momentum repre-
sentation r = ih̄∇p. We see from the Eq. (1.4a) result for ṙ that,

|ṙ| = c
(
|p/(mc)|

/√
1 + |p/(mc)|2

)
< c. (1.4b)

That |ṙ| < c is precisely what is expected of the speed |ṙ| of a properly relativistic particle which has nonzero
mass. This relativistically sensible result stands in immense contrast to the grossly relativity-violating result
|ṙ| = c

√
3 that follows from the Dirac Hamiltonian HD(p).

We next ask whether the relativistic velocity operator ṙ = (p/m)
/√

1 + |p/(mc)|2 commutes with

the relativistic Hamiltonian operator H(p) = mc2
√

1 + |p/(mc)|2. Since both of these entities contain no
operators aside from functions of the operator p (and are also free of noncommuting matrices), they do indeed
commute with each other, so here the noninteracting particle experiences no acceleration whatsoever, which
of course is precisely what is expected of a noninteracting particle. Again, this physically sensible result for
H(p) stands in immense contrast to the Dirac HD(p) result, which shows the noninteracting particle to
undergo spontaneous violent zitterbewegung oscillations which have stupendous acceleration.

We next consider the eigenvalue spectrum of H(p) and HD(p). Since H(p) = mc2
√

1 + |p/(mc)|2, any
arbitrary momentum eigenfunction (plane wave in coordinate-r representation) whose momentum eigenvalue
is p0 is an eigenfunction of H(p) with the eigenvalue mc2

√
1 + |p0/(mc)|2, which can be any positive energy

value that is greater than or equal to mc2. Therefore the eigenvalue spectrum of H(p) consists of all positive
energy values which are greater than or equal to mc2.

If we apply the noninteracting-particle Dirac Hamiltonian HD(p) = mc2β + cp · ~α to an arbitrary
momentum eigenfunction whose momentum eigenvalue is p0, the result is HD(p0) = mc2β + cp0 · ~α, a
4× 4 Hermitian matrix which has the dimension of energy. Because of the particular properties of the four
4 × 4 matrices β, α1, α2 and α3, multiplying the matrix HD(p0) by itself produces the positive number
((mc2)2 + c2|p0|2), which has the dimension of energy squared, times the 4× 4 identity matrix I,

(HD(p0))2 = ((mc2)2 + c2|p0|2)I. (1.5)

Eq. (1.5) is the characteristic equation of the 4×4 Hermitian matrix HD(p0). The eigenvalues of a Hermitian
matrix are the roots of its characteristic equation. Therefore the eigenvalues of the 4× 4 Hermitian matrix
HD(p0) are mc2

√
1 + |p0/(mc)|2 and −mc2

√
1 + |p0/(mc)|2

Since p0 can be any three-vector of real numbers which have the dimension of momentum, an eigenvalue
of HD(p) can be any positive number with the dimension of energy which is greater than or equal to mc2,
or any negative number with the dimension of energy which is less than or equal to −mc2. Therefore the
eigenvalue spectrum of HD(p) consists of all positive energy values which are greater than or equal to mc2

and all negative energy values which are less than or equal to −mc2
It is now clear that the Hamiltonian H(p) = mc2

√
1 + |p/(mc)|2 describes a single noninteracting

relativistic particle of mass m, but this definitely isn’t the case for the Dirac Hamiltonian HD(p) = mc2β+cp·
~α because a single noninteracting relativistic particle of mass m absolutely must have only energy eigenvalues
which are greater than or equal to mc2.

The “solution” has been to propagate the negative-energy eigenstates of the Dirac equation backward in
time and to interpret those as positive energy antiparticles propagating forward in time. This superficially
may seem to cleverly “cut the Gordian knot”, but it cannot cope with the fact that adding an arbitrary
constant energy to almost any Hamiltonian has no physical consequences, so the sign of a physical state’s
energy can’t be definitively linked to its behavior in the way which is implied. Can we sensibly assert that
the bound states of the hydrogen atom propagate backward in time because they are customarily assigned
negative energy values? Moreover, is there even so much as a gedanken experiment test of whether a
physical system is propagating backward in time? The concept of a physical system propagating backward
in time seems ill-defined, and might horrify a faithful adherent of thermodynamics. In sum, this sophomoric
idea whose very obvious underlying motivation was to “save” the Dirac Hamiltonian and the Klein-Gordon
equation from richly-merited oblivion doesn’t bear scrutiny.
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Moreover, this confection diverts attention from the core issue that the Dirac Hamiltonian flouts special
relativity. If the Dirac Hamiltonian accorded with special relativity, there would be no negative-energy eigen-
states in the first place to propagate backward in time; the completely positive energy-eigenvalue spectrum
of the legitimately relativistic noninteracting-particle Hamiltonian H(p) = mc2

√
1 + |p/(mc)|2 makes that

obvious. The essence of the violation of special relativity by the Dirac Hamiltonian HD(p) is the failure
of (HD(p), cp) to be Lorentz-covariant, and a clear confirmation of that violation of special relativity by
HD(p) is the result that the speed operator |ṙ| of the Dirac particle is c|~α| = c

√
3 > c. Also the linearity in

the particle momentum p of the Dirac Hamiltonian HD(p) = mc2β+cp ·~α renders the crucial nonrelativistic
regime, HD(p) ≈ mc2 + (|p|2/(2m)) when |p/m| � c, of special relativity outright impossible.

Therefore the relativistic physics “issue” of negative energy eigenvalues which are unbounded below is a
bogus one that is entirely rooted in the mistreatment of relativistic physics by the physically misguided Dirac
Hamiltonian and the physically damaged Klein-Gordon equation. Since there is absolutely no “problem” in
legitimate relativistic physics with negative energy eigenvalues which are unbounded below, the supposed
“solution” of that non-problem, namely interpreting negative-energy states as propagating backward in time,
vanishes with that non-problem like a mirage.

One therefore wants to know what theoretical-physics principles and constructs support the existence
of antiparticles and pair production. The global symmetry principle of the charge conjugation invariance of
the second-quantized Hamiltonian certainly enforces the existence of antiparticles. To in addition enforce
the existence of pair production, a second, more detailed global symmetry principle is necessary, namely
the invariance of the second-quantized Hamiltonian under the interchange of particle annihilation operators
and antiparticle creation operators, and likewise the invariance of that Hamiltonian under the interchange of
particle creation operators and antiparticle annihilation operators. Enforcement of the existence of antipar-
ticles and pair production thus moves to the domain of global symmetry principles at the second-quantized
level, where it doubtless should always have been.

The noninteracting particle by itself is of course entirely insufficient to usefully model physics. We next
study the issue of how to add relativistic interactions to the relativistic noninteracting particle.

2. Adding relativistic interactions to the relativistic noninteracting particle

Adding relativistic interactions to the relativistic noninteracting particle is almost certainly more easily done
at the Lagrangian level than it is at the Hamiltonian level. For dynamics to be relativistic the action integral
must be Lorentz invariant, and the Lagrangian is more simply related to the action integral than the Hamil-
tonian is. Given a Lagrangian L(ṙ, r, t) the action integral is simply

∫
L(ṙ, r, t) dt. Now differential time dt

isn’t Lorentz-invariant, but proper differential time dτ = dt
√

1− |ṙ/c|2 of course is Lorentz-invariant. There-

fore, if one should happen to have in hand a Lorentz-invariant entity I(ṙ, r, t), then
(
I(ṙ, r, t)

√
1− |ṙ/c|2

)
is a candidate for a relativistic Lagrangian because it makes the action integral Lorentz-invariant. Also, if
L(ṙ, r, t) is a legitimately relativistic Lagrangian, then it should be the case that

(
L(ṙ, r, t)/

√
1− |ṙ/c|2

)
is

a recognizable Lorentz-invariant.
Let’s see if this last contention can be verified in the case of our noninteracting-particle relativistic

Hamiltonian H(p) = mc2
√

1 + |p/(mc)|2. To pass from this Hamiltonian to the corresponding Lagrangian

L(ṙ), we need the velocity ṙ = ∇pH(p) = (p/m)/
√

1 + |p/(mc)|2, a relation which one can verify implies

that p(ṙ) =
(
mṙ/

√
1− |ṙ/c|2

)
. Therefore, H(p(ṙ)) = mc2

√
1 + |p(ṙ)/(mc)|2 =

(
mc2/

√
1− |ṙ/c|2

)
. Fi-

nally, for passing from the Hamiltonian to the Lagrangian we have the relation L(ṙ) = ṙ · p(ṙ)−H(p(ṙ)) =(
m|ṙ|2 −mc2

)
/
√

1− |ṙ/c|2
)

= −mc2
√

1− |ṙ/c|2. Therefore,
(
L(ṙ)/

√
1− |ṙ/c|2

)
= −mc2, which is indeed

a recognizable Lorentz-invariant.
Therefore to add a relativistic interaction to the noninteracting-particle Lagrangian −mc2

√
1− |ṙ/c|2

we need a Lorentz-invariant entity I(ṙ, r, t) which represents that interaction (to gain physical understanding
of the Lorentz-invariant interaction entity I(ṙ, r, t), one can examine it in the particle rest frame where
ṙ = 0). With I(ṙ, r, t) in hand, the relativistic interacting-particle Lagrangian is L(ṙ, r, t) =

(
−mc2 +

I(ṙ, r, t)
)√

1− |ṙ/c|2. So adding a relativistic interaction to the noninteracting particle at the Lagrangian

level entails adding a relativistic-invariant to (−mc2) and then multiplying the result by
√

1− |ṙ/c|2.
One then still has the burdensome task of passing from that relativistic interacting-particle Lagrangian

L(ṙ, r, t) to the corresponding Hamiltonian H(r,p, t) To proceed to the Hamiltonian, one first obtains the
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canonical momentum p = ∇ṙL(ṙ, r, t), following which one needs to solve the vector relation p = ∇ṙL(ṙ, r, t)
for ṙ(r,p, t). With ṙ(r,p, t) in hand, the Hamiltonian is obtained asH(r,p, t) = ṙ(r,p, t)·p−L(ṙ(r,p, t), r, t).
Unfortunately, there is no guarantee that the vector relation p = ∇ṙL(ṙ, r, t) can be solved for ṙ(r,p, t) in
closed form. If there is no closed-form solution of the vector relation p = ∇ṙL(ṙ, r, t) for ṙ(r,p, t), one needs
to make an approximation, or possibly even a sequence of successive approximations.

A classic example of the above procedure was the development very long ago by Lorentz of the rela-
tivistic Lagrangian and Hamiltonian for a charged particle (that has no spin) interacting with the electro-
magnetic four-potential (φ(r, t),A(r, t)). A Lorentz-invariant entity that has the dimension of energy and
suitably represents the particle’s interaction with the electromagnetic four-potential is the particle’s charge e
times the Lorentz-invariant contraction of the electromagnetic four-potential with the particle’s four-velocity
(c, ṙ)/

√
1− |ṙ/c|2 divided by c, which equals

(
eφ(r, t)− (e/c)ṙ ·A(r, t)

)/√
1− |ṙ/c|2. This Lorentz-invariant

entity reduces, in the particle’s rest frame where ṙ = 0, to the potential energy eφ(r, t), so it is to be sub-
tracted from the Lorentz-invariant term (−mc2), and then that Lorentz-invariant difference is multiplied by√

1− |ṙ/c|2 to produce the interacting particle’s relativistic Lagrangian L(ṙ, r, t),

L(ṙ, r, t) = −mc2
√

1− |ṙ/c|2 −
(
eφ(r, t)− (e/c)ṙ ·A(r, t)

)
. (2.1a)

We next use this relativistic Lorentz Lagrangian to obtain the corresponding relativistic Lorentz Hamiltonian
for a charged particle interacting with an electromagnetic four-potential. The canonical momentum is,

p = ∇ṙL(ṙ, r, t) = (mṙ)/
(√

1− |ṙ/c|2
)

+ (e/c)A(r, t). (2.1b)

Fortunately the relation p = (mṙ)/
(√

1− |ṙ/c|2
)

+ (e/c)A(r, t) is readily solved for ṙ in terms of r, p and t,

ṙ(r,p, t) = ((p− (e/c)A(r, t))/m)/
(√

1 + |(p− (e/c)A(r, t))/(mc)|2
)

= (q/m)/
(√

1 + |q/(mc)|2
)
, (2.1c)

where q
def
= (p − (e/c)A(r, t)). We next obtain the Hamiltonian H(r, p, t) by inserting the Eq. (2.1c)

result for ṙ(r,p, t) into H(r,p, t) = ṙ(r,p, t) · p − L(ṙ(r,p, t), r, t) where L(ṙ, r, t) = −mc2
(√

1− |ṙ/c|2
)
−

eφ(r, t) + (e/c)(ṙ ·A(r, t)), as given by Eq. (2.1a). After using Eq. (2.1c) to establish that
√

1− |ṙ/c|2 =(
1/
√

1 + |q/(mc)|2
)
, we obtain for H(r,p, t),

H(r,p, t) =
{[

((q/m) · p) +mc2 − ((q/m) · ((e/c)A(r, t)))
] /√

1 + |q/(mc)|2
}

+ eφ(r, t) ={[
mc2 + (|q|2/m)

] /√
1 + |q/(mc)|2

}
+ eφ(r, t) = mc2

√
1 + |(q/(mc)|2 + eφ(r, t) =

mc2
√

1 + |(p− (e/c)A(r, t))/(mc)|2 + eφ(r, t), (2.1d)

which is Lorentz’s relativistic Hamiltonian for the interaction of a particle which has charge e, mass m and
no spin with the electromagnetic four-potential (φ(r, t),A(r, t)). It of course reduces to the noninteracting-
particle relativistic Hamiltonian mc2

√
1 + |(p/(mc)|2 when the particle’s charge e is put to zero. Lorentz’s

unquestionably relativistic Hamiltonian of course differs from the electromagnetic interaction expression for
the no-spin Klein-Gordon particle, which, like the Dirac particle, suffers from totally unphysical unbounded-
below negative energies that are by fiat declared to (very questionably) propagate backward in time.

We next obtain the quantum propagator for the relativistic noninteracting particle, which is useful for
developing perturbation approximations.

3. The relativistic noninteracting particle’s quantum space-time propagator

The Schrödinger equation is first-order in time, so if the wave function is specified at a particular time t, the
Schrödinger equation determines it at all other times t′. Since the Schrödinger equation is homogeneously
linear, it is sufficient to solve it for point wave functions δ(3)(r′ − r) at the particular time t, since we can
superpose those solutions to produce the solution for any choice of the wave function at the particular time
t. We would usually have no interest in the Schrödinger equation solutions at times that are earlier than
the particular time t; we can cut such earlier-time information out of a Schrödinger equation solution by
multiplying it by the time unit step function θ(t′ − t), which is equal to 1 when t′ > t, but is equal to 0
when t′ < t. Schrödinger equation solutions which are point wave functions δ(3)(r′− r) at the particular time
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t, and are multiplied by (−i/h̄)θ(t′ − t) are known as the space-time propagators G((t′ − t), r′, r; Ĥ) of their

Hamiltonian operator Ĥ, and we shall now show that they are explicitly given by,

G((t′ − t), r′, r; Ĥ) = (−i/h̄)θ(t′ − t)〈r′| exp(−iĤ(t′ − t)/h̄)|r〉. (3.1a)

The Schrödinger equation with the Hamiltonian operator Ĥ is, in coordinate representation,

ih̄∂〈r′|ψ(t′)〉/∂t′ = 〈r′|Ĥ|ψ(t′)〉, (3.1b)

and when |ψ(t′)〉 = exp(−iĤ(t′ − t)/h̄)|r〉, which is the case for the entity 〈r′| exp(−iĤ(t′ − t)/h̄)|r〉 in
Eq. (3.1a), then the Schrödinger equation of Eq. (3.1b) is in fact satisfied. Furthermore, when t′ = t, then

the entity 〈r′| exp(−iĤ(t′ − t)/h̄)|r〉 = 〈r′|r〉 = δ(3)(r′ − r), which is the required point wave function for

t′ = t. Therefore the entity G((t′ − t), r′, r; Ĥ) of Eq. (3.1a) fulfills the requirements for being a propagator

of the Hamiltonian operator Ĥ. The presence of the time step function θ(t′ − t) in this propagator entity

G((t′− t), r′, r; Ĥ) = (−i/h̄)θ(t′− t)〈r′| exp(−iĤ(t′− t)/h̄)|r〉 prevents it from itself satisfying the Schrödin-
ger equation, but since the derivative of a unit step function is a delta function, specifically, ∂θ(t′− t)/∂t′ =

δ(t′ − t), the propagator G((t′ − t), r′, r; Ĥ) instead satisfies the closely related equation,

(ih̄∂/∂t′ − Ĥ)G((t′ − t), r′, r; Ĥ) = δ(t′ − t)〈r′| exp(−iĤ(t′ − t)/h̄)|r〉 =

δ(t′ − t)〈r′|r〉 = δ(t′ − t)δ(3)(r′ − r), (3.1c)

so the propagator G((t′−t), r′, r; Ĥ) of Eq. (3.1a) is the retarded Green’s function of the Schrödinger equation

with the Hamiltonian operator Ĥ. It is the retarded Green’s function because it vanishes when t′ < t. The
fact that it is a Green’s function makes it useful for developing perturbation approximations.

The eigenstates of the relativistic noninteracting-particle Hamiltonian H(p̂) = mc2
√

1 + |p̂/(mc)|2 are
those of the momentum operator p̂, so we can expand the operator exp(−iH(p̂)(t′− t)/h̄) out in momentum
eigenstates, and in consequence we can expand the propagator of the Hamiltonian H(p̂) out in plane waves,

G((t′ − t), r′, r;H(p̂)) = (−i/h̄)θ(t′ − t)〈r′| exp(−iH(p̂)(t′ − t)/h̄)|r〉 =

(−i/h̄)θ(t′ − t)
∫
d3p〈r′|p〉 exp(−iH(p)(t′ − t)/h̄)〈p|r〉 =

(−i/h̄)θ(t′ − t)
∫
d3p (1/(2πh̄))3 exp(i(p · (r′ − r))/h̄) exp(−iH(p)(t′ − t)/h̄). (3.2a)

We next reexpress the time-dependent factor (−i/h̄)θ(t′−t) exp(−iH(p)(t′−t)/h̄) of the Eq. (3.2a) presenta-
tion of G((t′− t), r′, r;H(p̂)) in terms of its Fourier tranformation from time to energy; we then can likewise
reexpress G((t′− t), r′, r;H(p̂)) in terms of its Fourier transformation from space-time to momentum-energy,

(−i/h̄)θ(t′ − t) exp(−iH(p)(t′ − t)/h̄) =∫∞
−∞ dE (1/(2πh̄)) exp(−iE(t′ − t)/h̄)

∫∞
−∞ dτ exp(iEτ/h̄)(−i/h̄)θ(τ) exp(−iH(p)τ/h̄) =∫∞

−∞ dE (1/(2πh̄)) exp(−iE(t′ − t)/h̄)
∫∞
0
dτ(−i/h̄) exp(i(E −H(p))τ/h̄) exp(−ετ/h̄) =∫∞

−∞ dE (1/(2πh̄)) exp(−iE(t′ − t)/h̄)(−i/h̄)(h̄/(−i(E −H(p) + ε)) =∫∞
−∞ dE (1/(2πh̄)) exp(−iE(t′ − t)/h̄)(1/(E −H(p) + iε)). (3.2b)

We now insert the Eq. (3.2b) result into Eq. (3.2a) in order to reexpress the noninteracting-particle propagator
G((t′ − t), r′, r;H(p̂)) in terms of its Fourier transformation from space-time to momentum-energy,

G((t′ − t), r′, r;H(p̂)) =∫
d3p (1/(2πh̄))3 exp(i(p · (r′ − r))/h̄)

∫∞
−∞ dE (1/(2πh̄)) exp(−iE(t′ − t)/h̄)(1/(E −H(p) + iε)), (3.2c)

where H(p) = mc2
√

1 + |p/(mc)|2, the noninteracting particle’s relativistic energy. Thus the noninteracting
particle’s relativistic energy-momentum propagator is,

G0(E,p) = (1/(E −mc2
√

1 + |p/(mc)|2 + iε)). (3.3)

This relativistic noninteracting-particle propagator can be used in perturbation approximations in con-
junction with “vertices”. A basic vertex for the interaction of a particle which has no spin with the
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electromagnetic four-potential (φ(r, t),A(r, t)) is the difference
[
H(r,p, t) − mc2

√
1 + |p/(mc)|2

]
, where

H(r,p, t) = eφ(r, t) + mc2
√

1 + |(p− (e/c)A(r, t))/(mc)|2, the Lorentz Hamiltonian for the interaction of
a particle which has no spin with the electromagnetic four-potential (φ(r, t),A(r, t)). To first order in e,
the particle’s charge, this vertex has the value, eφ(r, t)−

[
(e(p/(mc)) ·A(r, t))/

√
1 + |p/(mc)|2

]
. Therefore

with the relativistic noninteracting-particle propagator G0(E,p) in hand, it is feasible to develop systematic
perturbation approximations in the spirit of the Feynman diagrams, albeit very different in detail.

Since the quantum propagator is a space-time or energy-momentum entity, it is sometimes thought to
be space-time symmetric or even Lorentz invariant. But one glance at its Eq. (3.1a) general form reveals it
to be as entirely time-skewed as the Schrödinger equation, whose retarded Green’s function it after all is.

In the next section we modify the Lorentz Lagrangian to accommodate the spin-1/2 particle by adding a
Lorentz-invariant entity which in the particle’s rest frame is the nonrelativistic Pauli Hamiltonian’s potential
energy of the spin-1/2 particle’s magnetic moment in a magnetic field.

4. Modification of the Lorentz Hamiltonian to accommodate the spin-1/2 particle

We regard the potential energy of a spin-1/2 particle’s magnetic moment in a magnetic field that is given by
the nonrelativistic Pauli Hamiltonian, namely −((eh̄)/(2mc))(~σ · B(r, t)), as being correct in the particle’s
rest frame, and therefore for the purpose of modifying the Lorentz Lagrangian to describe the interaction
of the magnetic moment of a spin-1/2 particle with the electromagnetic field we seek a relativistic invariant
which is this Pauli potential energy in the particle’s rest frame. Since in other frames of reference a magnetic
field transforms partially into an electric field, we need to use the entire antisymmetric electromagnetic field
tensor Fµν(r, t) = −F νµ(r, t) to construct the desired relativistic invariant. Therefore it is convenient to
incorporate the three components of the Pauli spin vector ~σ into the six independent components of an
antisymmetric second-rank tensor σµν = −σνµ in such a way that the contraction (σµνFµν) is proportional
to the dot product (~σ · B). Since Fij = −Fji = −(B)k, where ijk is any cyclic permutation of 123, the
standard choice for the antisymmetric spin-1/2 tensor σµν = −σνµ is σij = −σji = (~σ)k, where ijk is
any cyclic permutation of 123, with the remaining ten components of σµν being equal to zero, namely
σ00 = σi0 = −σ0i = σii = 0, where i = 1, 2, 3. This standard choice for σµν is readily seen to yield for the
contraction (σµνFµν(r, t)),

(σµνFµν(r, t)) = −2(~σ ·B(r, t)), (4.1a)

which implies that,

((eh̄)/(4mc))(σµνFµν(r, t)) = −((eh̄)/(2mc))(~σ ·B(r, t)). (4.1b)

Eqs. (4.1a) and (4.1b) are relevant only in the particle’s rest frame where its velocity ṙ = 0. In any other
particular frame of reference where the particle’s velocity ṙ 6= 0, we need to apply to the particle’s rest-frame
spin tensor σµν the Lorentz transformation from the particle’s rest frame to that particular frame of reference.
Since a Lorentz transformation is a dimensionless 4 × 4 symmetric matrix, expressions for its components

become more compact if one works with with the dimensionless scaled particle velocity b
def
= (ṙ/c) instead

of with ṙ directly. Another prominent dimensionless ingredient of the components of the symmetric Lorentz

transformation matrix is the entity γ
def
= 1/

√
1− |b|2. The components of the dimensionless symmetric

Lorentz transformation matrix Λκα(b) = Λακ(b) are,

Λ0
0(b) = γ; Λ0

i (b) = Λi0(b) = −γ(b)i, i = 1, 2, 3;

Λij(b) = Λji (b) = δij + (γ2/(γ + 1))(b)i(b)j , i, j = 1, 2, 3. (4.2a)

We denote the particle’s spin tensor in the reference frame where the particle’s velocity is ṙ = cb as σµν(b).
That spin tensor σµν(b) is of course the Lorentz transformation of σµν by the symmetric Lorentz transfor-
mation matrix Λκα(b),

σµν(b) = Λµα(b)σαβΛνβ(b) =

3∑
i,j=1; i 6=j

Λµi (b)σijΛνj (b) = (~σ)3(Λµ1 (b)Λν2(b)− Λµ2 (b)Λν1(b))+

(~σ)1(Λµ2 (b)Λν3(b)− Λµ3 (b)Λν2(b)) + (~σ)2(Λµ3 (b)Λν1(b)− Λµ1 (b)Λν3(b)), (4.2b)
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which tells us that σµν(b) = −σνµ(b), i.e., σµν(b) is antisymmetric, just as σµν is. Therefore σ00(b) =
σii(b) = 0, where i = 1, 2, 3. To calculate σ10(b) using Eq. (4.2b) we first note from Eq. (4.2a) that
(~σ)1(Λ1

2(b)Λ0
3(b) − Λ1

3(b)Λ0
2(b)) = (~σ)1(−(γ3/(γ + 1))((b)1(b)2(b)3 − (b)1(b)3(b)2) = 0, however con-

trariwise, (~σ)2(Λ1
3(b)Λ0

1(b) − Λ1
1(b)Λ0

3(b)) = (~σ)2(−(γ3/(γ + 1))((b)1(b)3(b)1 − (b)1(b)1(b)3) + γ(b)3) =
γ(~σ)2(b)3 and (~σ)3(Λ1

1(b)Λ0
2(b)−Λ1

2(b)Λ0
1(b)) = (~σ)3(−γ(b)2−(γ3/(γ+1))((b)1(b)1(b)2−(b)1(b)2(b)1) =

−γ(~σ)3(b)2. Therefore σ10(b) = γ((~σ)2(b)3 − (~σ)3(b)2), and also σ20(b) = γ((~σ)3(b)1 − (~σ)1(b)3) and
σ30(b) = γ((~σ)1(b)2 − (~σ)2(b)1). Therefore,

σi0(b) = γ(~σ × b)i = −σ0i(b), i = 1, 2, 3. (4.2c)

Similarly one obtains that σ12(b) = (~σ)1(−(γ2/(γ + 1))(b)1(b)3) + (~σ)2(−(γ2/(γ + 1))(b)2(b)3) + (~σ)3(1 +
(γ2/(γ+ 1))((b)1(b)1 + (b)2(b)2)) = (~σ)3(1 + (γ2/(γ+ 1))|b|2)− (γ2/(γ+ 1))(~σ ·b)(b)3 = γ(~σ)3− (γ2/(γ+
1))(~σ ·b)(b)3. Likewise, σ23(b) = γ(~σ)1−(γ2/(γ+1))(~σ ·b)(b)1 and σ31(b) = γ(~σ)2−(γ2/(γ+1))(~σ ·b)(b)2.
Therefore,

σij(b) = γ(~σ)k − (γ2/(γ + 1))(~σ · b)(b)k = −σji(b), where ijk is a cyclic permutation of 123. (4.2d)

Since Fi0 = −(E)i = −F0i, i = 1, 2, 3 and Fij = −(B)k = −Fji, where ijk is a cyclic permutation of 123,
Eqs. (4.2c) and (4.2d) imply that,

(σµν(b)Fµν(r, t)) = −2γ
(
(~σ ·B(r, t))− ((γ/(γ + 1))(~σ · b)(b ·B(r, t))) + ((~σ × b) ·E(r, t))

)
=

−2γ
(
(~σ ·B(r, t))− ((γ/(γ + 1))(~σ · b)(b ·B(r, t)))− (b · (~σ ×E(r, t)))

)
, (4.2e)

which implies that,

((eh̄)/(4mc))(σµν(b)Fµν(r, t)) =

−((eh̄)/(2mc))γ
(
(~σ ·B(r, t))− ((γ/(γ + 1))(~σ · b)(b ·B(r, t)))− (b · (~σ ×E(r, t)))

)
. (4.2f)

Eqs. (4.2e) and (4.2f) extend the particle rest-frame Eqs. (4.1a) and (4.1b) to the frame where the particle’s
velocity is ṙ = cb. The Lorentz-invariant entity ((eh̄)/(4mc))(σµν(b)Fµν(r, t)) of Eq. (4.2f) extrapolates the
nonrelativistic Pauli potential energy of the spin-1/2 particle’s magnetic moment in a magnetic field from its
rest frame to the frame where its velocity ṙ = cb. In order to insert spin-1/2 dynamics into the Eq. (2.1a)
Lorentz Lagrangian we subtract from it that Lorentz-invariant entity multiplied by

√
1− |ṙ/c|2 = (1/γ),

L(cb, r, t) = −mc2
√

1− |b|2 − e
(
φ(r, t)− (b ·A(r, t))

)
+(

(eh̄)/(2mc)
)(

(~σ ·B(r, t))− ((γ/(γ + 1))(~σ · b)(b ·B(r, t)))− (b · (~σ ×E(r, t)))
)
. (4.3a)

The Eq. (4.3a) modified Lorentz Lagrangian for the spin-1/2 particle interacting with an electromagnetic
field includes the negative of −

(
(eh̄)/(2mc)

)(
(~σ ·B(r, t))−((γ/(γ+1))(~σ ·b)(b·B(r, t)))

)
, the non-relativistic

potential energy of the spin-1/2 particle’s magnetic moment in the magnetic field B(r, t) and its order |b|2
relativistic correction.

To obtain the Eq. (4.3a) Lagrangian’s corresponding Hamilton, we need the canonical momentum p,

p = (1/c)∇bL(cb, r, t) =
(
mcb/

√
1− |b|2

)
+ (e/c)A(r, t)− ((eh̄)/(2mc2))(~σ ×E(r, t))−

((eh̄)/(2mc2))(γ/(γ + 1))
(
~σ(b ·B(r, t)) + (~σ · b)B(r, t)

)
. (4.3b)

The entity −((eh̄)/(2mc2))(γ/(γ+1))
(
~σ(b ·B(r, t))+(~σ ·b)B(r, t)

)
, which is a contribution to the canonical

momentum p of Eq. (4.3b), is of order |b|, and therefore can be regarded as a relativistic correction to
the rest of the Eq. (4.3b) canonical momentum p. Obtaining the Eq. (4.3a) Lagrangian’s corresponding
Hamiltonian requires solving the Eq. (4.3b) relation for the particle’s velocity ṙ = cb in terms of r, p
and t. The presence of the above-written relativistic-correction contribution to p makes it impossible to
obtain a closed-form solution for ṙ = cb in terms of r, p and t. We therefore content ourselves with the
approximation to the particle’s Hamiltonian which entails obtaining ṙ(r,p, t) without including the above-
written relativistic-correction contribution to p,

ṙ(r,p, t) ≈ (q/m)/
√

1 + |q/(mc)|2, where q
def
=
(
p− (e/c)A(r, t) + ((eh̄)/(2mc2))(~σ ×E(r, t))

)
. (4.3c)

Inserting this approximation to ṙ(r,p, t) into
(
ṙ(r,p, t) · p − L(ṙ(r,p, t), r, t)

)
yields the following approxi-

mation to the Hamiltonian H(r,p, t) for the spin-1/2 particle interacting with an electromagnetic field,
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H(r,p, t) ≈ mc2
√

1 + |q/(mc)|2 + eφ(r, t)− ((eh̄)/(2mc))(~σ ·B(r, t))+(
(eh̄)/(2mc)

)(
1/
(
1 +

(
1/
√

1 + |q/(mc)|2
)))(

(~σ · q)(q ·B(r, t))/((mc)2 + |q|2)
)
,

where q
def
=
(
p− (e/c)A(r, t) + ((eh̄)/(2mc2))(~σ ×E(r, t))

)
. (4.3d)

The effect of the approximation we have made is to entirely keep what at the Lagrangian level is a relativistic
correction to the basic nonrelativistic potential energy −((eh̄)/(2mc))(~σ ·B(r, t)) of the spin-1/2 particle’s
magnetic moment in a magnetic field; we have dropped only the effect which that relativistic correction has
on the particle’s canonical momentum.

The primary utility of the Eq. (4.3d) Hamiltonian that includes spin-1/2 particle relativistic effects
is to serve as a source of vertex factors in systematic perturbation calculations which are based on the
noninteracting-particle relativistic propagator G0(E,p) = (1/(E −mc2

√
1 + |p/(mc)|2 + iε)).

We next briefly point out that in theories where particles are produced, perturbation contributions
become increasingly invalid with increasingly high virtual momentum values, which must be cut off.

5. Virtual momentum cutoff needed in perturbation contributions if particles are produced

In single-particle quantum mechanics, contributions to perturbation approximations which entail integration
over arbitrarily high virtual momentum values of that particle are justified by completeness.

Completeness is vastly more involved, however, in quantum theories which permit particles to be pro-
duced. In those, completeness sums are necessarily over the momenta of any possible finite number of
particles. The standard development of perturbation approximations for quantum theories which permit
particles to be produced doesn’t adequately take into account this seismic shift in the character of com-
pleteness sums. Consequently those contributions to standard perturbation approximations which entail
integration over arbitrarily high virtual momentum values fail to adequately accommodate the natural growth
in virtual particle multiplicity which accompanies such a growth in virtual energy availability; the addi-
tional particles are unavailable because they have been shifted to other perturbation contributions of higher
order. This physically inappropriate suppression of virtual particle multiplicity in any individual perturba-
tion contribution which entails integration over arbitrarily high virtual momentum values causes the parts
of that perturbation contribution which are involved with progressively higher virtual momentum values to
progressively lose physical validity, so there exists an optimal cutoff on the virtual momentum of any per-
turbation contribution which entails integration over arbitrarily high virtual momentum values. To estimate
that optimal virtual-momentum cutoff for any given perturbation contribution which entails integration over
arbitrarily high virtual momentum values, the higher-order perturbation contributions which are the next
higher up in particle multiplicity need to be studied.

Since standard perturbation approximations systematically suppress virtual particle multiplicity, per-
haps single-particle propagators such as the one described by Eq. (3.2c) will someday be superseded by
entities which propagate an indefinite number of particles. Entities called coherent quantum states, which
describe an indefinite number of particles, already exist, and perhaps those, or more flexible extensions of
the coherent-state construct, will someday be made the basis of propagators which are much better attuned
to the possibility of an indefinitely large number of virtual particles that completeness sums permit.

10


