# An arbitrary higher-derivative correction to Einstein-Hilbert action 

Matthew Stephenson*<br>Stanford University

Abstract<br>We have made an observation that can be generalized to an arbitrary higher-derivative correction to Einstein-Hilbert action (to linear order in the corresponding couplings).

[^0]
## I. NOTES

An ordinary second-order differential equation for a complex function $\phi(r)$ (momentum space),

$$
\begin{equation*}
\frac{\partial^{2} \phi(r)}{\partial r^{2}}+P(r) \frac{\partial \phi(r)}{\partial r}+Q(r) \phi(r)=0 \tag{1}
\end{equation*}
$$

has an associated generalised Wronskian,

$$
\begin{equation*}
W(r)=\left[\phi^{*} \frac{\partial \phi}{\partial r}-\phi \frac{\partial \phi^{*}}{\partial r}\right] \exp \left\{\int^{r} P\left(r^{\prime}\right) d r^{\prime}\right\} \tag{2}
\end{equation*}
$$

which is conserved, $\partial_{r} W(r)=0$. Since the equation is linear, both $\mathfrak{R} \phi$ and $\Im \phi$ are independent solutions of the ODE.

## II. UNIVERSALITY IN SECOND-ORDER HYDRODYNAMICS

In order to compute all second-order hydrodynamic transport coefficients, we need to compute the three-point functions of the stress-energy tensor and use the appropriate Kubo formulae. Imagine computing a fully retarded three-point function

$$
\begin{equation*}
\left\langle T_{R}^{\mu_{1} \nu_{1}}(0) T_{A}^{\mu_{2} \nu_{2}}\left(x_{2}\right) T_{A}^{\mu_{3} \nu_{3}}\left(x_{3}\right)\right\rangle \tag{3}
\end{equation*}
$$

In momentum space, we turn on the channels such that each of the first-order perturbations $h_{\mu \nu}^{(1)}$ sourcing $T^{\mu \nu}$ decouples from the other metric fluctuations and behaves as a scalar field. Let's define

$$
\begin{equation*}
\phi_{i}^{(1)} \equiv g^{\mu_{i} \lambda} h_{\lambda \nu_{i}}^{(1)} . \tag{4}
\end{equation*}
$$

Then $\phi_{i}$ satisfy

$$
\begin{equation*}
\partial_{r}^{2} \phi_{i}^{(1)}+\mathcal{A}_{1}(\omega, q) \partial_{r} \phi_{i}^{(1)}+\mathcal{A}_{0}(\omega, q) \phi_{i}^{(1)}=0 \tag{5}
\end{equation*}
$$

with the appropriate $\omega$ and $q$ for each of the scalar fluctuations.
To compute the three-point function we need to perturb $g_{\mu_{1} \nu_{1}}$ to second order. The scalar mode is now governed by a non-homogeneous differential equation of the form

$$
\begin{equation*}
\partial_{r}^{2} \phi_{1}^{(2)}+\mathcal{A}_{1}(\omega, q) \partial_{r} \phi_{1}^{(2)}+\mathcal{A}_{0}(\omega, q) \phi_{1}^{(2)}=\mathcal{B}(\omega, q) \tag{6}
\end{equation*}
$$

$\mathcal{B}$ will be quadratic in $\omega$ and $q$ and will depend on the product of the boundary values of $\phi_{2}^{(1)}(r \rightarrow$ $\infty) \equiv \varphi_{2}^{(1)}$ and $\phi_{3}^{(1)}(r \rightarrow \infty) \equiv \varphi_{3}^{(1)}$.

Imagine now that we compute $N$ independent three-point functions in different combinations of channels, but with each satisfying the same structure of equations as the one specified above.

$$
\begin{equation*}
\lim _{\omega \rightarrow 0} \lim _{p \rightarrow 0} \sum_{n=1}^{N} c_{n} \partial_{n} \partial_{n} \mathcal{B}_{n}=0 \tag{7}
\end{equation*}
$$


[^0]:    * matthewjstephenson@icloud.com

