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ABSTRACT 

In this paper, by using Euler connection, we establish an accurate continued fraction approximation 

for the gamma function and determine all parameters of the continued fraction by Bernoulli numbers. 
Also new accurate continued fraction bounds for the gamma function are established. 
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1. Introduction 

Today the Stirling’s formula 
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  2!  is one of the most well-known formulas for 

approximation of the factorial function by being widely applied in statistical physics, probability 

theory and number theory. Up to now, many researchers made great efforts in the area of establishing 

more accurate approximations for the factorial function and more precise inequalities, and had a lot of 

inspiring results. 

The Stirling’s series for the gamma function is presented (see [1, p.257, Eq. (7.1.40)]) by 
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where nB (� ∈ ℕ� ≔ ℕ∪ {0}) denotes the Bernoulli numbers defined by the generating formula 
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Recently, some authors have focused on continued fractions in order to obtain new asymptotic 

formulas. 

For example, on the one hand, Mortici [7] found Stieltjes’ continued fraction 
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Also Mortici [5] provided a new continued fraction approximation starting from the Nemes’ formula 

as follows, 
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where L,
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On the other hand, Lu [4] provided a new continued fraction approximation based on the Burnside’s 

formula as follows, 

k

n

n

n

na
n

na
n

a

e

n

n

2

1

3

22

1

2

1

12

1

2!
























































O

 ,                  (1.4) 

where L   ,
465

14
   ,

120

23

48
   ,

24
321 


k
a

k
a

k
a . 

Also Lu [5] found two asymptotic formulas  
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where L,
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In this paper, we focus the continued fraction approximation for the gamma function. 

Until now many continued fraction approximations for the gamma function were given, but the 

parameters of the continued fraction were not determined analytically, only determined by computer 

programs such as Mathematica and Maple system.([4]-[8]) 

By using Euler connection between series and continued fractions, we establish an accurate continued 

fraction approximation for the gamma function and determine all parameters of the continued fraction 

by Bernoulli numbers. 

2. Lemmas 

Lemma 2.1(The Euler connection [3, p.19, Eq. (1.7.1, 1.7.2)]). Let }{ kc  be a sequence in ℂ\{0} 

and 





n

k

kn cf

0

,  � ∈ ℕ�.                         (2.1) 

Since 10    ,  nn fff , � ∈ ℕ , there exists a continued fraction )/(0 mm baKb   with n
th
 

approximant nf  for all n. This continued fraction is given by  
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Remark 2.1. The following lemma shows that transformation to the continued fraction from series. 
This lemma is very useful for research of the continued fraction approximation. 

Lemma 2.2. For every 0x , 
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where 
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Lemma 2.3 ([2, Theorem 8]). Let 0n  be an integer. The functions 
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are strictly completely monotonic on (0, ∞). 



3. Main results 

Theorem 3.1. As x , we have the continued fraction approximation of )1(  x , 
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Proof. From Lemma 2.2, as x , 
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According to the Stirling’s series, 
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Thus, our new continued fraction approximation can be obtained. 
Remark 3.1. As you can see, our new continued fraction approximation for the gamma function is 

equal to the Stirling’s series. 

Theorem 3.2. For every 0x , we have continued fraction bounds for the gamma function: 
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Proof. From Lemma 2.3,   0xFn  and   0xGn  for 0x , so we obtain 
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Then, from Lemma 2.2, for 0x , 
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Thus, our new continued fraction bounds for the gamma function are obtained. 

Remark 3.2. Theorem 3.1 and Theorem 3.2 show that all parameters of the continued fraction are 

determined analytically by Bernoulli numbers. 
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