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Preface

The Gamma function is an extension of the factorial func-
tion, with its argument shifted down by 1, to real and
complex numbers. The Gamma function is defined by
an improper integral that converges for all real numbers
except the non-positive integers, and converges for all
complex numbers with nonzero imaginary part. The fac-
torial is extended by analytic continuation to all complex
numbers except the non-positive integers (where the inte-
gral function has simple poles), yielding the meromorphic
function we know as the Gamma function.

The Gamma function has very many extremely impor-
tant applications in probability theory, combinatorics,
statistical and quantum mechanics, solid-state physics,
plasma physics, nuclear physics, and in the decades-long
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quest to unify quantum mechanics with the theory of
relativity – the development of the theory of quantum
gravity – the objective of string theory.

The problem of extending the factorial to non-integer ar-
guments was apparently first considered by Daniel Bernoulli
and Christian Goldbach in the 1720s, and was solved at
the end of the same decade by Leonard Euler.
Euler gave two different definitions: the first was an infi-
nite product, of which he informed Goldbach in a letter
dated October 13, 1729. He wrote to Goldbach again on
January 8, 1730, to announce his discovery of the inte-
gral representation. Euler further discovered some of the
Gamma function’s important functional properties, no-
tably the reflection formula.

Carl Friedrich Gauss rewrote Euler’s product and then
used his formula to discover new properties of the Gamma
function. Although Euler was a pioneer in the theory of
complex variables, he does not appear to have consid-
ered the factorial of a complex number, as Gauss first
did. Gauss also proved the multiplication theorem of
the Gamma function and investigated the connection be-
tween the Gamma function and elliptic integrals.

Karl Weierstrass further established the role of the Gamma
function in complex analysis, starting from yet another
product representation. Weierstrass originally wrote his
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product as one for 1/Γ, in which case it is taken over
the function’s zeros rather than its poles. Inspired by
this result, he proved what is known as the Weierstrass
factorization theorem – that any entire function can be
written as a product over its zeros in the complex plane;
a generalization of the fundamental theorem of algebra.

The name of the Gamma function and its symbol Γ were
introduced by Adrien-Marie Legendre around 1811; Leg-
endre also rewrote Euler’s integral definition in its mod-
ern form. The alternative "Pi function" notation Π(z) =
z! due to Gauss is sometimes encountered in older lit-
erature, but Legendre’s notation is dominant in modern
works. It is justified to ask why we distinguish between
the "ordinary factorial" and the Gamma function by us-
ing distinct symbols, and particularly why the Gamma
function should be normalized to Γ(n + 1) = n! instead
of simply using "Γ(n) = n!". Legendre’s motivation for
the normalization does not appear to be known, and has
been criticized as cumbersome by some (the 20th-century
mathematician Cornelius Lanczos, for example, called it
"void of any rationality" and would instead use z!). Leg-
endre’s normalization does simplify a few formulas, but
complicates most others.

A large number of definitions have been given for the
Gamma function. Although they describe the same func-
tion, it is not entirely straightforward to prove their equiv-
alence. Instead of having to find a specialized proof for
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each formula, it would be highly desirable to have a gen-
eral method of identifying the Gamma function given any
particular form.

One way to prove equivalence would be to find a differ-
ential equation that characterizes the Gamma function.
Most special functions in applied mathematics arise as
solutions to differential equations, whose solutions are
unique. However, the Gamma function does not appear
to satisfy any simple differential equation. Otto Hölder
proved in 1887 that the Gamma function at least does
not satisfy any algebraic differential equation by show-
ing that a solution to such an equation could not satisfy
the Gamma function’s recurrence formula. This result is
known as Hölder’s theorem.

A definite and generally applicable characterization of
the Gamma function was not given until 1922. Harald
Bohr and Johannes Mollerup then proved what is known
as the Bohr-Mollerup theorem: that the Gamma function
is the unique solution to the factorial recurrence relation
that is positive and logarithmically convex for positive z
and whose value at 1 is 1 (a function is logarithmically
convex if its logarithm is convex).

The Bohr-Mollerup theorem is useful because it is rela-
tively easy to prove logarithmic convexity for any of the
different formulas used to define the Gamma function.
Taking things further, instead of defining the Gamma
function by any particular formula, we can choose the
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conditions of the Bohr-Mollerup theorem as the defini-
tion, and then pick any formula we like that satisfies the
conditions as a starting point for studying the Gamma
function. This approach was used by the Bourbaki group.

G.P. Michon describes the Gamma function as "Arguably,
the most common special function, or the least 'special'
of them. The other transcendental functions . . . are called
'special' because you could conceivably avoid some of
them by staying away from many specialized mathemat-
ical topics. On the other hand, the Gamma function is
most difficult to avoid."

The Gamma function finds application in diverse areas
such as quantum physics, statistical mechanics and fluid
dynamics. The Gamma distribution, which is formulated
in terms of the Gamma function, is used in statistics to
model a wide range of processes; for example, the time
between occurrences of time-series events. The primary
reason for the Gamma function’s usefulness is the preva-
lence of expressions of the type f(t) exp(−g(t)) which
describe processes that decay exponentially in time or
space.� Integrals of such expressions can often be solved
in terms of the Gamma function when no elementary so-
lution exists. For example, if f is a power function and
g is a linear function, a simple change of variables yields

� See chapter 2 for further discussion of this topic.
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ˆ ∞
0

tbe−at dt =
Γ(b+ 1)

ab+1
.

The fact that the integration is performed along the en-
tire positive real line might signify that the Gamma func-
tion describes the cumulation of a time-dependent pro-
cess that continues indefinitely, or the value might be
the total of a distribution in an infinite space. It is
of course frequently useful to take limits of integration
other than 0 and ∞ to describe the cumulation of a fi-
nite process, in which case the ordinary Gamma func-
tion is no longer a solution; the solution is then called
an incomplete Gamma function. (The ordinary Gamma
function, obtained by integrating across the entire posi-
tive real line, is sometimes called the complete Gamma
function for contrast.)

The Gamma function’s ability to generalize factorial prod-
ucts immediately leads to applications in many areas of
mathematics; in combinatorics, and by extension in areas
such as probability theory and the calculation of power
series. Many expressions involving products of successive
integers can be written as some combination of factorials,
the most important example perhaps being that of the
binomial coefficient.

By taking limits, certain rational products with infinitely
many factors can be evaluated in terms of the Gamma
function as well. Due to the Weierstrass factorization
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theorem, analytic functions can be written as infinite
products, and these can sometimes be represented as fi-
nite products or quotients of the Gamma function. For
one example, the reflection formula essentially represents
the sine function as the product of two Gamma functions.
Starting from this formula, the exponential function as
well as all the trigonometric and and hyperbolic functions
can be expressed in terms of the Gamma function.

The hypergeometric function and special cases thereof,
can be represented by means of complex contour inte-
grals of products and quotients of the Gamma function,
called Mellin-Barnes integrals.

The Gamma function can also be used to calculate the
"volume" and "area" of n-dimensional hyperspheres.

An elegant and deep application of the Gamma func-
tion is in the study of the Riemann zeta function. A
fundamental property of the Riemann zeta function is
its functional equation. Among other things, it provides
an explicit form for the analytic continuation of the zeta
function to a meromorphic function in the complex plane
and leads to an immediate proof that the zeta function
has infinitely many so-called "trivial" zeros on the real
line. Borwein et. al call this formula "one of the most
beautiful findings in mathematics".
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The Gamma function has caught the interest of some
of the most prominent mathematicians of all time. In
the words of Philip J. Davis, "each generation has found
something of interest to say about the Gamma function.
Perhaps the next generation will also." Its history re-
flects many of the major developments within mathemat-
ics since the 18th century.
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Analytic Continuation of the
Factorials

Analytic continuation is a technique used to extend the
domain of a given analytic function. Analytic continua-
tion often succeeds in defining further values of a func-
tion. Consider the sum of the first n natural numbers:

S : N→ N S(n) :=
n∑
k=1

k = 1 + 2 + · · ·+ (n− 1) + n.

1
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We may simply construct a new formula, not involving
summation, in the following way:

1 + 2 + · · ·+ (n− 1) + n

n+ (n− 1) + · · ·+ 2 + 1

(n+ 1) + · · ·+ (n+ 1)︸ ︷︷ ︸
n terms

Gauss famously discovered this independently in his early
childhood. In doing this, we have performed the sum
twice, so

S(n) =
1

2
n(n+ 1). (1.1)

It is not meaningful to speak of the first 3/2 natural
numbers, for instance, but the above equation does in-
terpolate between the integer values. We may apply the
function to non-integer values and get, for example,

S(
3

2
) =

1

2
· 3

2
· 5

2
=

15

8
.

The factorial function n! is also only defined over the
positive integers:

n! := n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1 (1.2)

with the convention that 0! = 1. A formula such as
Equation 1.1 which would allow computation of n! with-
out having to perform the multiplication was sought by
the mathematics community for many years.
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Euler first discovered a formula for the factorials that
allows us to compute a factorial without performing the
multiplication – the so-called elementary definition of the
Gamma function, is Euler’s integral, which is as follows:

Definition 1.1. (Gamma function). For 0 < x <∞,
x ∈ R,

Γ(x) :=

ˆ ∞
0

tx−1e−t dt. (1.3)

The defining improper integral itself, in the real case, con-
verges if and only if 0 < x < ∞. This integral function
is extended by analytic continuation to all real numbers
except the non-positive integers, x /∈ {{0} ∪ Z−}, by the
use of a recurrence formula to yield the Gamma function.
The question may be asked as to how the Gamma func-
tion is computed on the negative nonintegers given that
the defining integral does not converge on them. Indeed,
Euler’s integral does not converge for x ≤ 0, but the
function it defines over the positive reals has a unique
analytic continuation to the negative reals. One way to
find that analytic continuation is to use Euler’s integral
for positive arguments and extend the domain to negative
numbers through the application of the identity,

Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
,
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Figure 1.1: The Gamma function plotted over a portion of the real
line.

choosing n sufficiently large such that z + n is positive.
The product in the denominator is zero when z equals any
of the integers 0,−1,−2, . . .. Thus, the gamma function
must be undefined at those points.

A restriction on the domain of the Gamma function does
not equate to a restriction on the range of integration
over the variable of integration (the argument t of the in-
tegrand). But rather, the argument of the Gamma func-
tion parametrizes the integrand, say gx(t) := tx−1e−t,
given in the Gamma function’s definition – restrictions
on the domain of the Gamma function restrict the al-
lowed values of the parameter x defining gx(t).
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Figure 1.2: The argument of the Gamma function parametrizes the
curve representing the integrand gx(t) in the Gamma function defini-
tion. It is a single curve, such as one of the curves shown here, which is
integrated over the range of integration (from t = 0 to ∞) in the eval-
uation of the Gamma function. Here are shown plots of the integrand
gx(t) = e−ttx−1 for parametrizations x = 1, 2, 3 and 4. If one were to
smoothly change the value of the parameter x from 1 to 4 then the shape
of the curve would smoothly change from that of the x = 1 curve to that
of the x = 4 curve.

We shall prove a result known as the functional equation
(a recurrence relation) later in this chapter. It is defined
as

Γ(z + 1) = zΓ(z).
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Inverting the functional equation we have

Γ(z) =
1

z
Γ(z + 1).

When z = 0 it diverges because

Γ(1) =

ˆ ∞
0

e−t dt = lim
m→∞

[
−e−t

]m
0

= lim
m→∞

(−e−m+1) = 1

is finite.

Formally, we can discover that the Gamma function has
simple poles in all negative integers by simply iterating
the recursion:

Γ(−n) =
1

−n
Γ(−n+ 1)

= · · ·

=
(−1)n

n!
Γ(0) (n ∈ N).

The power function factor that appears within the inte-
grand of the Gamma function definition may have a com-
plex exponent. What does it mean to raise a real number
to a complex power? If t is a positive real number, and z
is any complex number, then tz−1 is defined as e(z−1) log(t),
where x = log(t) is the unique real solution to the equa-
tion ex = t. By Euler’s formula, eiθ = cos θ + i sin θ, so
we have for example:

23+4i = 23 · 24i = 8e4i log 2

= 8(cos(log 2) + i · sin(log 2))4

≈ −7.4615 + 2.88549i
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Though we can straightforwardly compute the complex
power of a real number in the analytical sense, a more
intuitive interpretation of taking the complex power of a
real number is elusive. Nonetheless, by virtue of the re-
currence relation, Γ(z) can be interpreted as a generaliza-
tion of the factorial function to complex numbers. Since
Γ(z) = Γ(z+1)/z and Γ(z+1) is defined for Re(z) > −1
we can extend analytically the domain of Γ(z) to the strip
−1 < Re(z) < 0. Repeating the same argument, we can
extend Γ(z) to all values of the complex plane, except for
z = 0,−1,−2, . . ..

Since the argument of the Gamma function may be com-
plex, we may restate the definition of the Gamma func-
tion in the following way:

Definition 1.2. (Gamma function). For |z| < ∞,
z ∈ C,

Γ(z) :=

ˆ ∞
0

tz−1e−t dt. (1.4)

The improper integral itself converges iff Im(z) 6= 0, or
z ∈ R and 0 < z <∞. The integral function is extended
by analytic continuation to all complex numbers except
the non-positive integers, z /∈ {{0} ∪ Z−}, through the
use of a recurrence formula yielding the Gamma function.

Let’s take a closer look at definition 1.2. Notice that we
are integrating over the range [0,∞) – here we have an
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Figure 1.3: A surface plot of the absolute value of the Gamma function
over a portion of the complex plane that illustrates the pattern of its
domain of convergence, defined as z ∈ C such that z ∈ R and z /∈ {{0}∪
Z−}, or Im(z) 6= 0.

example of an improper integral, which are defined by a
limiting process:ˆ ∞

m

f(t) dt := lim
n→∞

ˆ n

m

f(t) dt.

If Im(z) = 0, then when z ≤ 1, we have that tz−1 is
undefined at t = 0, so we must, in that case, define our
improper integral in terms of two limits:

ˆ ∞
0

tz−1e−t dt := lim
n→∞

lim
m→0

ˆ n

m

tz−1e−t dt.
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Next, let’s verify that the integral in definition 1.2 con-
verges. To this effect, we shall need the following lemma:

Lemma 1.1. Comparison Test for Improper In-
tegrals. If f(x) ≥ g(x) ≥ 0 on the interval [a,∞) then,

� If
´∞
a
f(x) dx converges, then so does

´∞
a
g(x) dx.

� If
´∞
a
g(x) dx diverges, then so does

´∞
a
f(x) dx.

We shall take this as intuitively obvious and not pursue
a formal proof here.

Theorem 1.1.
´∞

0
tz−1e−t dt converges for all Re(z) ∈

(0,∞).

Proof. Let x = Re(z) and split the integral into a sum of
two terms:ˆ ∞

0

tx−1e−t dt =

ˆ 1

0

tx−1e−t dt+

ˆ ∞
1

tx−1e−t dt.

The strategy is to show that each of the two integrals
on the right-hand side converge – in both cases we con-
struct f(t) such that 0 ≤ tx−1e−t ≤ f(t) and show that
the integral of f(t) over (0,∞) is finite, and hence so is
the integral of tx−1e−t.

In the case of the first integral, since e−t ≤ 1 for t ≥ 0,
we have that 0 ≤ tx−1e−t ≤ tx−1 for t ≥ 0. Then

0 ≤
ˆ 1

0

tx−1e−t dt ≤
ˆ 1

0

tx−1 dt

= lim
α→0+

[
tx

x

]1

t=α

= lim
α→0+

(
1

x
− αx

x

)
.
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If x > 0, then αx → 0 as α → 0+, so that
´ 1

0
tx−1 dt

converges to 1
x
. Hence

´ 1

0
tx−1e−t dt converges.

In the case of the second integral, first note that tqe−t/2 →
0 as t → ∞ for any q ∈ R. Hence for any x ∈ R, there
exists ε such that 0 ≤ tx−1e−t/2 ≤ 1 for t = ε. So we
further split the second integral at ε:
ˆ ∞

1

tx−1e−t dt =

ˆ ε

1

tx−1e−t dt+

ˆ ∞
ε

tx−1e−t dt.

The first term is finite, being a finite integral. For the
second term, when t ≥ ε we have

tx−1e−t = (tx−1e−t/2)e−t/2 ≤ e−t/2,

thusˆ ∞
ε

tx−1e−t dt ≤
ˆ ∞
ε

e−t/2 dt = lim
α→∞

[
−2e−t/2

]α
t=ε

= lim
α→∞

(2e−ε/2 − 2e−α/2) = 2e−ε/2.

This shows the second term is convergent, thus
´∞

1
tx−1e−t dt

converges. All said,
´∞

0
tx−1e−t dt converges for all x such

that 0 < x <∞ by lemma 1.1.

Next, it is proper to ask what the definition of Γ(x)
means. It has already been said that Γ(x) extends the
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factorial function to 0 < x <∞, but we have not shown
this – in order to do so, we need the following result:

Proposition 1.2. For all x > 0, Γ(x+ 1) = xΓ(x).

Proof. From definition 1.1,

Γ(x+ 1) =

ˆ ∞
0

txe−t dt.

Integration by parts�, with f(t) = tx and g(t) = −e−t,
yields

ˆ ∞
0

txe−t dt−
ˆ ∞

0

xtx−1e−t dt =
[
−txe−t

]∞
0
.

Rearranging,

Γ(x+ 1) = lim
m→∞

[
−txe−t

]m
0

+

ˆ ∞
0

xtx−1e−t dt

= lim
m→∞

(−e−mmx) + x

ˆ ∞
0

tx−1e−t dt.

� The product rule says that

(f · g)′ = f · g′ + f ′ · g,

from which it follows that

ˆ b

a

f · g′ dx = −
ˆ b

a

f ′ · g dx+ f · g
∣∣b
a
.
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Now, as m→∞, mxe−m → 0, so we have

Γ(x+ 1) = x

ˆ ∞
0

tx−1e−t dt = xΓ(x).

The recurrence relation, also known as the functional
equation,

Γ(z + 1) = zΓ(z)

is valid for all complex arguments z for which the integral
in definition 1.2 converges.

We may extend the functional equation to negative values
through inversion,

Γ(z) =
Γ(z + 1)

z
,

so for example Γ(−1/2) = −2Γ(1/2). Reiteration of
this identity allows us to define the Gamma function on
the whole real axis except on the nonpositive integers
(0,−1,−2, . . . ).

That said, we may now show the following:

Theorem 1.3. For all n ∈ N, Γ(n+ 1) = n!.
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Proof. From proposition 1.2, we have

Γ(n+ 1) = n · Γ(n)

= n · (n− 1) · Γ(n− 1)

...

= n · (n− 1) · · · · · 2 · 1 · Γ(1)

= n! · Γ(1).

It remains to show that Γ(1) = 1 = 0!. By definition 1.1,
we have

Γ(1) =

ˆ ∞
0

e−t dt = lim
m→∞

[
−e−t

]m
0

= lim
m→∞

(−e−m+1) = 1.

Euler wrote a letter on January 8, 1730 to Christian
Goldbach in which he proposed the following definition
for the Gamma function:

Definition 1.3. Let x > 0,

Γ(x) :=

ˆ 1

0

(− log(t))x−1 dt (1.5)

We can show this historical definition equivalent to its
more usual form, definition 1.1, through a simple change
of variable u = − log(t).
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Proof. Let u = − log(t). Then we have

t = e−u and du = − dt

t
.

Our corresponding limits of integration are

t = 0→ u =∞ and t = 1→ u = 0.

We thus have

−
ˆ 0

∞
ux−1e−u du =

ˆ ∞
0

ux−1e−u du

where a simple relabeling yields definition 1.1.

Other forms of the Gamma function are obtained through
a simple change of variables, as follows:

Γ(z) = 2

ˆ ∞
0

y2z−1e−y
2

dy by letting t = y2

Γ(z) =

ˆ 1

0

(
ln

1

y

)z−1

dy by letting e−t = y.

Definition 1.4. Derivatives of the Gamma Func-
tion. The derivatives of the Gamma function can be
calculated by straightforward differentiation under the
integral sign:

Γ′(x) =

ˆ ∞
0

tx−1e−t log(t) dt

Γ(n)(x) =

ˆ ∞
0

tx−1e−t logn(t) dt
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where the identity d
dx
ax = ax log(a) is used�.

So how do we actually compute the Gamma function?
It was previously mentioned that we can compute the
Gamma function for negative argument using the recur-
sion formula:

Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n+ 1)
,

where we choose n sufficiently large such that z + n is
positive. Another formula for computing the Gamma
function for negative argument involves Euler’s reflection
formula (discussed later):

Γ(−z) =
−π

zΓ(z) sinπz
.

However both of the above two formulas rely upon an
ability to compute the Gamma function for positive ar-
gument.

The integral definition is not very useful in terms of effi-
ciency; to produce an accurate result, an extremely high

� This derivative identity follows from a simple application of
the chain rule:

d

dx
ax =

d

dx
ex log a = elog ax

· log a = ax · log a.
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number of terms would have to be added during some
numerical integration procedure. There are several other
ways, possessing various degrees of efficiency, to numeri-
cally compute the Gamma function. The simplest to un-
derstand is as follows: A series expansion (derived later)
for log(Γ(1 + x)) exists such that for |x| < 1 we have

log(Γ(1 + x)) = −γx+
∞∑
k=2

(−1)kζ(k)

k
xk. (1.6)

It follows easily from the equation above and the func-
tional equation that

1

Γ(z)
= z exp

(
γz −

∞∑
k=2

(−1)kζ(k)zk

k

)
. (1.7)

Other formulas for computing the Gamma function in-
clude the Lanczos approximation, which is used to com-
pute the Gamma function to arbitrary precision, and
Stirling’s formula, which is an asymptotic formula used
to approximate the value of the Gamma function given
very large arguments when absolute precision is less im-
portant, and is discussed in a later chapter.



2

Integrals Involving a
Decaying Exponential

We begin with the Gamma function, which is defined by
Euler’s integral:

Γ(z) ≡
ˆ ∞

0

dx xz−1e−x, for Re(z) > 0.

It can be immediately recognized that if we set z = n+1
then we have

Γ(n+ 1) =

ˆ ∞
0

tne−t dt, for Re(n) > −1.

We arrive at a useful relation if we make the substitution
x = νt such that dx = ν dt in the evaluation of the

17
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following integral:

ˆ ∞
0

dt tne−νt =

ˆ ∞
0

dx

ν

(x
ν

)n
e−x

=

´∞
0
xne−x dx

νn+1
=

Γ(n+ 1)

νn+1
.

Integrals over temporally or spatially decaying processes
(such as collisional damping at rate ν ∼ 1/τ) often result
in integrals of the form

ˆ ∞
0

dt tne−t/τ = τn+1

ˆ ∞
0

dx xne−x where x ≡ t/τ.

Two values of the argument z of fundamental interest
for Gamma functions are z = 1 and z = 1/2. For z = 1
the Gamma function becomes simply the integral of a
decaying exponential:

Γ(1) =

ˆ ∞
0

dx e−x = 1.

For z = 1/2, by using the substitution x = u2 the Gamma
function becomes the integral of a Gaussian distribution
over an infinite domain:�

Γ(
1

2
) = 2

ˆ ∞
0

duu(u2)−1/2e−u
2

= 2

ˆ ∞
0

du e−u
2

=
√
π.

� Refer to Chapter 5 for a proof of this result.
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When the argument of the Gamma function is a positive
integer (given by the map z → n > 0), the Gamma
function simplifies to a factorial function:

Γ(n+ 1) = nΓ(n) = · · · = n(n− 1)(n− 2) · · · 1 ≡ n!.

Using this factorial form for the Gamma function, one
thus finds thatˆ ∞

0

dt tne−t/τ = τn+1n!, for n = 0, 1, 2, . . .

using the usual convention that 0! ≡ 1. The first few of
these integrals are

ˆ ∞
0

dt

τ

 1
t/τ
t2/τ 2

 e−t/τ =

ˆ ∞
0

dx

 1
x
x2

 e−x =

 1
1
2

 .

When the argument of the Gamma function is a positive
half-integer (given by the map z → n + 1/2 > 0), the
Gamma function simplifies to a double factorial:�

Γ

(
n+

1

2

)
=

(
n− 1

2

)
Γ

(
n− 1

2

)
=

(
n− 1

2

)(
n− 3

2

)
Γ

(
n− 3

2

)
= [(2n− 1)(2n− 3) · · · 1]Γ

(
1

2

)
/2n

≡ (2n− 1)!!
√
π/2n.

� The product of all odd integers up to some odd positive integer
n is often called the double factorial of n. It is denoted by n!!.
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Hölder’s Theorem

A large number of definitions have been given for the
Gamma function. Although they describe the same func-
tion, it is not entirely straightforward to prove their equiv-
alence. Instead of having to find a specialized proof for
each formula, it would be highly desirable to have a gen-
eral method of identifying the Gamma function given any
particular form.

One way to prove equivalence would be to find a differ-
ential equation that characterizes the Gamma function.
Most special functions in applied mathematics arise as
solutions to differential equations, whose solutions are
unique. However, the Gamma function does not appear
to satisfy any simple differential equation. Otto Hölder
proved in 1887 that the Gamma function at least does

21



22

not satisfy any algebraic differential equation by show-
ing that a solution to such an equation could not satisfy
the Gamma function’s recurrence formula. This result is
known as Hölder’s theorem.

A definite and generally applicable characterization of
the Gamma function was not given until 1922. Harald
Bohr and Johannes Mollerup then proved what is known
as the Bohr-Mollerup theorem: that the Gamma function
is the unique solution to the factorial recurrence relation
that is positive and logarithmically convex for positive z
and whose value at 1 is 1 (a function is logarithmically
convex if its logarithm is convex).

The Bohr-Mollerup theorem (discussed in the next chap-
ter) is useful because it is relatively easy to prove loga-
rithmic convexity for any of the different formulas used
to define the Gamma function. Taking things further,
instead of defining the Gamma function by any partic-
ular formula, we can choose the conditions of the Bohr-
Mollerup theorem as the definition, and then pick any
formula we like that satisfies the conditions as a starting
point for studying the Gamma function.

The constant π = 3.14159 . . . represents the ratio of the
circumference of a circle to its diameter. The number
π, like many other fundamental mathematical constants
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such as e = 2.71828 . . . , is a transcendental number. Both
π and e possess an infinite number of digits which appear
to have no orderly pattern to their arrangement. Tran-
scendental numbers cannot be expressed as the root of
any algebraic equation that contains only rational num-
bers. In general, transcendental means nonalgebraic.

To be clear, consider the numbers
√

2 and π. Irrational
means 'cannot be expressed as a fraction'.

√
2 is an ir-

rational number but is not transcendental, whereas π is
both transcendental and (is therefore) irrational. Any al-
gebraic number raised to the power of an irrational num-
ber is necessarily a transcendental number.

A transcendental function does not satisfy any polyno-
mial equation whose coefficients are themselves polyno-
mials, in contrast to an algebraic function, which does
satisfy such an equation. A transcendental function f(x)
is not expressible as a finite combination of the algebraic
operations (employing only rationals) of addition, sub-
traction, multiplication, division, raising to a power, and
extracting a root applied to x. Examples include the
functions log x, sinx, cosx, ex and any functions con-
taining them. Such functions are expressible in algebraic
terms only as infinite series – in this sense a transcenden-
tal function is a function that "transcends" algebra.
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The following functions are transcendental:

f1(x) = xπ

f2(x) = cx, c 6= 0, 1

f3(x) = xx

f4(x) = x
1
x

f5(x) = logc x, c 6= 0, 1

f6(x) = sinx

Formally, an analytic function f(z) of one real or complex
variable z is transcendental if it is algebraically indepen-
dent of that variable. This can be extended to functions
of several variables.

Hölder’s theorem states that the Gamma function does
not satisfy any algebraic differential equation whose coef-
ficients are rational functions. The result was first proved
by Otto Hölder in 1887. The theorem also generalizes to
the q-gamma function.

Theorem 3.1. (Hölder’s Theorem). There exists no
non-constant polynomial P (x; y0, y1, . . . , yn) such that

P (x; Γ(x),Γ′(x), . . . ,Γ(n)(x)) ≡ 0

where y0, y1, . . . , yn are functions of x, Γ(x) is the Gamma
function, and P is a polynomial in y0, y1, . . . , yn with co-
efficients drawn from the ring of polynomials in x. That
is to say,

P (x; y0, y1, . . . , yn) =
∑

(a0,a1,...,an) A(a0,a1,...,an)(x) · (y0)a0 · . . . · (yn)an
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where the (a0, a1, . . . , an) index all possible terms of the
polynomial and the A(a0,a1,...,an)(x) are polynomials in x
acting as coefficients of polynomial P . The A(a0,a1,...,an)(x)
may be constants or zero.

Example 3.1. If P (x; y0, y1, y2) = x2y2+xy1+(x2−α2)y0

then A(0,0,1)(x) = x2, A(0,1,0)(x) = x and A(1,0,0)(x) =
(x2−α2) where α is a constant. All the other coefficients
in the summation are zero. Then

P (z; f, f ′, f ′′) = x2f ′′ + xf ′ + (x2 − α2)f = 0

is an algebraic differential equation which, in this exam-
ple, has solutions f = Jα(x) and f = Yα(x), the Bessel
functions of either the first or second kind. So

P (x; Jα(x), J ′α(x), J ′′α(x)) ≡ 0

and therefore both Jα(x) and Yα(x) are differentially al-
gebraic (but are algebraically transcendental).

The vast majority of the familiar special functions of
mathematical physics are differentially algebraic. All al-
gebraic combinations of differentially algebraic functions
are also differentially algebraic. Also, all compositions
of differentially algebraic functions are differentially al-
gebraic. Hölder’s theorem simply states that the gamma
function, Γ(x), is not differentially algebraic and is, there-
fore, a transcendentally transcendental (or equivalently,
hypertranscendental) function.
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A hypertranscendental function is a function which is not
the solution of an algebraic differential equation with co-
efficients in Z (the integers) and with algebraic initial
conditions. The term was introduced by D. D. Morduhai-
Boltovskoi in 1949. Hypertranscendental functions usu-
ally arise as the solutions to functional equations, the
Gamma function being one example.

A functional equation is any equation that specifies a
function in implicit form. Often, the equation relates the
value of a function at some point with its values at other
points. For instance, properties of functions can be de-
termined by considering the types of functional equations
they satisfy. The term functional equation usually refers
to equations that cannot be simply reduced to algebraic
equations.

A few simple lemmas will greatly assist us in proving
Hölder’s theorem.

In what follows, the minimal polynomial of an algebraic
number ζ is the unique irreducible monic polynomial of
smallest degree m(x) with rational coefficients such that
m(ζ) = 0 and whose leading coefficient is 1. The min-
imal polynomial of an algebraic number α divides any
other polynomial with rational coefficients p(x) such that
p(α) = 0. It follows that it has minimal degree among
all polynomials f with this property.
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The following table lists some algebraic numbers ζ along-
side their minimal polynomialsm(x), computed using the
Mathematica function MinimalPolynomial:

ζ m(x)

2 x− 2
21/2 x2 − 2
21/3 x3 − 2
21/3 + 5 x3 − 15x2 + 75x− 127
21/2 + 31/2 x4 − 10x2 + 1

Lemma 3.1. The minimal polynomial of an algebraic
number ζ is unique.

Proof. If we had two such polynomials, they must both
have the same degree and the same leading coefficient 1,
and so their difference is a polynomial of smaller degree
which still gives 0 when applied to ζ. But this would
contradict the minimality of m.

Lemma 3.2. If p is some polynomial such that p(ζ) = 0,
then m divides p.

Proof. By definition, deg(p) ≥ deg(m). We may write
p = qm+r for some polynomials q, r, such that deg(r) <
deg(m). Then since m(ζ) = 0 and p(ζ) = 0, we have
that r(ζ) = p(ζ) − q(ζ)m(ζ) = 0, which contradicts the
minimality of m, unless r(x) ≡ 0. Therefore r(x) ≡ 0
and m divides p.
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Proof. (Hölder’s Theorem). Assume the existence of
P as described in the statement of the theorem, that is

P (x; Γ(x),Γ′(x), . . . ,Γ(n)(x)) ≡ 0

with

P (x; y0, y1, . . . , yn) =
∑

(a0,a1,...,an)A(a0,a1,...,an)(x) · (y0)a0 · . . . · (yn)an .

Also assume that P is of lowest possible degree. This
means that all the coefficients A(a0,a1,...,an) have no com-
mon factor of the form (x− γ) and so P is not divisible
by any factor of (x− γ). It also means that P is not the
product of any two polynomials of lower degree. Consider
the relations

P (x+ 1; Γ(x+ 1),Γ(1)(x+ 1), . . . ,Γ(n)(x+ 1)) =

= P
(
x+ 1;xΓ(x), [xΓ(x)](1), [xΓ(x)](2), . . . , [xΓ(x)](n)

)
= P

(
x+ 1;xΓ(x), xΓ(1)(x) + Γ(x), . . . , xΓn(x) + nΓ(n−1)(x)

)
so we can define a second polynomial Q, defined by the
transformation

Q(x; y0, y1, . . . , yn) = P
(
x+ 1;xy0, xy1 + y0, . . . , xyn + ny(n−1)

)
and Q

(
x; Γ(x),Γ′(x), . . . ,Γ(n)(x)

)
= 0 is also an alge-

braic differential equation for Γ(x). Q and P both have
the same degree and P must divide Q otherwise there
would be a remainder and that would mean P was not of
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minimal degree. Since (xyn + nyn−1)hn = xhnyhnn + · · · ,
the highest degree term of Q is

xh0+h1+···+hnA(h0,h1,...,hn)(x+1) · (y0)h0 · (y1)h1 · . . . · ·(yn)hn

where (h0, h1, . . . , hn) are the exponents of the highest
degree term of P .

Let R(x) be the ratio between P and Q:

Q(x; y0, y1, . . . , yn)= P
(
x+ 1;xy0, xy1 + y0, . . . , xyn + ny(n−1)

)
= R(x)P (x; y0, y1, . . . , yn).

Suppose R(x) has a zero, say γ. Substitute γ into

P (γ + 1; γy0, γy1 + y0, . . . , γyn + ny(n−1)) = 0 · P (x; y0, y1, . . . , yn) = 0.

This last equality indicates that (z−(γ+1)) is a factor of
P , contradicting the assumption that P was of minimal
degree.

Now consider the two leading terms, which must satisfy
the equality

R(x)A(h0,...,hn)(x) · (y0)h0 · . . . · (yn)hn

= xh0+···+hnA(h0,...,hn)(x+ 1) · (y0)h0 · . . . · (yn)hn

R(x)A(h0,...,hn)(x) = xh0+···+hnA(h0,...,hn)(x+ 1).

This equality cannot be satisfied for arbitrary x if R ≡ c,
where c is constant. Therefore, no such P exists and Γ(x)
is not differentially algebraic.





4

Bohr-Mullerup Theorem

Theorem 1.3 shows that the Gamma function extends the
factorial function from the set of natural numbers N to
real non-null positive numbers. But the Gamma function
is not the only way to do so. Consider, for instance,
functions of the form cos(2mπx)Γ(x), where m is any
non-null integer. We already know Γ(x+ 1) = xΓ(x), so
it follows

cos(2mπ(x+ 1))Γ(x+ 1) = x cos(2mπ(x+ 1))Γ(x)

= x cos(2mπx+ 2mπ)Γ(x)

= x cos(2mπx)Γ(x)

31
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thereby satisfying the functional equation. Hadamard
proposed another alternative:

F (x) :=
1

Γ(1− x)

d

dx
log

(
Γ(1−x

2
)

Γ(1− x
2
)

)
.

which gives F (n+1) = n! for all n ∈ N. In principle, there
are an infinite number of possibilities, since we may draw
any curve through the points (1, 1), (2, 2), (3, 6), (4, 24), . . . ,
and assume it represents some function that returns fac-
torials at integer values. The purpose of this section is
to explain why we consider the Gamma function as the
function which extends the factorial function to all real
x > 0. We seek a condition which implies that any such
function cannot be anything else other than Γ(x).

The functional equation does not only apply to the natu-
ral numbers; the relation Γ(x+1) = xΓ(x) is valid for any
x > 0. This is a stronger requirement than Γ(n+ 1) = n!
alone is, since it implies that the values of Γ in any range
[x, x+ 1] determine the value of Γ on the entire real line.
This is a fair amount of restriction, but not enough to
meet our goal.

To distinguish the Gamma function amongst all the pos-
sible continuations of the factorial function, the notion of
convexity is introduced. A standard definition of a con-
vex function is a necessarily continuous function whose
value at the midpoint of every interval in its domain does
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not exceed the arithmetic mean of its values at the ends
of the interval. Convex functions can be defined formally
as follows:

Definition 4.1. A function f : (a, b)→ R is called con-
vex if and only if for any x, y ∈ (a, b), we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ (0, 1).

We have parametrized the interval (x, y) as {λx + (1 −
λ)y | 0 < λ < 1}. The above definition means that
as you move from x to y, the line joining (x, f(x)) to
(y, f(y)) always lies above the graph of f .

convex

X

S Y

T
concave

Figure 4.1: Convex versus concave functions.

Any convex function on an open interval must be contin-
uous, which we will now show.

Lemma 4.1. Any convex function f : (a, b) → R is
continuous.
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Proof. We shall follow the proof given by Rudin. The
proof uses geometric language. See Figure 4.1 for the
corresponding diagram.

Suppose a < s < x < y < t < b. The points should not
be considered fixed, just that the preceding inequalities
are satisfied. Write S for the point (s, f(s)), and similarly
for x, y and t. Convexity implies X must lie below SY ,
and Y is above the line SX. Also, Y is below the line
XT . As y → x+, the point Y is sandwiched between
these two lines, and hence f(y)→ f(x). Left-hand limits
are handled similarly, and continuity of f follows.

As defined, convexity requires openess of the domain;
otherwise, for instance, we may have a convex function
on [a, b] which is not continuous, through the presence of
a point discontinuity at a or b.

Given two points x and y in the domain of a real function

f , we may form the difference quotient f(y)−f(x)
y−x , which is

equivalent to the slope of the line segment from (x, f(x))
to (y, f(y)). For convex functions, the difference quotient
always increases as we increase x and y:

Proposition 4.1. If f : (a, b) → R is convex and if
a < s < t < u < b, then

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.
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Proof. Let a < s < t < u < b. Then

f(λs+ (1− λ)u) ≤ λf(s) + (1− λ)f(u).

Let λ = u−t
u−s , (When t = u, λ = 0 and when t = s, λ = 1.)

Then

λs+ (1− λ)u =
u− t
u− s

s+

(
1− u− t

u− s

)
u

=
(u− t)s+ (u− s)u− (u− t)u

u− s

=
us− ts+ u2 − us− u2 + ut

u− s

=
ut− ts
u− s

= t

It thus follows

f(t) ≤ f(u) +
u− t
u− s

· (f(s)− f(u)). (4.1)

Use of the identity u−t
u−s = 1 + s−t

u−s in equation 4.1 gives

f(t) ≤ f(s) +
s− t
u− s

(f(s)− f(u)). (4.2)

Rearrangement of equation 4.1 gives,

f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
,
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whereas rearrangement of equation 4.2 gives,

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
.

Hence

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t

as was meant to be shown.

If we take the logarithm of both sides of the convex func-
tion f(x) = x2, we get log f = 2 log x. Now, log x is not a
convex function (for each pair of points, the line segment
joining them lies below the graph, not above it); so log x
is in fact concave, not convex. Thus, log f is not convex
either. But if we consider h(x) = ex, which is convex, we
have that log h = x, which is also convex. We use the
terminology log-convex to describe h, which is a stronger
property than convexity is. To show this, we need the
following preliminary lemma:

Lemma 4.2. Any increasing convex function of a convex
function is convex.

Proof. Let f : (a, b) → (h, k) be convex and let g :
(h, k) → R be convex and increasing, i.e., x ≤ y ⇒
g(x) ≤ g(y). By the convexity of f , for any a < x < y < b
we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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for any λ ∈ [0, 1]. Furthermore by the convexity of g we
get,

g(f(λx+ (1− λ)y)) ≤ g(λf(x) + (1− λ)f(y))

≤ λg(f(x)) + (1− λ)g(f(y)).

Hence g ◦ f is convex.

0 1 2 3 4
x

1

2

3

4

5

6

GHxL

1 2 3 4
x

1

2

3

4

5

6

LogHGHxLL

Figure 4.2: The graphs of Γ(x) and log Γ(x) plotted over (0, 4).

Proposition 4.2. Given a function f : (a, b) → R, if
log f is convex, then so is f itself.

Proof. If log f is convex, then by lemma 4.2, since ex is
increasing and convex, we have that elog f = f is also
convex.

We now return to the Gamma function. It is obvious
from figure 4.2 that Γ(x) with x ∈ (0,∞) is convex. In
fact, Γ(x) increases steeply enough as x → ∞ that Γ :
(0,∞) → R is log-convex, which we shall momentarily
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prove. To prove that log Γ is convex (which implies that
Γ is convex) we need an inequality known as Hölder’s
inequality, which we prove in kind. To this end, consider
the following:

Lemma 4.3. If a > 0, b < 1, s > 0, t > 0 and s+ t = 1,
then

(1− a)s(1− b)t ≤ 1− asbt. (4.3)

Proof. Consider f(a) = (1− a)s(1− b)t + asbt where b is
fixed. Then

f ′(a) = −s(1− a)s−1(1− b)t + sas−1bt

from which it follows

f ′(a) = 0 ⇒
(

1

a
− 1

)1−s

=

(
1

b
− 1

)t
⇒ a = b.

Now

f ′′(a) = s(s− 1)(1− a)s−2(1− b)t + s(s− 1)as−2bt

from which we see

f ′′(a)
∣∣
a=b

= s(s− 1)
[
(1− a)−1 + a−1

]
< 0.

This means f attains its maximum at a = b, and we have

f(a)
∣∣
a=b

= 1− a+ a = 1.

Hence f(a) ≤ 1 which gives inequality 4.3.



39

Lemma 4.4. (Hölder’s inequality). Let p and q be
positive real numbers such that 1

p
+ 1

q
= 1. Then for any

integrable functions f, g : [a, b]→ R, we have

∣∣∣∣∣
ˆ b

a

f(x)g(x) dx

∣∣∣∣∣ ≤
(ˆ b

a

|f |p dx

)1/p(ˆ b

a

|g|q dx

)1/q

.

(4.4)

Proof. 1
p

+ 1
q

= 1 ⇒ (1 − p)(1 − q) = 1, thus inequality

4.3 is satisfied. Now, using inequality 4.3 as well as the
Cauchy-Schwarz inequality, we have in the limit ε→ 0+,

∣∣∣∣∣
ˆ b

a

f · g dx

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ b−ε

a

f · g dx

∣∣∣∣∣+
∣∣f(b)g(b)

∣∣ε
≤

( ´ b−ε
a
|f |p dx

)1/p( ´ b−ε
a
|g|q dx

)1/q

+ |f(b)| · |g(b)| · ε
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=

(ˆ b

a

|f |p dx− |f(b)|p · ε

)1/p(ˆ b

a

|g|q dx− |g(b)|q · ε

)1/q

+ |f(b)| · |g(b)| · ε

=

( ´ b
a
|f |p dx

)1/p( ´ b
a
|g|q dx

)1/q(
1− |f |p·ε´ b

a |f |p dx

)1/p(
1− |g|q ·ε´ b

a |g|q dx

)1/q

+ |f(b)| · |g(b)| · ε

≤
( ´ b

a
|f |p dx

)1/p( ´ b
a
|g|q dx

)1/q(
1− |f ||g|ε

(
´ b
a |f |p dx)1/p(

´ b
a |g|q dx)1/q

)
+ |f(b)| · |g(b)| · ε

=

(ˆ b

a

|f |p dx

)1/p(ˆ b

a

|g|q dx

)1/q

and the proof is complete.

Now consider that

Theorem 4.3. Γ : (0,∞)→ R is log-convex.

Proof. Let 1 < p < ∞ and 1
p

+ 1
q

= 1. As in Rudin,
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consider

Γ

(
x

p
+
y

q

)
=

ˆ ∞
0

t(x/p+y/q−1)e−t dt

=

ˆ ∞
0

tx/pty/qt−1/pt−1/qe−t/pe−t/q dt

=

ˆ ∞
0

(
tx−1e−t

)1/p(
ty−1e−t

)1/q
dt

≤

(ˆ ∞
0

tx−1e−t dt

)1/p(ˆ ∞
0

ty−1e−t dt

)1/q

= Γ(x)1/p Γ(y)1/q.

Let λ = 1
p
, and hence 1− λ = 1

q
. Then λ ∈ (0, 1), and

Γ(λx+ (1− λ)y) ≤ Γ(x)λ Γ(y)1−λ

log Γ(λx+ (1− λ)y) ≤ log
[
Γ(x)λ Γ(y)1−λ]

= λ log Γ(x) + (1− λ) log Γ(y)

for any x, y ∈ (0,∞). Hence log Γ is convex.

A famous theorem of Bohr and Mullerup says that propo-
sition 1.2, theorem 1.3 and theorem 4.3, taken together,
distinguish Γ as the function which extends the factorials
to all real x > 0.

Theorem 4.4. (Bohr-Mullerup). If f : (0,∞) →
(0,∞) satisfies

1. f(1) = 1,
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2. f(x+ 1) = xf(x), and

3. log f is convex,

then f(x) = Γ(x) for all x ∈ (0,∞).

Proof. Rudin’s proof is very elegant. Since we have al-
ready shown Γ to satisfy conditions 1 through 3, it suf-
fices to prove that f(x) is uniquely determined by these
conditions. Furthermore, condition 2 asserts it is enough
to prove this only for x ∈ (0, 1).

Set ϕ = log f . Condition 1 says that ϕ(1) = 0 and
condition 2 says

ϕ(x+ 1) = ϕ(x) + log x. (4.5)

Condition 3 means that ϕ is convex.

Let 0 < x < 1, and let n ∈ N. Consider the difference
quotients of ϕ; let s = n, t = n+ 1 and u = n+ 1 + x to
get

ϕ(n+ 1)− ϕ(n) ≤ ϕ(n+ 1 + x)− ϕ(n+ 1)

x
.

The difference quotients of ϕ with s = n+1, t = n+1+x
and u = n+ 2 give

ϕ(n+ 1 + x)− ϕ(n+ 1)

x
≤ ϕ(n+ 2)− ϕ(n+ 1).

Note that by equation 4.5, ϕ(n+1)−ϕ(n) = log n, and in
addition by condition 2, ϕ(n+2)−ϕ(n+1) = log(n+1).
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Combining these gives

log n ≤ ϕ(n+ 1 + x)− ϕ(n+ 1)

x
≤ log(n+ 1).

Repeatedly applying equation 4.5 gives

ϕ(x+ n+ 1)

= ϕ(x+ n) + log(x+ n)

= ϕ(x+ n− 1) + log(x+ n) + log(x+ n− 1)

= ϕ(x+ n− 1) + log[(x+ n)(x+ n− 1)]

= ϕ(x+ n− 2) + log[(x+ n)(x+ n− 1)(x+ n− 2)]

...

= ϕ(x) + log[(x+ n)(x+ n− 1) · · · (x+ 1)x].

Also by equation 4.5, we have ϕ(n+ 1) = log(n!). So

ϕ(n+ 1 + x)− ϕ(n+ 1)

x

=
1

x
[ϕ(x) + log[(x+ n) · · · (x+ 1)x]− log(n!)]

giving us

log n ≤ 1
x
[ϕ(x) + log[(x+ n) · · · (x+ 1)x]− log(n!)] ≤ log(n+ 1).

Multiplying through by x yields

log nx ≤ ϕ(x) + log[(x+ n) · · · (x+ 1)x]− log(n!) ≤ log(n+ 1)x.
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Subtracting log nx from each term gives

0 ≤ ϕ(x) + log[(x+ n) · · · (x+ 1)x]− log(n!)− log nx ≤ log(n+ 1)x − log nx.

Simplifying,

0 ≤ ϕ(x)− log

[
n!nx

x(x+ 1) · · · (x+ n)

]
≤ x log

(
1 +

1

n

)
.

Now let n→∞, so that log
(
1 + 1

n

)
→ 0, and hence

ϕ(x) = lim
n→∞

log

[
n!nx

x(x+ 1) · · · (x+ n)

]
.

In any case ϕ is uniquely determined and the proof is
complete.

The last equation in the above proof brings us to an al-
ternative definition for the Gamma function. In another
(earlier) letter written October 13, 1729 also to his friend
Goldbach, Euler gave the following equivalent definition
for the Gamma function:

Definition 4.2. Let 0 < x <∞ and define

Γ(x) = limn→∞

[
n!nx

x(x+1)···(x+n)

]
= limn→∞

[
n!nx

x(1+x/1)···(1+x/n)

]
.



45

This approach, using an infinite product, was also chosen
by Gauss, in 1811, in his study of the Gamma function.
Using this formulation is often more convenient in estab-
lishing new properties of the Gamma function.

Proof. Since we are dealing with a definition, this proof
is only to show consistency with the previous definitions
of Γ already given. The proof of theorem 4.4 shows that

ϕ(x) = lim
n→∞

log

[
n!nx

x(x+ 1) · · · (x+ n)

]

for 0 < x < 1. Since the log function is continuous, we
can exchange lim and log this way:

ϕ(x) = log lim
n→∞

[
n!nx

x(x+ 1) · · · (x+ n)

]
.

Exponentiating both sides gives

Γ(x) = lim
n→∞

[
n!nx

x(x+ 1) · · · (x+ n)

]
(4.6)

for 0 < x < 1. Equation 4.6 also holds for x = 1, in
which case we have

Γ(1) = lim
n→∞

[
n!n

1 · 2 · · · · · (n+ 1)

]
= 1.
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Thus, equation 4.6 holds for 0 < x ≤ 1. Using proposi-
tion 1.2, we see that

Γ(x+ 1) = x lim
n→∞

[
n!nx

x(x+ 1) · · · (x+ n)

]

= lim
n→∞

x+ n+ 1

n

[
n!nx+1

(x+ 1) · · · (x+ n)(x+ n+ 1)

]

= lim
n→∞

[
1 + 1+x

n

]
· lim
n→∞

[
n!nx+1

(x+1)···(x+n)(x+n+1)

]

= lim
n→∞

[
n!nx+1

(x+ 1) · · · (x+ n)(x+ n+ 1)

]
.

From this we see that equation 4.6 holds for 1 < x ≤ 2
as well; repeatedly applying this procedure shows that it
applies for all x > 0, as required.
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The Beta Function

The integral in the definition of the Gamma function
(definition 1.1) is known as Euler’s second integral. Now,
Euler’s first integral (1730) is another integral related to
the Gamma function, which he also proposed:

Definition 5.1. Beta Function. For Re(x),Re(y) > 0,
define

B(x, y) :=

ˆ 1

0

tx−1(1− t)y−1 dt

= 2

ˆ π/2

0

sin(t)2x−1 cos(t)2y−1 dt

=
Γ(x)Γ(y)

Γ(x+ y)
= B(y, x).
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This integral is commonly known as the Beta function.
The definition above involves three equivalent identities –
an integral over trigonometric functions, an integral over
polynomials and a ratio of Gamma functions. The Beta
function is symmetric.

To interrelate these various representations of the Beta
function, consider the product of two factorials written
in terms of the Gamma function:

m!n! =

ˆ ∞
0

e−uum du

ˆ ∞
0

e−vvn dv.

Let u = x2 and v = y2 so that

m!n! = 4

ˆ ∞
0

e−x
2

x2m+1 dx

ˆ ∞
0

e−y
2

y2n+1 dy

=

ˆ ∞
−∞

ˆ ∞
−∞

e−(x2+y2)|x|2m+1|y|2n+1 dx dy.

Switch to polar coordinates with x = r cos θ and y =
r sin θ,

m!n! =

ˆ 2π

0

ˆ ∞
0

e−r
2|r cos θ|2m+1|r sin θ|2n+1r dr dθ

=

ˆ ∞
0

e−r
2

r2m+2n+3 dr

ˆ 2π

0

| cos2m+1 θ sin2n+1 θ| dθ

= 4

ˆ ∞
0

e−r
2

r2(m+n+1)+1 dr

ˆ π/2

0

cos2m+1 θ sin2n+1 θ dθ.
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Now make the substitutions t = r2 and dt = 2r dr in the
first integral,

m!n! = 2

ˆ ∞
0

e−ttm+n+1 dt

ˆ π/2

0

cos2m+1 θ sin2n+1 θ dθ

= 2 · Γ(m+ n+ 2)

ˆ π/2

0

cos2m+1 θ sin2n+1 θ dθ

= 2(m+ n+ 1)!

ˆ π/2

0

cos2m+1 θ sin2n+1 θ dθ.

In terms of the Beta function we then have

B(m+ 1, n+ 1) ≡ 2

ˆ π/2

0

cos2m+1 θ sin2n+1 θ dθ

=
m! n!

(m+ n+ 1)!
.

Adjusting the arguments then gives

B(m,n) ≡ Γ(m)Γ(n)

Γ(m+ n)

=
(m− 1)! (n− 1)!

(m+ n− 1)!
.

From the trigonometric form

B(x+ 1, y + 1) = 2

ˆ π/2

0

sin(t)2x+1 cos(t)2y+1 dt
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we recover the integral over polynomials by making the
change of variables u = cos2 t and du = 2 cos t sin t dt.

Doing this,

B(x+ 1, y + 1) =

ˆ 1

0

(1− u)x(u)y du

so readjustment of the arguments and relabeling gives us

B(x, y) =

ˆ 1

0

(1− t)x−1(t)y−1 dt.

Directly from the definition follows the beta function func-
tional equation

B(x+ 1, y) =
x

x+ y
B(x, y).

Proof.

B(x+ 1, y) = Γ(x+1)Γ(y)
Γ(x+y+1)

= xΓ(x)Γ(y)
(x+y)Γ(x+y)

= x
x+y

B(x, y).

By substituting x = y = 1
2

into the definition, we obtain
the following:

Corollary. Γ(1
2
) =
√
π.
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Proof. Considering

Γ(x)Γ(y)

Γ(x+ y)
= 2

ˆ π/2

0

(sin θ)2x−1(cos θ)2y−1 dθ

the special case x = y = 1
2

gives[
Γ

(
1

2

)]2

= 2

ˆ π/2

0

dθ = π.

Since Γ is positive for all x ∈ (0,∞), we have Γ(1
2
) =
√
π

as required.

Using this result, we can easily perform an integral very
fundamental in probability theory:

Proposition 5.1.

ˆ ∞
−∞

e−x
2

dx =
√
π.

Proof. We have Γ(1
2
) =
√
π. By definition,

Γ

(
1

2

)
=

ˆ ∞
0

t−1/2e−t dt.

Substituting t = x2, dt = 2x dx yields

Γ

(
1

2

)
=

ˆ ∞
0

x−1e−x
2

2x dx =
√
π.
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Therefore ˆ ∞
0

e−x
2

dx =

√
π

2
.

Since e−x
2

is symmetric about x = 0, we have

ˆ ∞
−∞

e−x
2

dx = 2

ˆ ∞
0

e−x
2

dx =
√
π.
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Wallis’s Integrals

The following integrals (Wallis’s integrals)

Wn =

ˆ π/2

0

sinn θ dθ =

ˆ π/2

0

cosn θ dθ

may be computed by means of the Beta and Gamma
functions. By the definition of the Beta function, we
have

Wn =
1

2
B

(
n+ 1

2
,
1

2

)
which gives rise to the two cases n = 2p+ 1 and n = 2p.
For the odd values of the argument n:

W2p+1 =
1

2
B

(
p+1,

1

2

)
Γ(p+ 1)Γ(1/2)

2Γ(p+ 3/2)
=

p! Γ(1/2)

(2p+ 1)Γ(p+ 1/2)
.
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Using the formula

Γ(n+ 1/2) =
1 · 3 · 5 · · · (2n− 1)

2n
√
π

produces the result

W2p+1 =
2pp!

1 · 3 · 5 · · · (2p+ 1)
=

4pp!2

(2p+ 1)!
.

For the even values of the argument n:

W2p =
1

2
B

(
p+

1

2
,
1

2

)
Γ(p+ 1/2)Γ(1/2)

2Γ(p+ 1)

and

W2p =
1 · 3 · 5 · (2p− 1)

2p+1p!
π =

(2p)!

4pp!2
π

2
.

We obviously have

Wn+2 = 1
2
B
(
n+2+1

2
, 1

2

)
= (n+1)/2

n/2+1
Wn =

(
n+1
n+2

)
Wn

according to the Beta function functional equation.

Note that

Wα =
1

2
B

(
α + 1

2
,
1

2

)
works for any real α > −1 and we can therefore deduce
using the definition of the Beta function (respectively
with α = −1/2 and α = 1/2) that
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ˆ π/2

0

dθ√
sin θ

=

ˆ 1

0

2 dt√
1− t4

=
Γ2(1/4)

2
√

2πˆ π/2

0

√
sin θ dθ =

ˆ 1

0

2t2 dt√
1− t4

=
(2π)3/2

Γ2(1/4)
.

The product of those two integrals allows us to derive a
relation due to Euler:

ˆ 1

0

dt√
1− t4

ˆ 1

0

t2 dt√
1− t4

=
π

4
.
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Wallis’s Product

Let’s establish an infinite product for π/2 known as “Wal-
lis’s product.”

Theorem 7.1.

π

2
=

2

1

2

3

4

3

4

5

6

5

6

7
· · · 2k

2k − 1

2k

2k + 1
· · ·

By this is meant that if Pn is the product of the first n
factors on the right-hand side,

lim
n→∞

Pn =
π

2
.
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Proof. Directly from the definition of the Beta function,

B

(
n+

1

2
,
1

2

)
:

ˆ π/2

0

sin2n x dx =

√
π Γ(n+ 1/2)

2(n!)

B

(
n+ 1,

1

2

)
:

ˆ π/2

0

sin2n+1 x dx =

√
π n!

2 Γ(n+ 3/2)

where n = 0, 1, . . . . (7.1)

Hence, the quotient of these two integrals is

´ π/2
0

sin2n x dx´ π/2
0

sin2n+1 x dx
=

Γ(n+ 1
2
)

n!

Γ(n+ 3
2
)

n!
(7.2)

=
2n+ 1

2n

2n− 1

2n

2n− 1

2n− 2
· · · 3

4

3

2

1

2

π

2

=
1

P2n

π

2
.

We shall now show that the left-hand side of equation 7.2
approaches 1 as n → ∞. By equation 7.1 formed for n
and for n− 1 we have

ˆ π/2

0

sin2n+1 x dx =
2n

2n+ 1

ˆ π/2

0

sin2n−1 x dx. (7.3)

Since 0 ≤ sinx ≤ 1 in the interval (0, π/2), we have

0 <
´ π/2

0
sin2n+1 x dx <

´ π/2
0

sin2n x dx <
´ π/2

0
sin2n−1 x dx.
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Dividing this inequality by the first of its integrals and
allowing n to become infinite, we have by equation 7.3
that the left-hand side of equation 7.2 approaches 1.

Hence,

lim
n→∞

P2n =
π

2
.

Also

lim
n→∞

P2n+1 = lim
n→∞

2n+ 2

2n+ 1
P2n =

π

2

and the proof is complete.

Corollary.

lim
n→∞

(n!)222n

(2n)!
√
n

=
√
π.

Proof. To prove this, multiply and divide the right-hand
side of the equation

P2n =
2

1

2

3
· · · 2n

2n− 1

2n

2n+ 1

by 2·2 · · · 2n·2n, thus introducing factorials in the denom-
inator. If then factors 2 are segregated in the numerator,
the result becomes apparent.
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Product & Reflection
Formulas

Using the fact that (1−t/n)n converges to e−t as n→∞,
one may write

Γ(z) = lim
n→∞

ˆ n

0

tz−1

(
1− t

n

)n
dt

= lim
n→∞

1

nn

ˆ n

0

tz−1(n− t)n dt, Re z > 0.
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Integrating by parts, we have

Γ(z) = lim
n→∞

1

nn
· n
z

ˆ n

0

tz(n− t)n−1 dt

= lim
n→∞

1

nn
n(n− 1) · · · 1

z(z + 1) · · · (z + n− 1)

ˆ n

0

tz+n−1 dt

= lim
n→∞

nz

z

(
1

z + 1

)(
2

z + 2

)
· · ·
(

n

z + n

)
.

Thus,

1

Γ(z)
= lim

n→∞
zn−z(1 + z)

(
1 +

z

2

)
· · ·
(

1 +
z

n

)
= lim

n→∞
zn−z

n∏
k=1

(
1 +

z

k

)
.

To evaluate the above limit, we insert convergence factors
e−z/k to get

1

Γ(z)
= lim

n→∞
zn−zez(1+1/2+···+1/n)

n∏
k=1

(
1 +

z

k

)
e−z/k

= lim
n→∞

ez(1+1/2+···+1/n−logn)

[
z

n∏
k=1

(
1 +

z

k

)
e−z/k

]
.

We shall shortly prove that 1 + 1
2

+ · · · + 1
n
− log n ap-

proaches a positive limit γ, known as the Euler constant,
so that

1

Γ(z)
= zeγz

∞∏
k=1

(
1 +

z

k

)
e−z/k. (8.1)

which is Weierstrass’ product form of the Gamma
function.
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Euler’s constant, also known as the Euler-Mascheroni
constant, has the numerical value

γ ∼ 0.577 215 664 901 532 860 606 512 . . . .

Using the Weierstrass identity to define an extension of
the Gamma function to the left half-plane, we get

1

Γ(z)Γ(−z)
= −z2

∞∏
k=1

(
1− z2

k2

)
= −z sin πz

π
.

where we used the identity

sin πz

πz
=
∞∏
k=1

(
1− z2

k2

)
which is proved in Appendix A.

Thus

Γ(z)Γ(−z) =
−π

z sin πz
(8.2)

and given that Γ(1− z) = −zΓ(−z),

Γ(z)Γ(1− z) = B(z, 1− z) =
π

sin πz
(8.3)

which is Euler’s reflection formula.

Two immediate results which follow from equation 8.3
are
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1. Γ is zero-free,

2. Γ(1/2) =
√
π. Applying Γ(z + 1) = zΓ(z), we also

find Γ(3/2) = 1
2

√
π, Γ(5/2) = 3

√
π/4, and so on.

Lemma 8.1. (Euler’s constant γ). If sn = 1 + 1
2

+

· · ·+ 1
n
− log n, then limn→∞ sn exists.

Proof. tn = 1 + 1
2

+ · · ·+ 1/(n− 1)− log n increases with
n since, in the geometric sense, tn represents the area of
n − 1 regions between an upper Reimann sum and the
exact value of

´ n
1

(1/x) dx. We may write

tn =
n−1∑
k=1

[
1

k
− log

(
k + 1

k

)]
and

lim
n→∞

tn =
∞∑
k=1

[
1

k
− log

(
1 +

1

k
.

)]
Now since

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·

the series above converges to a positive constant since

0 <
1

k
− log

(
1 +

1

k

)
=

1

2k2
− 1

3k3
+

1

4k4
− · · · ≤ 1

2k2
.

This proves the lemma, because limn→∞ sn = limn→∞ tn.
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Using equation 8.3, the gamma function Γ(r) of a rational
number r can be reduced. For instance,

Γ

(
2

3

)
=

2π√
3 Γ(1

3
)
.





9

Half-Integer Values

From the functional equation Γ(n+1) = nΓ(n) the value
of the Gamma function at half-integer values is deter-
mined by a single one of them; one has

Γ

(
1

2

)
=
√
π

from which it follows, through repeated application of
the functional equation, that for n ∈ N,

Γ

(
1

2
+ n

)
=
√
π

n∏
k=1

2k − 1

2
=

(2n− 1)!!

2n
√
π

and

Γ

(
1

2
− n

)
=
√
π

n∏
k=1

− 2

2k − 1
=

(−1)n2n

(2n− 1)!!

√
π.
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Similarly,

Γ

(
n

2

)
=

(n− 2)!!

2(n−1)/2

√
π.
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Digamma and Polygamma
Functions

An entire theory revolves around Digamma and Polygamma
functions, which we shall not pursue in great depth here.
We briefly define them, then first show their involvement
in the derivation of an expression for the derivative of the
Gamma function which follows from Weierstrass’ prod-
uct. Series expansions shall prove useful.

The Digamma function is given by the logarithmic deriva-
tive of the Gamma function:

Ψ(z) ≡ d

dz
log Γ(z) =

Γ′(z)

Γ(z)
.

The nth derivative of Ψ(z) is called the polygamma func-
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tion, denoted ψn(z). The notation

ψ0(z) ≡ Ψ(z)

is often used for the digamma function itself.

Begin with the Weierstrass form

Γ(z) =

[
zeγz

∞∏
k=1

(
1 +

z

k

)
e−z/k

]−1

.

Take the logarithm of both sides,

− log[Γ(z)] = log z + γz +
∞∑
k=1

[
log

(
1 +

z

k

)
− z

k

]
.

Now differentiate,

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
k=1

(
1/k

1 + z/k
− 1

k

)

=
1

z
+ γ +

∞∑
k=1

(
1

k + z
− 1

k

)

Γ′(z) = −Γ(z)

[
1

z
+ γ +

∞∑
k=1

(
1

k + z
− 1

k

)]
≡ Γ(z)Ψ(z) = Γ(z)ψ0(z).
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It immediately follows that

Γ′(1)= −Γ(1)

{
1 + γ +

[(
1
2
− 1

)
+

(
1
3
− 1

2

)
+ · · ·+

(
1

k+1
− 1

k

)
+ · · ·

]}
= −(1 + γ − 1)

= −γ

and

Γ′(n) = −Γ(n)

{
1
n

+ γ

[(
1

1+k
− 1

)
+

(
1

2+k
− 1

2

)
+

(
1

3+k
− 1

3

)
+ · · ·

]}

= −Γ(n)

(
1

n
+ γ −

n∑
k=1

1

k

)
.

Given the expression for Γ′(z), the minimum value xm of
Γ(x) for real positive x = xm occurs when

Γ′(xm) = Γ(xm)ψ0(xm) = 0.

In other words, when

ψ0(xm) = 0.

Numerically, this is solved to give xm = 1.46163 . . . .
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We have that

Ψ(z) =
Γ′(z)

Γ(z)
= −γ − 1

z
+
∞∑
k=1

(
1

k
− 1

z + k

)

= −γ +
∞∑
k=1

(
1

k
− 1

z + k − 1

)
z 6= 0,−1,−2, . . .

(10.1)

= −γ +
∞∑
k=1

(
z − 1

k(z + k − 1)

)
z 6= 0,−1,−2, . . .

If we differentiate relation 10.1 many times, we find

Ψ′(z) =
Γ(z)Γ′′(z)− Γ

′2(z)

Γ2(z)
=
∞∑
k=1

1

(k + z − 1)2

(10.2)

Ψ′′(z) = −
∞∑
k=1

2

(k + z − 1)3

Ψ(n)(z) =
∞∑
k=1

(−1)n+1n!

(k + z − 1)(n+1)
(10.3)

where the Ψn = Ψ(n) functions are the polygamma func-
tions,

Ψn(z) =
dn+1

dzn+1
(log(Γ(z)))

Ψ0(z) = Ψ(z).
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The series expansion relation 10.1 suggests

Ψ(z + 1)−Ψ(z) =
∞∑
k=1

(
1

z + k − 1
− 1

z + k

)
which gives the recurrence formula

Ψ(z + 1) = Ψ(z) +
1

z

Ψ(z + n) = Ψ(z) +
1

z
+

1

z + 1
+ · · ·+ 1

z + n− 1
n ≥ 1

and by differentiating the first of these relations,

Ψn(z + 1) = Ψn(z) +
(−1)nn!

zn+1
. (10.4)

Now, the Riemann zeta function, ζ(s), is a function of a
complex variable s that analytically continues the sum of
the infinite series

ζ(s) =
∞∑
n=1

1

ns
Re(s) > 1.

The Riemann zeta function is defined as the analytic con-
tinuation of the function defined for Re(s) > 1 by the sum
of the given series.

The values of the zeta function obtained from integral
arguments are called zeta constants. The following are
some common values of the Riemann zeta function:
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ζ(0) = −1

2

ζ(1) = 1 +
1

2
+

1

3
+ · · · =∞

ζ(2) = 1 +
1

22
+

1

32
+ · · · = π2

6

ζ(3) = 1 +
1

23
+

1

33
+ · · · ≈ 1.202 . . .

ζ(4) = 1 +
1

24
+

1

34
+ · · · = π4

90
≈ 1.0823 . . .

Let’s consider the Basel problem in greater detail. The
Basel problem is a famous problem in number theory,
first posed by Pietro Mengoli in 1644, and solved by Eu-
ler in 1735. Seeing that the problem had withstood the
attacks of the leading mathematicians of the day, Euler’s
accomplishment brought him immediate fame when he
was twenty-eight. Over time, Euler generalized the prob-
lem considerably, and his ideas were taken up later by
Riemann when he defined his zeta function and proved
its fundamental properties. The problem is named after
Basel, hometown of Euler as well as of the Bernoulli fam-
ily, who unsuccessfully attacked the problem.

The Basel problem asks for the precise summation of the
reciprocals of the squares of the natural numbers, i.e., a
closed form solution to (with proof) of the infinite series:
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∞∑
n=1

1

n2
= lim

n→+∞

(
1

12
+

1

22
+ · · ·+ 1

n2

)
.

Euler’s arguments were based on manipulations that were
not justified at the time, and it was not until 1741 that
he was able to produce a truly rigorous proof.

Euler’s “derivation” of the value π2

6
is clever and origi-

nal. He extended observations about finite polynomials
and assumed that these properties hold true for infinite
series. By simply obtaining the correct value, he was able
to verify it numerically against partial sums of the series.
The agreement he observed gave him sufficient confidence
to announce his result to the mathematical community.

To follow Euler’s argument, consider the Taylor series
expansion of the sine function

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

Dividing through by x, we have

sin(x)

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · · .

Now, the zeros of sin(x)/x occur at x = n · π where
n = ±1,±2,±3, . . . . Assume we can express this infinite
series as a product of linear factors given by its zeros,
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just as is commonly done for finite polynomials:

sin(x)

x
=
(
1− x

π

) (
1 + x

π

) (
1− x

2π

) (
1 + x

2π

) (
1− x

3π

) (
1 + x

3π

)
· · ·

=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .

If we formally multiply out this product and collect all
the x2 terms, we see that the x2 coefficient of sin(x)/x is

−

(
1

π2
+

1

4π2
+

1

9π2
+ · · ·

)
= − 1

π2

∞∑
n=1

1

n2
.

But from the original infinite series expansion of sin(x)/x,
the coefficient of x2 is −1/(3!) = −1/6. These two coef-
ficients must be equal. Thus,

−1

6
= − 1

π2

∞∑
n=1

1

n2
.

Multiplying through both sides of this equation by −π2

gives the sum of the reciprocals of the positive square
integers,

∞∑
n=1

1

n2
=
π2

6
.

Now, returning to the Polygamma function, from the re-
lations 10.1 and 10.3 we have
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Ψ(1) = −γ
Ψ1(1) = ζ(2) = π2/6

Ψ2(1) = −2 ζ(3)

Ψn(1) = (−1)n+1n! ζ(n+ 1) (10.5)

Using the recurrence relation 10.4 allows us to compute
these values for any positive integer,

Ψ(n) =
Γ′(n)

Γ(n)
= −γ +

n−1∑
k=1

1

k
(10.6)

= −γ +Hn−1.

The following series expansions are obvious consequences
of relations 10.5 and of the series

1

1 + x
− 1 = −

∞∑
k=2

(−1)kxk−1.

Theorem 10.1. (Digamma series).

Ψ(1 + x) = −γ +
∞∑
k=2

(−1)kζ(k)xk−1 |x| < 1,

(10.7)

Ψ(1+x) = − 1

1 + x
−(γ−1)+

∞∑
k=2

(−1)k(ζ(k)−1)xk−1 |x| < 1.

(10.8)
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Series Expansions

Finding series expansions for the Gamma function is now
a direct consequence of the series expansions for the Digamma
function:

Theorem 11.1. For |x| < 1,

log(Γ(1 + x)) = −γx+
∞∑
k=2

(−1)kζ(k)

k
xk

(11.1)

log(Γ(1 + x))= − log(1 + x)− (γ − 1)x+
∑∞

k=2
(−1)k(ζ(k)−1)

k
xk

(11.2)

Proof. Use term by term integration of the Taylor series
10.7 and 10.8.
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It follows easily from equation 11.1 and the functional
equation that

1

Γ(z)
= z exp

(
γz −

∞∑
k=2

(−1)kζ(k)zk

k

)
. (11.3)

Series formulas involving ζ(k) can be derived from equa-
tion 11.1. For example, setting x = 1 gives

log(Γ(2)) = −γ +
∞∑
k=2

(−1)kζ(k)

k
,

thus we arrive at a result due to Euler,

γ =
∞∑
k=2

(−1)kζ(k)

k
.

Setting x = 1/2 into equation 11.1 yields

log

(
Γ

(
3

2

))
= log(

√
π/2) = −γ

2
+
∞∑
k=2

(−1)kζ(k)

k

1

2k
,

so we have

γ = log

(
4

π

)
+ 2

∞∑
k=2

(−1)k
ζ(k)

2kk
.
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Euler-Mascheroni Integrals

Using the integral representation of Γ′(x) gives the inter-
esting integral formula for Euler’s constant

Γ′(1) =

ˆ ∞
0

e−t log(t) dt = −γ

and from

Ψ′(z) =
Γ(z)Γ′′(z)− Γ

′2(z)

Γ2(z)
=
∞∑
k=1

1

(k + z − 1)2

comes the relation

Ψ′(1)Γ2(1) + Γ
′2(1) = Γ(1)Γ′′(1)

hence

Γ′′(1) =

ˆ ∞
0

e−t log2(t) dt = γ2 +
π2

6
.
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We may continue this, computing the Euler-Mascheroni
integrals –

Γ(3)(1) = −γ3 − 1

2
π2γ − 2ζ(3)

Γ(4)(1) = γ4 + π2γ2 + 8ζ(3)γ +
3

20
π4

Γ(5)(1) = −γ5 − 5

3
π2γ3 − 20ζ(3)γ2 − 3

4
π4γ − 24ζ(5)− 10

3
ζ(3)π2

...
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Duplication & Multiplication
Formulas

Theorem 13.1. (Gauss Multiplication Formula).

Γ(z)Γ

(
z+

1

n

)
· · ·Γ

(
z+

n− 1

n

)
= (2π)(n−1)/2n1/2−nzΓ(nz).

(13.1)

A brilliant proof of the multiplication formula was pro-
duced by Liouville in 1855. We here present a modernized
version of that proof.

Proof. The product of Gamma functions on the left-hand
side of equation 13.1 can be written

´∞
0
e−t1tz−1

1 dt1
´∞

0
e−t2t

z+(1/n)−1
2 dt2 · · ·

´∞
0
e−tnt

z+((n−1)/n)−1
n dtn.
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Rearranging,

´∞
0

´∞
0
· · ·
´∞

0
e−(t1+t2+···+tn)tz−1

1 t
z+(1/n)−1
2 · · · tz+((n−1)/n)−1

n dt1 · · · dtn.

Next, introduce a change of variables:

t1 =
qn

t2 · · · tn
, t2 = t2, . . . , tn = tn.

The Jacobian is thus

nqn−1

t2t3 · · · tn

so the integral can be written

´∞
0
· · ·
´∞

0
exp

[
−
(
t2 + t3 + · · ·+ tn + qn

t2t3···tn

)]
×
(

qn

t2···tn

)z−1

t
z+(1/n)−1
2 · · · tz+((n−1)/n)−1

n
nqn−1

t2t3···tn dq dt2 · · · dtn.

Set s = t2 + t3 + · · ·+ tn + qn/(t2t3 · · · tn), so we have

n
´∞

0

´∞
0
· · ·
´∞

0
e−sqnz−1t

(1/n)−1
2 t

(2/n)−1
3 · · · t((n−1)/n)−1

n dq dt2 · · · dtn.

(13.2)
Now evaluate

I =

ˆ ∞
0

· · ·
ˆ ∞

0

e−s
n−1∏
k=1

t
(k/n)−1
k+1 dt2 dt3 · · · dtn.
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Obviously,

dI
dq

= −nqn−1

ˆ ∞
0

· · ·
ˆ ∞

0

e−s
n−1∏
k=1

t
(k/n)−1
k+1

dt2 · · · dtn
t2 · · · tn

.

Now introduce a second change of variables,

t2 = qn/(t1t3 · · · tn), t3 = t3, . . . , tn = tn

and

s1 = t3 + t4 + · · ·+ tn + t1 + qn/(t3 · · · tnt1).

Now the Jacobian is

J =
−qn

t21t3 · · · tn−1

and we have

dI
dq

= nqn−1
´∞

0
· · ·
´∞

0
e−s1|J |

(
qn

t1t3···tn

)(1/n)−1

·
n−1∏
k=2

t
(k/n)−1
k+1

dt1 dt3· dtn
qn/t1

= −n
´∞

0
· · ·
´∞

0
e−s1

n−1∏
k=2

t
(k/n)−1
k+1 t

((n−1)/n)−1
1 dt3 · · · dtn dt1

= −nI.

Thus,
I = Ce−nq.

To find C, we set q = 0 in the I integral and in the
equation above, then set them equal to each other to get

Γ

(
1

n

)
Γ

(
2

n

)
· · ·Γ

(
n− 1

n

)
= C.
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Next we factor the integer n in the following way:

n =
n−1∏
a=1

(1− exp(2aπi/n))

= 2n−1 sin
π

n
sin

2π

n
· · · sin (n− 1)π

n
. (13.3)

Here we used the identities

1− exp

(
a

n
2πi

)
= 1−

[
cos

2aπ

n
+ i sin

2aπ

n

]
= 1− cos2 aπ

n
+ sin2 aπ

n
− 2i sin aπ

n
cos aπ

n

= 2 sin
aπ

n

[
sin

aπ

n
− i cos

aπ

n

]
and we also have

n−1∏
a=1

[
sin

aπ

n
− i cos

aπ

n

]
= (−i)n−1 exp

(
iπ

n

n−1∑
a=1

a

)
= (−1)n−1(i)n−1(−1)

1
n

∑n−1
a=1 a

= (−1)n−1(i)n−1(−1)
n−1
2

= i4(n−1) = 1

so that equation 13.3 follows.

Now by the reflection formula

r(b) = Γ

(
b

n

)(
1− b

n

)
=

π

sin bπ
n
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so by letting b in r(b) run from 1 to n − 1, we essen-
tially perform the product given by C twice, so that
C = (2π)(n−1)/2n−1/2 and I = (2π)(n−1)/2n−1/2e−nq.

Substitution in equation 13.2 gives

Γ(z)Γ(z + 1/n) · · ·Γ(z + (n− 1)/n)

= n1/2(2π)(n−1)/2

ˆ ∞
0

e−nqqnz−1 dq

= n1/2−nz(2π)
n−1
2 Γ(nz)

which completes the proof.

Legendre’s duplication formula is found simply by setting
n = 2 in the multiplication formula.
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The Gamma and Zeta
Function Relationship

We have already shown in a previous section that

1

Γ(z)
= z exp

(
γz −

∞∑
k=2

(−1)kζ(k)zk

k

)
.

Now we will derive two more relationships between the
Gamma function and the zeta function.

Theorem 14.1. (Gamma and zeta functions rela-
tion).

ζ(z)Γ(z) =

ˆ ∞
0

tz−1

et − 1
dt for Re(z) > 1. (14.1)
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Proof. The integral definition of the Gamma function

Γ(z) =

ˆ ∞
0

tz−1e−t dt,

together with the change of variables t = ku (with k a
positive integer) gives

Γ(z) =

ˆ ∞
0

(ku)z−1e−kuk du = kz
ˆ ∞

0

uz−1e−ku du.

Rewrite this in the form

1

kz
=

1

Γ(z)

ˆ ∞
0

uz−1e−ku du,

hence by summation

∞∑
k=1

1

kz
=

1

Γ(z)

ˆ ∞
0

uz−1

∞∑
k=1

(e−ku) du

=
1

Γ(z)

ˆ ∞
0

uz−1

(
1

1− e−u
− 1

)
du.

We thus obtain

ζ(z)Γ(z) =

ˆ ∞
0

tz−1

et − 1
dt.
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For z = 2, this becomes

π2

6
=

ˆ ∞
0

t

et − 1
dt.

There is another important functional equation between
the two functions, the Riemann zeta function functional
equation:

Theorem 14.2. (Functional Equation). The func-
tion ζ(s) is regular for all values of s except s = 1, where
there is a simple pole with residue 1. It satisfies the func-
tional equation

ζ(s) = 2sπs−1 sin

(
sπ

2

)
Γ(1− s)ζ(1− s). (14.2)

Proof. This can be proved in many different ways. Here
we give a proof depending on the following summation
formula.

Let φ(x) be any function with a continuous derivative
in the interval [a, b]. Then, if [x] denotes the greatest
integer not exceeding x,

∑
a<n≤b

φ(n) =

ˆ b

a

φ(x) dx+

ˆ b

a

(x− [x]− 1/2)φ′(x) dx

+ (a− [a]− 1/2)φ(a)− (b− [b]− 1/2)φ(b).
(14.3)
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Since the formula is additive with respect to the interval
(a, b], we may suppose n ≤ a < b ≤ n+1 so that we have

´ b
a
(x− n− 1/2)φ′(x) dx = (b− n− 1/2)φ(b)− (a− n− 1/2)φ(a)−

´ b
a
φ(x) dx.

The right hand side of equation 14.3 thus reduces to
([b] − n)φ(b). This vanishes unless b = n + 1, in which
case it is φ(n+ 1).

Let φ(n) = n−s, where s 6= 1, and let a and b be positive
integers. Then

b∑
n=a+1

1

ns
=
b1−s − a1−s

1− s
−s
ˆ b

a

x− [x]− 1
2

xs+1
dx+

1

2
(b−s−a−s).

(14.4)
Take the half-plane σ > 1, a = 1, and make b → ∞.
Adding 1 to each side, we obtain

ζ(s) = s

ˆ ∞
1

[x]− x+ 1
2

xs+1
dx+

1

s− 1
+

1

2
. (14.5)

Since [x]−x+1/2 is bounded, this integral is convergent
for σ > 0, and uniformly convergent in any finite region
to the right of σ = 0. It therefore defines an analytic
function of s, regular for σ > 0. The right-hand side
therefore provides the analytic continuation of ζ(s) up to
σ = 0, and there is clearly a simple pole at s = 1 with
residue 1.
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For 0 < σ < 1 we have

ˆ 1

0

[x]− x
xs+1

dx = −
ˆ 1

0

x−s dx =
1

s− 1

s

2

ˆ ∞
1

dx

xs+1
=

1

2

and equation 14.5 may be written

ζ(s) = s

ˆ ∞
0

[x]− x
xs+1

dx (0 < σ < 1). (14.6)

Actually equation 14.5 gives the analytic continuation of
ζ(s) for σ > 1, for if we have

f(x) = [x]− x+
1

2
, f1(x) =

ˆ x

1

f(y) dy,

then f1(x) is also bounded, since, as is easily seen,

ˆ k+1

k

f(y) dy = 0

for any integer k. Hence

ˆ x2

x1

f(x)

xs+1
dx =

[
f1(x)

xs+1

]x2
x1

+ (s+ 1)

ˆ x2

x1

f1(x)

xs+2
dx

which tends to 0 as x1 →∞, x2 →∞, if σ > −1. Hence
the integral in equation 14.5 is convergent for σ > −1.
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Also it is easily verified that

s

ˆ 1

0

[x]− x+ 1
2

xs+1
dx =

1

s− 1
+

1

2
(σ < 0).

Hence

ζ(s) = s

ˆ ∞
0

[x]− x+ 1
2

xs+1
dx (−1 < σ < 0). (14.7)

Now we have the Fourier series

[x]− x+
1

2
=
∞∑
n=1

sin 2nπx

nπ
(14.8)

where x is not an integer. Substituting in equation 14.7,
and integrating term by term, we obtain

ζ(s) =
s

π

∞∑
n=1

1

n

ˆ ∞
0

sin 2nπx

xs+1
dx

=
s

π

∞∑
n=1

(2nπ)s

n

ˆ ∞
0

sin y

ys+1
dy

=
s

π
(2π)s{−Γ(−s)} sin

(
sπ

2

)
ζ(1− s)

i.e., equation 14.2. This is valid primarily for −1 < σ <
0. Here, however, the right-hand side is analytic for all
values of s such that σ < 0. It therefore provides the
analytic continuation of ζ(s) over the remainder of the
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plane, and there are no singularities other than the pole
already encountered at s = 1.

We have still to justify the term-by-term integration.
Since the series 14.8 is boundedly convergent, term-by-
term integration over any finite range is permissible. It
is therefore sufficient to prove that

lim
λ→∞

∞∑
n=1

1

n

ˆ ∞
λ

sin 2nπx

xs+1
dx = 0 (−1 < σ < 0).

Nowˆ ∞
λ

sin 2nπx

xs+1
dx =

[
− cos 2nπx

2nπxs+1

]∞
λ
− s+1

2nπ

´∞
λ

cos 2nπx
xs+2 dx

= O
(

1
nλσ+1

)
+O

(
1
n

´∞
λ

dx
xσ+2

)
= O

(
1

nλσ+1

)
and the desired result clearly follows.

Corollary. (Functional Equation). Let

Λ(s) = π−s/2 Γ

(
s

2

)
ζ(s)

be an analytic function except at poles 0 and 1, then

Λ(s) = Λ(1− s).

Proof. Changing s into 1− s, the functional equation is

ζ(1− s) = 21−sπ−s cos

(
sπ

2

)
Γ(s)ζ(s). (14.9)
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It may also be written

ζ(s) = χ(s)ζ(1− s) (14.10)

where

χ(s) = 2sπs−1 sin

(
sπ

2

)
Γ(1− s) = πs−1/2 Γ(1/2− s/2)

Γ(s/2)

and
χ(s)χ(1− s) = 1.

The corollary is at once verified from 14.9 and 14.10.
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Stirling’s Formula

In this section we study how the Gamma function be-
haves when the argument x becomes large. If we restrict
the argument x to integral values n, the following result,
due to James Stirling and Abraham de Moivre is quite
famous and extremely important:

Theorem 15.1. (Stirling’s formula). If the integer
n tends to infinity, we have the asymptotic formula

Γ(n+ 1) = n! ∼
√

2πnnne−n. (15.1)

For greater clarity in the proof of equation 15.1, we in-
troduce several simple lemmas.

Lemma 15.1.ˆ n+1

n

dx

x
= log

(
1 +

1

n

)
>

2

2n+ 1
n = 1, 2, . . . .
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Proof. Since the curve y = 1/x is convex, the area under
the curve from x = n to x = n + 1 is greater than the
area of the trapezoid bounded by these two ordinates, the
x-axis, and the lower tangent to the curve at the point
(n+ 1/2, 2/(2n+ 1)), i.e., the lower Riemann sum. Note
that the area of a trapezoid is equal the product of the
length of the base by the length of the median, which, in
this case, is

1

n+ 1
2

=
2

2n+ 1
.

Lemma 15.2.

lim
n→∞

an = lim
n→∞

n!

(n/e)n
√
n

exists.

Proof. We have

an
an+1

=

(
1 + 1

n

)n+1/2

e
> 1

since by lemma 15.1,(
n+

1

2

)
log

(
1 +

1

n

)
> 1.

Since an > 0 for all n, the proof is complete.
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Lemma 15.3.
lim
n→∞

an > 0.

Proof. Use an argument similar to that of lemma 15.2,
but this time use an upper Riemann sum and compare
areas with the function y = log x. We break the interval
up by bounding a series of trapezoids by two rectangles,
one at each end of the interval. The altitudes of the two
rectangles at the endpoints are 2 and log n. Thus, the
area of the trapezoids and the two rectangles is

1 + log 2 + log 3 + · · ·+ log(n− 1) +
1

2
log n

= 1 + log n!− log
√
n

The area under the curve isˆ n

1

log x dx = n log n− n+ 1 = log(n/e)n + 1.

Hence,

log

(
n

e

)n
< log

n!√
n

(n/e)n
√
n

n!
< 1 n = 1, 2, . . . .

Consequently,

an > 1, lim
n→∞

an ≥ 1.
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We have proved more than stated. It is only the nonva-
nishing of the limit which is needed.

Proof. Let’s restate Stirling’s formula this way:

lim
n→∞

(n/e)n
√

2πn

n!
= 1.

To prove the result, we need only to show that

r = lim
n→∞

an =
√

2π.

We use the fact that

lim
n→∞

(n!)222n

(2n)!
√
n

=
√
π

which was derived in an earlier section, to evaluate this
limit r. The function of n appearing here can be rewritten
in terms of an as follows:

(n!)222n

(2n)!
√
n

=
a2
n

a2n

1√
2
.

As n becomes infinite, this quotient approaches
√
π on

the one hand and r2/(r
√

2) on the other. Hence, r =√
2π, and the proof is complete.

Corollary.

lim
n→∞

(2n)!e2n

(2n)2n
= +∞.
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Proof.

lim
n→∞

(2n)!e2n

(2n)2n
= lim

n→∞

(
(2n)!

(2n)2ne−2n
√

4πn

)√
4πn = +∞

Corollary.

(n+ p)!

n!
∼ np n→∞; p = 1, 2, . . . .

Proof. By Stirling’s formula,

lim
n→∞

(n+ p)!

n!np
= lim

n→∞

(n+ p)!

(n+ p)n+pe−n−p
√

2π(n+ p)
·

nne−n
√

2πn

n!

(1 + (p/n))n+p+1/2

ep
= 1.

Each of the three quotients on the right approaches 1.

Corollary.

lim
n→∞

1

n
n
√
n! =

1

e
.

Proof. By Stirling’s formula,

lim
n→∞

n
√
n!

n
= lim

n→∞

(
n!

(n/e)n
√

2πn

)1/n
(2πn)1/(2n)

e
=

1

e
.





16

Residues of the Gamma
Function

If a complex function is analytic on a region R, it is in-
finitely differentiable in R.� A complex function may fail
to be analytic at one or more points through the pres-
ence of singularities, or through the presence of branch
cuts. A single-valued function that is analytic in all but
a discrete subset of its domain, and at those singularities
goes to infinity like a polynomial (i.e., these exceptional
points are poles), is called a meromorphic function. In
this context, the word ”pole” is used to denote a singu-
larity of a complex function. f has a pole of order n at z0

if n is the smallest positive integer for which (z−z0)nf(z)
is analytic at z0.

� An intermediate understanding of complex analysis is neces-
sary to understand the material in this and the next chapter.
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Definition 16.1. A function f has a pole at z0 if it can
be represented by a Laurent series centered about z0 with
only finitely many terms of negative exponent, i.e.,

f(z) =
∞∑

k=−n

ak(z − z0)k

in some neighborhood of z0, with a−n 6= 0, for some n ∈
N. The number n is called the order of the pole. A simple
pole is of pole of order 1.

Definition 16.2. The constant a−1 in the Laurent series

f(z) =
∞∑

k=−∞

ak(z − z0)k

of f(z) about a point z0 is called the residue of f(z).
The residue of a function f at a point z0 is often denoted
Res(f ; z0).

If f is analytic at z0, its residue is zero, but the converse
is not always true.

The residues of a meromorphic function at its poles char-
acterize a great deal of the structure of a function –
residues appear in the residue theorem of contour inte-
gration, which, briefly, is a very powerful theorem used
to evaluate contour integrals of analytic functions.
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The residues of a function f(z) may be found without
explicitly expanding into a Laurent series. If f(z) has a
pole of order n at z0, then ak = 0 for k < −n and a−n 6= 0.

Thus,

f(z) =
∞∑

k=−n

ak(z − z0)k =
∞∑
k=0

ak−n(z − z0)k−n

(z − z0)nf(z) =
∞∑
k=0

ak−n(z − z0)k
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Differentiating,

d

dz

[
(z − z0)nf(z)

]
=
∞∑
k=0

kak−n(z − z0)k−1

=
∞∑
k=1

kak−n(z − z0)k−1

=
∞∑
k=0

(k + 1)ak−n+1(z − z0)k

d2

dz2

[
(z − z0)nf(z)

]
=
∞∑
k=0

k(k + 1)ak−n+1(z − z0)k−1

=
∞∑
k=1

k(k + 1)ak−n+1(z − z0)k−1

=
∞∑
k=0

(k + 1)(k + 2)ak−n+2(z − z0)k

Iterating,

dn−1

dzn−1

[
(z−z0)nf(z)

]
=

∞∑
k=0

(k + 1)(k + 2) · · · (k + n− 1) ak−1(z − z0)k

= (n−1)! a−1+
∞∑
k=1

(k+1)(k+2) · · · (k+n−1) ak−1(z−z0)k
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so we have

lim
z→z0

dn−1

dzn−1

[
(z − z0)nf(z)

]
= lim

z→z0
(n− 1)! a−1 + 0

= (n− 1)! a−1

and the residue is

a−1 =
1

(n− 1)!

dn−1

dzn−1

[
(z − z0)nf(z)

]
z=z0

Proposition 16.1. In the case that the limit limz→z0(z−
z0)f(z) exists and has a non-zero value r, the point z = z0

is a pole of order 1 for the function f and

Res(f ; z0) = r

This result follows directly from the preceding discussion.

Now, the Gamma function may be expressed

Γ(z) =
Γ(z + n)

z(z + 1)(z + 2) · · · (z + n− 1)
. (16.1)

According to the standard definition

Γ(z) :=

ˆ ∞
0

tz−1e−t dt,

Γ(z) is defined only in the right half-plane Re(z) > 0,
whereas equation 16.1 is defined and meromorphic in the
half-plane Re(z) > −n where it has poles of order 1 at the
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points 0,−1,−2, . . . ,−(n− 1). Equation 16.1 is the ana-
lytic continuation of Γ(z) to the half-plane Re(z) > −n.
Since the positive integer n can be chosen arbitrarily, Eu-
ler’s Gamma function has been analytically continued to
the whole complex plane.

For determining the residues of the Gamma function at
the poles, rewrite equation 16.1 as

Γ(z) =
Γ(z + n+ 1)

z(z + 1)(z + 2) · · · (z + n)

from which we see

(z + n)Γ(z) =
Γ(z + n+ 1)

z(z + 1) · · · (z + n− 1)
.

At the point z = −n,

Γ(z + n+ 1) = Γ(1) = 0! = 1

and
z(z + 1) · · · (z + n− 1) = (−1)nn!

which, taken together, imply that

Res(Γ;−n) =
(−1)n

n!
.
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Hankel’s Contour Integral
Representation

In this chapter we find integral representations of the
Gamma function and its reciprocal. Numerical evalua-
tion of Hankel’s integral is the basis of some of the best
methods for computing the Gamma function.

Consider the integral

I =

ˆ
C

(−t)z−1e−t dt,

where Re(z) > 0 and where the contour C starts slightly
above the real axis at +∞, then runs down to t = 0
where it winds around counterclockwise in a small circle,
and then returns to +∞ just below the real axis.
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−1

C

The t-plane is cut from 0 to∞. We define the phase such
that arg(−t) ≡ 0 on the negative real t-axis. On the con-
tour C we have −π < arg(t) < π. Therefore, just above
the positive real t-axis we have arg(−t) = −π, whereas
just below we have arg(−t) = +π, the angle measured
counterclockwise.

Given these definitions, it then follows that

(−t)z−1 = e−iπ(z−1)tz−1

just above the positive real axis, and

(−t)z−1 = e+iπ(z−1)tz−1



111

just below the positive real axis. And on the small circle
enclosing t = 0 we have −t = δeiθ. So then our integral
becomes

I =

ˆ δ

∞
e−iπ(z−1)tz−1e−t dt+

ˆ ∞
δ

e+iπ(z−1)tz−1e−t dt

+

ˆ π

−π

(
δeiθ
)z−1

eδ(cos θ+i sin θ)δeiθi dθ

→ −2i sin(πz)

ˆ ∞
0

tz−1e−t dt for δ → 0.

The expression above contains the usual representation
for the Gamma function, so I = −2i sin(πz)Γ(z), or

Γ(z) =
−1

2i sin πz

ˆ
C

(−t)z−1e−t dt. (17.1)

This is Hankel’s integral representation for the Gamma
function, valid for all z 6= 0,±1,±2, . . . . It has several
equivalent forms. Considering the fact that e±iπ = −1,
we find

−1

2i sin πz

ˆ
C

(−t)z−1e−t dt

=
−1 · (−1)z−1

2i sin πz

ˆ
C

tz−1e−t dt

=
e−iπz

eiπz − e−iπz

ˆ
C

tz−1e−t dt

=
1

e2πiz − 1

ˆ
C

tz−1e−t dt,
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so another form of the contour integral representation is
given by

Γ(z) =
1

e2πiz − 1

ˆ
C

tz−1e−t dt.

The trivial substitution s = −t produces yet another
equivalent form,

Γ(z) =
1

2i sin πz

ˆ
C

sz−1es ds.

An application of Euler’s reflection formula,

Γ(z)Γ(1− z) =
π

sinπz
,

to Equation 17.1 leads immediately to the contour in-
tegral representation for the reciprocal of the Gamma
function,

1

Γ(z)
=

sin πz

π
Γ(1− z)

=
sin πz

π
· −1

2i sin(π(1− z))

ˆ
C

(−t)−ze−t dt

=
−1

2πi

ˆ
C

(−t)−ze−t dt.

So we have for the contour integral representation of the
reciprocal gamma function,

1

Γ(z)
=

i

2π

ˆ
C

(−t)−ze−t dt.
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An equivalent representation is found by making the sub-
stitution s = −t,

1

Γ(z)
=

1

2πi

ˆ
C

(s)−zes ds.

Sometimes we write
´ (0+)

∞ for
´
C

meaning a path starting
at infinity on the real axis, encircling zero in the positive
(counterclockwise) sense and then returning to infinity
along the real axis, respecting the cut along the positive
real axis.





A

The Weierstrass Factor
Theorem

The most important property of the entire rationals is
expressed in the fundamental theorem of algebra: Every
non-constant entire rational function has zeros. If we
have an arbitrary, non-constant entire rational function,

g0(z) = a0 + a1z + · · ·+ amz
m, (m ≥ 1, am 6= 0)

then it follows from the fundamental theorem of algebra
that g0(z) can be written

g0(z) = am(z − z1)α1(z − z2)α2 · · · (z − zk)αk

where z1, z2, . . . , zk denote all the distinct zeros of g0(z),
and α1, α2, . . . , αk denote their respective orders.
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For every entire rational function there is a so-called fac-
tor representation. From this representation, we infer
that every other entire rational function g(z) which has
the same zeros to the same respective orders can differ
from g0(z) only in the factor am. It is thus always possible
to construct an entire rational function (with prescribed
zeros) that can be represented as a product which dis-
plays these zeros.

Suppose the entire function to be constructed is to have
no zeros at all. Then the constant 1, or the function ez, or
ez

2
, or more generally, eh(z) is a solution of the problem,

if h(z) is a completely arbitrary entire function.

Theorem A.1. If h(z) denotes an arbitrary entire func-
tion, then eh(z) is the most general entire function with
no zeros.

Proof. We have only to show that if H(z) = a0 + a1z +
a2z

2+· · · is a given entire function with no zeros, then we
can determine another entire function h(z) = b0 + b1z +
b2z

2 + · · · such that eh(z) = H(z). Now, since H(z) 6= 0,
we have in particular a0 = H(0) 6= 0. Hence, b0 can be
chosen such that eb0 = a0; for, ez takes on every value
except zero. Likewise, 1

H(z)
is everywhere single-valued

and regular, and is therefore an entire function.
The same is true of H ′(z), so that

H ′(z)

H(z)
= c0 + c1z + c2z

2 + · · ·
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is also an entire function, and this series is everywhere
convergent.

The same is true of the series

b0 + c0z +
c1

2
z2 + · · ·+ cn−1

n
zn + · · ·

= b0 + b1z + · · ·+ bnz
n + · · ·

which represents an entire function, h(z). If we set eh(z) =
H1(z), then

H ′1(z)

H1(z)
= c0 + c1z + c2z

2 + · · · = H ′(z)

H(z)

and hence H1 ·H ′ −H ·H ′1 = 0. Therefore

H ·H ′1 −H1 ·H ′

H2
=

d

dz

(
H1(z)

H(z)

)
= 0

and the quotient of the two functions H1(z) and H(z) is
constant. For z = 0 the value of this constant is 1. Thus,

H(z) = H1(z) = eh(z).

Having thus described the case for which no zeros are
prescribed, its easy to see the extent to which a general
entire function is determined by its zeros. If G0(z) and
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G(z) are two entire functions which coincide in the po-
sitions and orders of their zeros, then their quotient is
also an entire function, but one with no zeros. G(z) and
G0(z) thus differ by at most a multiplicative entire func-
tion with no zeros. Conversely, the presence of such a
factor of G0(z) does not alter the positions or orders of
its zeros.

Theorem A.2. Let G0(z) be a particular entire function.
Then, if h(z) denotes an arbitrary entire function,

G(z) = eh(z) ·G0(z)

is the most general entire function whose zeros coincide
with those of G0(z) in position and order.

The question of the possibility and method of construct-
ing a particular entire function with arbitrarily prescribed
zeros remains. An entire function has no singularity in
the finite part of the plane; therefore it can have only
a finite number of zeros in every finite region. The pre-
scribed points must not have a finite limit point as a
consequence. If we make this single restriction, an entire
function can always be constructed. It can be set up in
the form of a product which has the positions and orders
of its zeros.

Theorem A.3. (Weierstrass factor theorem). Let
any finite or infinite set of points having no limit point
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be prescribed, and associate with each of its points a def-
inite positive integer as order. Then there exists an en-
tire function which has zeros to the prescribed orders at
precisely the prescribed points, and is otherwise different
from zero. It can be represented as a product, from which
one can read off again the positions and orders of the
zeros. If G0(z) is one such function,

G(z) = eh(z) ·G0(z)

is the most general function satisfying the conditions of
the problem, if h(z) denotes an arbitrary entire function.

The entire function satisfying the conditions of the Weier-
strass factor theorem will be set up in the form of a prod-
uct; in general, in the form of an infinite product. As with
infinite series, we shall assume the reader is familiar with
the simplest facts in the theory of infinite products. We
thus present, without proofs, the most important defini-
tions and theorems for our purposes.

Definition A.1. The infinite product

u1 · u2 · · ·uv · · · =
∞∏
v=1

uv (A.1)

in which the factors are arbitrary complex numbers, is
said to be convergent iff from a certain index on, say for
all v > m, no factor vanishes, and

lim
n→∞

(um+1 · um+2 · · ·un)
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exists and has a finite value distinct from zero. If we call
this limit Um, then the number

U = u1 · u2 · · ·um · Um

which is obviously independent of m, is regarded as the
value of the infinite product A.1.

Theorem A.4. A convergent product has the value zero
iff one of its factors vanishes.

Theorem A.5. The infinite product A.1 is convergent
iff having chosen an arbitrary ε > 0, an index n0 can be
determined such that

|un+1 · un+2 · · ·un+r − 1| < ε

for all n > n0 and all r ≥ 1.

Since on the basis of this theorem (let r = 1 and n+ 1 =
v) it is necessary that limv→∞ uv = 1, one usually sets
the factors of the product equal to 1 + cv, so that instead
of dealing with (A.1) one is concerned with products of
the form

∞∏
v=1

(1 + cv). (A.2)

For these, cv → 0 is a necessary, but insufficient, condi-
tion for convergence.
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Definition A.2. The product A.2 is said to be abso-
lutely convergent if

∞∏
v=1

(1 + |cv|) converges.

Theorem A.6. Absolute convergence is a sufficient con-
dition for ordinary convergence; in other words, the con-
vergence of

∏
(1 + |cv|) implies convergence of

∏
(1 + cv).

On the basis of this theorem it is sufficient for our pur-
poses to have convergence criteria for absolutely conver-
gent products. The next two theorems settle the question
of convergence for such products.

Theorem A.7. The product
∏

(1 + γv), with γv ≥ 0, is
convergent iff the series

∑
γv converges.

Theorem A.8. For
∏

(1 + cv) to converge absolutely, it
is necessary and sufficient that

∑
cv converge absolutely.

The following theorem is similar to one on absolutely
convergent series:

Theorem A.9. If the order in which the factors of an
absolutely convergent product occur is changed in a com-
pletely arbitrary manner, the product remains convergent
and has the same value.
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In addition to products with constant factors, we need
products whose factors are functions of a complex vari-
able z. We write these products in the form

∞∏
v=1

(1 + fv(z)). (A.3)

We designate as the region of convergence of such a prod-
uct the set M of all those points z which (a) belong to
the domain of the definition of every fv(z), and for which
(b) the product A.3 is convergent. Accordingly, the prod-
uct assumes a certain value for every z of M; thus, the
product represents in M a certain (single-valued) func-
tion. For our purposes, it is important to possess useful
conditions under which such a product, in its region of
convergence, represents an analytic function. The follow-
ing theorem suffices:

Theorem A.10. Let f1(z), f2(z), . . . , fv(z), . . . be an in-
finite sequence of functions, and suppose a region G exists
in which all these functions are regular. Let

∑∞
v=1 |fv(z)|

be uniformly convergent in every closed subregion G ′ of G.
Then the product A.3 is convergent in the entire region
G, and represents a regular function f(z) in G. More-
over, by theorem A.1, this function has a zero at those,
and only those, points of G at which at least one of the
factors is equal to zero. The order of such a zero is equal
to the sum of the orders to which these factors vanish
there.
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Proof. Let G ′ be an arbitrary closed subregion of G. For
every m ≥ 0,

∞∑
v=m+1

|fv(z)|, along with
∞∑
v=1

|fv(z)|

converges uniformly in G ′. By theorem A.8, the product

∞∏
v=m+1

(1 + fv(z)) (A.4)

is absolutely convergent in G ′, and represents a certain
function there. Let us call this function Fm(z). Choose
m such that

|fn+1(z)|+ |fn+2(z)|+ · · ·+ |fn+r(z)| < 1

2
(A.5)

for all n ≥ m, all r ≥ 1, and all z in G ′ – then Fm(z) is
regular and nonzero in G ′. Indeed, if, for n > m, we set

n∏
v=m+1

(1 + fv(z)) = Pn and Pm = 0

then we have
Fm(z) = lim

n→∞
Pn

= lim
n→∞

[(Pm+1−Pm)+(Pm+2−Pm+1)+ · · ·+(Pn−Pn−1)]

or

Fm(z) =
∞∑

v=m+1

(Pv − Pv−1) (A.6)
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and Fm(z) is thus represented by an infinite series. Now,
for n > m,

|Pn| ≤ (1 + |fm+1(z)|) · · · (1 + |fn(z)|)
≤ e|fm+1(z)|+···+|fn(z)| < e

1
2 < 2

so the inequality

|Pv − Pv−1| = |Pv−1| · |fv(z)| < 2|fv(z)|

is valid for the terms (from the second onward) of the
series just obtained. Consequently, the new series A.6,
along with

∑
|fv(z)|, is uniformly convergent in G ′, and

the function Fm(z) defined by that series is a regular
function in G ′. It is also distinct from zero there. For, by
(A.5), we have in G ′, for n ≥ m,

|fn+1(z)| < 1

2

and hence, for v ≥ m+ 1,

|1 + fv(z)| ≥ 1− |fv(z)| > 1

2

so that no factor of Fm can be equal to zero. Since

f(z) = (1 + f1(z)) · · · (1 + fm(z)) · Fm(z)

we have that f(z), together with Fm(z), is regular at ev-
ery point z of G ′, and can vanish at such a point only if
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one of the factors appearing before Fm(z) vanishes. The
order of such a zero is then equal to the sum of the orders
to which these factors vanish there.

Now let z be an arbitrary point of G. Since z is an interior
point of G, it is always possible to choose G ′ such that z
also belongs to G ′. Hence, the above considerations hold
for all of G, and the proof is complete.

We can also make an assertion concerning the derivative
of f(z). Since the ordinary derivative of a product of
many factors is difficult to calculate, we introduce the
logarithmic derivative. We have the following theorem
concerning this derivative:

Theorem A.11. Given theorem A.10, we have that

f ′(z)

f(z)
=
∞∑
v=1

f ′v(z)

1 + fv(z)
(A.7)

for every point z of G at which f(z) 6= 0; i.e., the se-
ries on the right is convergent for every such z and is
equivalent to the logarithmic derivative of f(z).

Proof. If z is a particular point of the type mentioned
above, and if the subregion G ′ is chosen so as to contain
z, then

f ′(z)

f(z)
=

f ′1(z)

1 + f1(z)
+ · · ·+ f ′m(z)

1 + fm(z)
+
F ′m(z)

Fm(z)
. (A.8)



126

Since the series A.6 converges uniformly in G ′,

F ′m(z) =
∞∑

v=m+1

(P ′v − P ′v−1) = lim
n→∞

P ′n

according to theorem A.6. Here P ′n denotes the derivative
of Pn. Since Fm(z) and all Pn for n > m are not zero,

F ′m(z)

Fm(z)
= lim

n→∞

P ′n
Pn

= lim
n→∞

(
f ′m+1(z)

1 + fm+1(z)
+ · · ·+ f ′n(z)

1 + fn(z)

)

=
∞∑

v=m+1

f ′v(z)

1 + fv(z)

which, with (A.8), proves the assertion.

Theorem A.12. The series (A.7) converges absolutely
and uniformly in every closed subregion G ′′ of G contain-
ing no zero of f(z), and hence may be repeatedly differ-
entiated there any number of times term by term.

Proof. Since none of the factors (1 + fv(z)) can vanish
in G ′′, the absolute value of each remains greater than
a positive bound, γv say. Since this is certainly greater
than 1/2 for all v > m, a positive number γ exists, such
that γv ≥ γ > 0 for all v. Then, for all v and all z in G ′′,∣∣∣∣∣ f ′v(z)

1 + fv(z)

∣∣∣∣∣ < 1

γ
· |f ′v(z)|.

From the proof of theorem A.6 it follows that
∑
|f ′v(z)|

converges uniformly in G ′′. By the last inequality, this is
also true then of the series A.7.
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Having become familiar with infinite products, it is straight-
forward to prove the Weierstrass factor theorem.

Proof. If only a finite number of points z1, z2, . . . , zk hav-
ing the respective orders α1, α2, . . . , αk are prescribed,
then the product

(z − z1)α1(z − z2)α2 · · · (z − zk)αk (A.9)

is already a solution of the problem, so that this case is
settled immediately. If, however, an infinite number of
points are prescribed as zeros, because the corresponding
product would be meaningless generally. This would still
be the case if, with regard to the infinite products we
are dealing with here, we were to replace (A.9) by the
product(

1− z

z1

)α1
(

1− z

z2

)α2

· · ·

(
1− z

zk

)αk

(A.10)

which serves the same purpose. We therefore modify our
approach – and therein lies the utility of Weierstrass’s
method.

The set of prescribed points is enumerable, since every
finite region can contain only a finite number of them.
They can therefore be arranged in a sequence. The way
in which the points are numbered is not important. How-
ever, if the origin, with the order α0, is contained among
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them, we shall call this point z0 and, leaving it aside for
the present, arrange the remaining points in an arbitrary,
but then fixed, sequence: z1, z2, . . . , zv, . . . . Let the cor-
responding orders be α1, α2, . . . , αv, . . . . The zv are all
different from zero; and since they have no finite limit
point,

zv →∞, |zv| → +∞.

Consequently, it is possible to assign a sequence of posi-
tive integers k1, k2, . . . , kv, . . . such that

∞∑
v=1

αv

(
z

zv

)kv

(A.11)

is absolutely convergent for every z. In fact, it suffices,
e.g., to take kv = v+αv. For, no matter what fixed value
z may have, since zv → ∞, we have for all sufficiently
large v ∣∣∣∣∣ zzv

∣∣∣∣∣ < 1

2

and hence∣∣∣∣∣αv
(
z

zv

)v+αv
∣∣∣∣∣ < αv

(
1

2

)v+αv

<

(
1

2

)v
and the absolute convergence of the series is thus assured.
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Let the numbers kv be chosen subject to this condition,
but otherwise arbitrarily, and keep them fixed. Then we
shall prove that the product

G0(z) = zα0 ·
∞∏
v=1

[(
1− z

zv

)
· exp

{
z
zv

+ 1
2

(
z
zv

)2

+ · · ·+ 1
kv−1

(
z
zv

)kv−1
}]αv

represents an entire function with the required proper-
ties. (Here the factor zα0 appearing before the product
symbol is to be suppressed in case the origin is not one
of the prescribed zeros. Likewise, if one of the numbers
kv is equal to unity, the corresponding exponential factor
does not appear.)

The proof of this assertion is now very simple. To be able
to apply our theorems on products, we set the factors of
our infinite product equal to 1 + fv(z). According to
theorem A.10, we must then merely prove that

∞∑
v=1

|fv(z)| =
∞∑
v=1

∣∣∣∣∣
[(

1− z

zv

)
·

· exp

{
z

zv
+ · · ·+ 1

kv − 1

(
z

zv

)kv−1}]αv
− 1

∣∣∣∣∣ (A.12)

converges uniformly in every bounded region. For then
the entire plane can be taken as the region G of theorem
A.10, according to which the infinite product, and con-
sequently also G0(z), is an entire function. On account
of the form of the factors of G0(z), the second part of
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theorem A.10 at once yields that G0(z) also possesses
the required properties. The uniform convergence of the
series (A.12) in the circle about the origin with radius R
(R > 0 arbitrary, but fixed) is established as follows:

Since the series (A.11) also converges for z = R, and
since zv →∞, m can be chosen so large that

αv

∣∣∣∣∣Rzv
∣∣∣∣∣
kv

<
1

2
and

R

|zv|
<

1

2
(A.13)

for all v > m. Let us for the moment replace z/zv by u,
kv by k, and αv by α. Then, for v > m, the vth term of
the series (A.12) has the form∣∣∣∣∣

[
(1− u) exp

{
u+

u2

2
+ · · ·+ uk−1

k − 1

}]α
− 1

∣∣∣∣∣
with |u| < 1

2
and α|u|k < 1

2
. Now for |u| < 1 we can set

1− u = exp

{
− u− u2

2
− u3

3
· · ·
}

so that this vth term is further equal to∣∣∣∣∣ exp

{
α

(
− uk

k
− uk+1

k + 1
− · · ·

)}
− 1

∣∣∣∣∣
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and hence

≤ exp

{
α

(
|u|k

k
+
|u|k+1

k + 1
+ · · ·

)}
− 1

≤ exp

{
α|u|k(1 + |u|+ |u|2 + · · · )

}
− 1 < e2α|u|k − 1

because |u| < 1
2
. Further, since ex − 1 ≤ xex for x ≥ 0,

the vth term is less than or equal to

2α|u|ke2α|u|k < 6α|u|k

the exponent of e being smaller than one, according to
(A.13). Hence, for all sufficiently large v and all |z| ≤ R
we have

|fv(z)| < 6αv

∣∣∣∣∣ zzv
∣∣∣∣∣
kv

≤ 6αv

∣∣∣∣∣Rzv
∣∣∣∣∣
kv

.

But these are positive numbers whose sum converges (be-
cause of the manner in which the kv were chosen). There-
fore, by Weierstrass’s M-test, |fv(z)| is uniformly con-
vergent in the circle with radius R about the origin as
center, so the proof of the Weierstrass factor theorem is
complete.

The product is simplest if the prescribed zeros and orders
are such, that the series

∑
αv/zv, and consequently, for
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every z, the series
∑
αv(z/zv), converges absolutely for

our sequence z1, z2, . . . . For then it is possible to take all
kv = 1, and the desired function is obtained simply in
the form

G0(z) = zα0 ·
∞∏
v=1

(
1− z

zv

)αv

If, for example, the points 0, 1, 4, 9, . . . , v2, . . . are to be
zeros of order unity, then we have that

G(z) = eh(z) · z ·
∞∏
v=1

(
1− z

v2

)

with h(z) an arbitrary entire function, is the most general
solution of the problem. If the points 1, 8, . . . , v3, . . . are
to be zeros of respective orders 1, 2, . . . , v, . . . , then

G(z) = eh(z) ·
∞∏
v=1

(
1− z

v3

)v

is the most general solution.

Now we present an application of the factor theorem
which is of importance to an earlier topic in the text,
namely, in the derivation of Euler’s reflection formula
where we used an identity known as the product repre-
sentation of the sine function.
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Consider constructing an entire function which has zeros,
of order unity, at precisely all the real lattice points (i.e.,
at 0,±1,±2, . . . ). We number these points so that z0 =
0, z1 = +1, z2 = −1, . . . , z2v−1 = v, z2v = −v, . . . , with
(v = 1, 2, . . . ). The series

∞∑
v=1

(
z

zv

)2

= z2 ·
∞∑
v=1

1

z2
v

is absolutely convergent for every z, and we can therefore
take all kv = 2.

Then we have

G(z) = eh(z) · z ·
∞∏
v=1

[(
1− z

zv

)
ez/zv

]

= eh(z) · z ·
∞∏
v=1

[(
1− z

v

)
ez/v

][(
1 +

z

v

)
e−z/v

]

= eh(z) · z ·
∞∏
v=1

(
1− z2

v2

)

as the most general solution of the problem.

Since the function sinπz is evidently also a solution of
the problem, it must be contained in the expression just
found. That is, there exists a certain entire function,
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which we shall call h0(z), such that

sin πz = eh0(z) · z ·
∞∏
v=1

(
1− z2

v2

)
. (A.14)

If we can succeed in obtaining this function h0(z), we
shall have the factor representation of sin πz.

The function h0(z) certainly cannot be ascertained from
a knowledge of the zeros alone. On the contrary, for its
determination we must make use of further properties of
the function sinπz; e.g., its power series expansion, its
periodicity properties, the conformal map effected by it,
its behavior at infinity, and so on. Now to determine
h0(z).

First, to show that h′′0(z) is a constant. According theo-
rem A.11, it follows from (A.14) that

π cot πz = h′0(z) +
1

z
+
∞∑
v=1

(
1

z − v
+

1

z + v

)
. (A.15)

According to theorem A.12, this expression may be dif-
ferentiated repeatedly term by term. Thus,

− π2

sin2 πz
= h′′0(z)− 1

z2
−
∞∑
v=1

(
1

(z − v)2
+

1

(z + v)2

)
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or, more succinctly,

h′′0(z) =
+∞∑
v=−∞

1

(z − v)2
− π2

sin2 πz
.

This relation holds in every closed region which contains
no real lattice points. If we replace z by z + 1 in the
rightmost member, it is not altered because sin2πz has
the period +1, and

+∞∑
v=−∞

1

(z + 1− v)2
=

∞∑
v=−∞

1

(z − (v − 1))2
=

+∞∑
µ=−∞

1

(z − µ)2
.

Hence, h′′0(z) is an entire function with the period +1.
In order to show that h′′0(z) is a constant, it is sufficient
to show that |h′′0(z)| cannot become arbitrarily large. On
account of the periodicity of h′′0(z) which we just estab-
lished, it is sufficient, for this purpose, to show that a
constant K exists such that |h′′0(z)| < K for all z = x+iy
for which 0 ≤ x ≤ 1 and |y| ≥ 1.

Now for these z,∣∣∣∣∣
+∞∑
v=−∞

1

(z − v)2

∣∣∣∣∣ ≤
+∞∑
v=−∞

1

(x− v)2 + y2
≤ 2

∞∑
n=0

1

n2 + y2

and, since sinπz = (1/2i)(eiπz − e−iπz),∣∣∣∣∣ π2

sin2 πz

∣∣∣∣∣ =
4π2

e2πy + e−2πy − 2 cos 2πx
<

4π2

e2π|y| − 2
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for those z. Consequently,∣∣∣∣∣h′′0(z)

∣∣∣∣∣ < 2
∞∑
n=0

1

n2 + y2
+

4π2

e2π|y| − 2

there, and this expression certainly remains less than a
fixed bound for all |y| ≥ 1. Hence,

h′′0(z) = constant = c′′.

According to the inequality just obtained, |h′′0(z)| is arbi-
trarily small if |y| is sufficiently large; hence c′′ must be
equal to zero. Therefore

h′′0(z) = 0, h′0(z) = constant = c′

and hence by A.15

π cotπz = c′ +
1

z
+
∞∑
v=1

2z

z2 − v2
.

Now if we substitute −z for z in this equality, we see that
c′ = −c′, and hence c′ = 0. Then h0(z) and eh0(z) are also
constant. Therefore

sin πz = c · z ·
∞∏
v=1

(
1− z2

v2

)
.

If we divide through by z and allow z to approach zero,
we obtain π = c. We thus have,

sin πz = πz ·
∞∏
v=1

(
1− z2

v2

)
valid for all z, which is the product representation of the
sine function we set out to find.



B

The Mittag-Leffler Theorem

For every fractional rational function there is a so-called
decomposition into partial fractions, in which the poles
and corresponding principal parts are apparent. Thus, let
f0(z) be the given rational function, and let z1, z2, . . . , zk
be its poles with the corresponding principal parts

hv(z) =
a

(v)
−1

z − zv
+

a
(v)
−2

(z − zv)2
+ · · ·+

a
(v)
−αv

(z − zv)αv
(B.1)

where v = 1, 2, . . . , k. Then we can set

f0(z) = g0(z) + h1(z) + h2(z) + · · ·+ hk(z) (B.2)

where g0(z) is a suitable entire rational function. From
this decomposition into partial fractions, we infer that
every other rational function f(z) having the same poles
with the same respective principal parts can differ from

137
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f0(z) in the term g0(z) alone. Furthermore, one can ar-
bitrarily assign these poles and their principal parts. In
other words, it is always possible to construct a rational
function whose poles and their principal parts are pre-
scribed. This function can be represented as a partial-
fractions decomposition which displays these poles and
their principal parts. The most general function of this
kind is obtained from a particular one by adding to it an
arbitrary entire rational function.

These fundamentals concerning rational functions can be
carried over to the more general class of meromorphic
functions.

Definition B.1. A single-valued function shall – without
regard to its behavior at infinity – be called meromorphic,
if it has no singularities other than at poles in the entire
plane.

Theorem B.1. A meromorphic function has in every
finite region at most a finite number of poles.

For otherwise there would exist a finite limit point of
poles, and this point would be singular, but certainly not
a pole.

According to this, the rational functions are special cases
of meromorphic functions, and the entire functions must
also be regarded as such.
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The function 1/ sin z is meromorphic because in the fi-
nite part of the plane it has a singularity, namely a pole
of order unity, only wherever sin z has a zero. We see,
likewise, that cot z = cos z/ sin z and tan z are meromor-
phic functions. More generally, if G(z) denotes any entire
function, its reciprocal, 1/G(z), is a meromorphic func-
tion. For, 1/G(z) has poles (but otherwise no singulari-
ties) at those, and only those, points at which G(z) has
zeros; and the orders of both are the same. If G1(z) is an
entire function which has no zeros in common with G(z),
we see that G1(z)/G(z) is a meromorphic function whose
poles coincide in position and order (although, in general,
not in their principal parts!) with those of 1/G(z).

We inquire whether, and how, one can construct a mero-
morphic function if its poles and the corresponding prin-
cipal parts are prescribed, and to what extent a mero-
morphic function is determined by these conditions.

If M0(z) and M(z) are two meromorphic functions which
coincide in their poles and the corresponding principal
parts, then their difference, M(z)−M0(z), is evidently an
entire function. Consequently, they differ by at most an
additive entire function (a meromorphic function with no
poles). Conversely, since the addition of such a function
to M0(z) does not alter its poles or the corresponding
principal parts, we are able to say:

Theorem B.2. Let M0(z) be a particular meromorphic
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function. Then, if G(z) denotes an arbitrary entire func-
tion,

M(z) = M0(z) +G(z)

is the most general meromorphic function which coin-
cides with M0(z) in its poles and the corresponding prin-
cipal parts.

There remains only the possibility and method of con-
structing a particular meromorphic function with arbi-
trarily prescribed poles.

According to theorem B.1, the set of assigned poles can-
not have a finite limit point. If this is excluded, however,
then the problem posed can be solved without any fur-
ther restriction.

Theorem B.3. (Mittag-Leffler partial-fractions the-
orem). Let any finite or infinite set of points having no
finite limit point be prescribed, and associate with each
of its points a principal part, i.e., a rational function of
the special form (B.1). Then there exists a meromor-
phic function which has poles with the prescribed prin-
cipal parts at precisely the prescribed points, and is oth-
erwise regular. It can be represented in the form of a
partial-fractions decomposition from which one can read
off again the poles along with their principal parts. Fur-
ther, by theorem B.2, if M0(z) is one such function,

M(z) = M0(z) +G(z)

is the most general function satisfying the conditions of
the problem, if G(z) denotes an arbitrary entire function.



141

If we let M(z) be an arbitrarily given meromorphic func-
tion, the set of its poles has no finite limit point. Hence,
according to Mittag-Leffler’s theorem, another meromor-
phic function, M0(z), having the same poles and prin-
cipal parts as M(z), can be constructed in the form of
a partial-fractions decomposition displaying these. Then
by theorem B.2,

M(z) = M0(z) +G0(z)

where G0(z) denotes a suitable entire function. We have
thus actually obtained a decomposition of the given mero-
morphic function M(z) into partial fractions, from which
its poles and the corresponding principal parts can be
read off.

Proof. If the function to be constructed is to have no
poles at all, then every entire function is a solution of
the problem. If it is to have the finitely many poles
z1, z2, . . . , zk with the respective principal parts h1(z),
h2(z), . . . , hk(z), then

M0(z) = h1(z) + h2(z) + · · ·+ hk(z)

is a solution. If, however, an infinite number of poles are
prescribed, we cannot attain our goal simply because the
analogous series, being infinite, would generally diverge.
Nevertheless, we can produce the convergence by means
of a suitable modification of the terms of the series.
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If the origin is a prescribed pole, we denote it by z0 and
leave it aside for now. Let h0(z), h1(z), . . . , hv(z), . . . be
the principal parts corresponding to the points z0, z1, . . . ,
zv, . . . ; hv(z) is understood to be an expression of the
type appearing in (B.1). Each of these functions hv(z),
v = 1, 2, 3, . . . , is regular in a neighborhood of the origin.
Its power-series expansion

hv(z) = a
(v)
0 + a

(v)
1 z + a

(v)
2 z2 + · · · (v = 1, 2, . . . )

for this neighborhood converges for all |z| < |zv|; hence,
it is uniformly convergent for all |z| ≤ 1

2
|zv|. Conse-

quently (for every v = 1, 2, 3, . . . ) an integer nv can be
determined such that the remainder of the power series
after the nvth term remains, in absolute value, less than
any preassigned positive number, e.g., 1/2v. Denote the
sum of the first nv terms of the series by gv(z). Thus,
gv(z) is an entire rational function of degree nv:

gv(z) = a
(v)
0 + a

(v)
1 z + · · ·+ a(v)

nv z
nv (v = 1, 2, 3, . . . )

and for all |z| ≤ 1
2
|zv| we have

|hv(z)− gv(z)| < 1

2v
.

Then

M0(z) = h0(z) +
∞∑
v=1

[hv(z)− gv(z)]
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is a meromorphic function satisfying the conditions of the
theorem. (If the origin is not assigned as a pole, the term
h0(z) must be omitted.

To prove this, we must merely show that the right-hand
side defines an analytic function having in every finite
domain, e.g., a circle with radius R about the origin as
center, exactly the prescribed singularities and no others.

Now, |zv| → +∞. Therefore it is possible to choose m so
large, that |zv| > 2R, and hence R < 1

2
|zv|, for all v > m.

Then, for all |z| ≤ R and all v > m,

|z| < 1

2
|zv| and consequently |hv(z)− gv(z)| < 1

2v
.

Hence, for all |z| ≤ R, the series

∞∑
v=m+1

[hv(z)− gv(z)]

is absolutely and uniformly convergent. Since its terms
are regular for |z| ≤ R (because the poles of the hv(z)
with v > m lie outside the circle |z| = R), it defines there
a regular function which we shall denote by Fm(z). Then
evidently

M0(z) = h0(z) +
m∑
v=1

[hv(z)− gv(z)] + Fm(z)
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is also an analytic function which is regular in the circle
with radius R about the origin as center, with the ex-
ception of those points zv in this circle which are poles
with principal parts hv(z). The same is valid for every
finite region, because R was completely arbitrary and
hence, M0(z) is a meromorphic function with the neces-
sary properties.

From the proof it follows that it is sufficient to take the
degree nv of the polynomial gv(z) (the sum of the first
nv terms of the power series for hv(z)) so large that hav-
ing chosen an arbitrary R > 0, the terms |hv(z)− gv(z)|
for all |z| ≤ R finally (i.e., for all sufficiently large v) re-
main less than the terms of a convergent series of positive
terms.

The convergence terms gv(z) are not always necessary.
Then, of course, the function to be constructed is espe-
cially simple. If, e.g., the points 0, 1, 4, . . . , v2, . . . are to
be poles of order unity with respective principal parts
1/(z − v2), then

M0(z) =
1

z
+
∞∑
v=1

1

z − v2
=
∞∑
v=0

1

z − v2

is a solution. For, let R > 0 be chosen arbitrarily, and
m >

√
2R. Then the series from v = m + 1 on is evi-

dently uniformly convergent in |z| ≤ R, which proves the
assertion.
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Consider the case of cot πz. The real lattice points are to
be poles of order unity with the residue +1, and hence,
with the principal parts

hv(z) =
1

z − zv
, (z0 = 0, z2v−1 = v, z2v = −v).

For v = 1, 2, 3, . . . ,

hv(z) = − 1

zv
− z

z2
v

− z2

z3
v

− · · ·

and it suffices to take all nv = 0, and hence,

gv(z) = − 1

zv

because then for all sufficiently large v (namely, for all
v > 4R) and all |z| ≤ R,

|hv(z)− gv(z)| ≤ R

|zv|(|zv| −R)
<

2R

|zv|2

so that the |hv(z) − gv(z)| finally remain less than the
terms of an obviously convergent series of positive terms.
Consequently, according to the concluding remark of the
preceding paragraph, if G(z) is an arbitrary entire func-
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tion,

M(z) = G(z) +
1

z
+
∞∑
v=1

[
1

z − zv
+

1

zv

]

= G(z) +
1

z
+
∞∑
v=1

([
1

z − v
+

1

v

]
+

[
1

z + v
− 1

v

])

= G(z) +
1

z
+
∞∑
v=1

[
1

z − v
+

1

z + v

]
is the most general function of the kind required. The
function cot πz also has poles of order unity at the points
0,±1,±2, . . . . If n is one of them, the residue at this
point is

lim
z→n

(z − n) cosπz

sin πz
= lim

z→n

(z − n)[(−1)n + · · · ]
(−1)nπ(z − n) + · · ·

=
1

π

which can be read off from the series expansion for a
neighborhood of the point z = n. Hence, the function
π cot πz is contained among the functions M(z) which
we constructed.

The still undetermined entire function G(z), which there
was called h′0(z), cannot be ascertained solely from the
nature and position of the poles. We should, as before,
have to make use of special properties of the function.
However, in determining the product sinπz, we have al-
ready discovered that we have to set h′0(z), that is, G(z),
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equal to zero. Therefore

π cotπz =
1

z
+
∞∑
v=1

[
1

z − v
+

1

z + v

]

which is the partial-fractions decomposition of the cotan-
gent function.


