
easter egg

Identification of universal features in the conduc-
tivity of classes of two-dimensionalQFTs using the
AdS/CFT correspondence

Matthew Stephensona

a Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, United States

matthewjstephenson@icloud.com April 18, 2023

Abstract: We study the electrical conductivity of strongly disordered, strongly coupled quantum field

theories, holographically dual to non-perturbatively disordered uncharged black holes. The

computation reduces to solving a diffusive hydrostatic equation for an emergent horizon

fluid. We demonstrate that a large class of theories in two spatial dimensions have a uni-

versal conductivity independent of disorder strength, and rigorously rule out disorder-driven

conductor-insulator transitions in many theories. We present a (fine-tuned) axion-dilaton

bulk theory which realizes the conductor-insulator transition, interpreted as a classical per-

colation transition in the horizon fluid. We address aspects of strongly disordered holography

that can and cannot be addressed via mean-field modeling, such as massive gravity.

Introduction1

We examined electrical transport in strongly coupled holographic quantum field theories at zero charge
density, constructing perfect metals amidst disorder. Our findings have implications for realistic models
of disordered strange metals.

Conductivity2

Consider a static, asymptotically anti-de Sitter space with a black hole horizon sourced entirely by un-
charged bulk matter and a dynamical metric. We can choose the bulk metric using diffeomorphism
invariance.

ds2 = L2
[
Pdr2 −Qdt2 +Gijdx

idxj
]
. (1)

i, j indices represent the spatial boundary directions, while M,N represent all dimensions, and L is
AdS radius. All functions in the metric are functions of r and x. We further choose bulk coordinate
0 < r < ∞, with r = 0 black hole horizon, and r = ∞ AdS boundary. Uncharged matter not required,
energy conditions obeyed.
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We add a U(1) gauge field to the bulk, so the action of our theory is

S =

∫
dd+2x

√−g

(
Luncharged −

Z

4
F 2

)
. (2)

Function Z is a parameter of (uncharged) scalar matter, but for our purposes it’s an arbitrary function
of r and x. Gauge field’s two-point functions correspond to current-current correlation functions in the
boundary theory, including electrical conductivity matrix σij . The conductivity may be related, via
membrane paradigm [1], to data on the horizon of the black hole alone. The expected value of the
boundary current is given by

J i = σijEj = E
[
Z
√
γγij (Ej + ∂jα)

]
, (3)

where Ej is the applied electric field, E[· · · ] denotes a uniform spatial average, γij = Gij(r = 0) is the
induced metric on the horizon, and α is the unique function which obeys equation

0 = ∂i
(
Z
√
γγij (Ej + ∂jα)

)
(4)

with appropriate boundary conditions (for example, periodicity in compact boundary spatial directions).
The membrane paradigm was used in holographic systems in [2], and similar computations appear in
[3, 4, 5] for black holes with translational symmetry broken only in one direction. These results are
special cases of this general formula. This formula may break down if black hole horizon fragments and
becomes disconnected, as was considered in [6, 7].

We can interpret (4) as a hydrostatic equation enforcing local charge conservation in an emergent
horizon fluid. This is subtle – the local “electric current” in (4) is not the same as the expected value of
the local current in the dual theory; only their spatial averages are equal. A powerful set of techniques
have been developed to understand the qualitative behavior of transport in such fluids [8]; for example,
it immediately follows from (4) that σij = σji.

In particular, if σ[Z; γij ] is the conductivity matrix with given Z and γij :

det (σ[Z; γij ]) det

(
σ

[
1

Z
; γij

])
=

1

e8
. (5)

If we set Z = 1, (5) gives

det(σ) =
1

e4
. (6)

If we expect that on average for a disordered sample, the conductivity matrix is isotropic (σij = σδij),
that fixes conductivity to be σ = 1/e2, exactly the clean result!

A simple way to understand this result: suppose that in local coordinates, the metric is given by

γijdx
idxj ≈ a2xdx

2 + a2ydy
2. (7)

Then we expect “locally” σxx ∼ ay/ax and σyy ∼ ax/ay [9]. On average ay and ax should have identical
distributions, so we expect that σxx and 1/σxx have the same distributions. This implies σ = 1/e2;
analogous statements are known for random resistor lattices in d = 2 with analogous (e.g., log-normal)
resistance distributions [?]. And more generally, if logZ is symmetrically distributed about 0, then in an
isotropic theory, σ = 1/e2 follows from (5) in the thermodynamic limit.

The robustness of σ in these strongly disordered d = 2 models is remarkable, and deserves further
comments. In models where momentum dissipation is introduced through massive gravity [10] or “Q-
lattice” axions [11], one finds the hydrodynamic result [12]

σ = σq +
Q2τ

ϵ+ P
, (8)
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where Q is charge density, ϵ energy density, P pressure, σq dissipative “quantum critical” conductivity
without disorder, and τ a “momentum relaxation time”, inversely related to graviton mass. Before now,
it was unclear whether the fact that (8) holds beyond the hydrodynamic limit was an unrealistic feature
of massive gravity or similar theories. Our work confirms this is a sensible prediction of massive gravity
for many systems at Q = 0. (8) further implies another mechanism, τ → 0, by which the conductivity
can reach its lower bound, σq. The conductivity saturating this lower bound, at least qualitatively, is
likely to occur at strong disorder [8]. Confirmation that strongly-disordered charged holographic models
(with Z = 1) have a conductivity no smaller than 1/e2 in d = 2 would be a further non-trivial test of
predictions of simple mean-field physics.

In d ̸= 2, and/or if Z is distributed more generically, it’s valuable to employ insight gained from
equivalence between Markov chains on lattices and resistance of a resistor lattice [13]. For arbitrary Z,
this analogy can be leveraged to find lower and upper bounds to σ, for a self-averaging disordered sample:
[8]

Ld−2

e2
E
[

γii
dZ

√
γ

]−1

≤ σ ≤ Ld−2

e2
E[Z√

γγii]

d
. (9)

It is straightforward to test these results and bounds by numerically solving (4) for various disorder
realizations. Good agreement with our exact analytic results and consistency with our bounds is obtained.

Conductor-Insulator Transition3

(9) constrains σ to deviate from the clean result by the strength of fluctuations in Z and γij . It’s evident
from (9) that if γij and Z are finite at all points on the horizon, then the black hole necessarily conducts
electrical current, no matter how strong the disorder. This is a remarkable result. In contrast, in non-
interacting quantum field theory, a conductor-insulator transition occurs at a finite disorder strength
[14] in d > 2, and at arbitrarily small disorder in d ≤ 2 [15]. This transition relates to the destructive
interference of matter waves scattering off of the disorder. Apparently, bulk fluctuations of the gauge
field in holographic theories do not suffer from such interference. While it’s known [16, 17] that metal-
insulator transitions occur at a finite disorder strength in an interacting quantum system, even such
systems ultimately succumb to (many-body) localization at strong disorder. Perhaps holographic models
have taken the “coupling → ∞” limit first, rendering such a transition impossible.

Realizing a holographic conductor-insulator transition takes more care. A “helical lattice” approach
has generated such a transition in [18, 19], but there is no satisfying physical interpretation. However,
even in these papers, the conductivity in the insulating phase only decays as algebraically in T as T → 0,
in contrast to canonical insulators.

Assuming d = 2 and a probe limit with AdS-Schwarzschild geometry, we need a large E[1/Z] for C = 0,
requiring percolating Z → 0 bubbles across the horizon. When these finite-Z regions disconnect, charge
transport is halted, causing a disorder-driven holographic metal-insulator transition, similar to random
resistor lattices [20].

Numerically compute conductivity for Z ansatz with ”bubbles” where Z → 0 percolate across horizon
to test proposal. Numerics support this; see Figures 1 and 2.

3.1 Holographic Realizations

We now ask whether the percolation mechanism proposed above for a disorder-driven metal-insulator
transition can occur in a “realistic” holographic model: a bottom-up Einstein-Maxwell-dilaton (Φ)-axion
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Figure 1: det(σ) from a black hole horizon for a theory in d = 2; we set e = 1, and use periodic
boundary conditions with |x|, |y| ≤ π, with a discretized spatial grid of 7012 points. We take γij =

δij and Z = exp[−BZ/(1+2Z)], where Z =
∑N

j=1 exp(−(sin2(ϕjx+x/2)+sin2(ϕjy+y/2))/2ξ2),
with ϕjx and ϕjy independent random phases, and B > 0 is a random constant. We took various
values of B and fixed ξ = 20π/701. When E[Z] ≳ 0.28 ≡ Z∗, curves at different B approximately
collapse, implying that current avoids the non-conducting bubbles; when E[Z] ≲ Z∗, the value
of conductivity is sensitive to B. In the limit B → ∞ and ξ → 0, a metal-insulator transition
appears at Z∗.
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Figure 2: Surface plots of Z(x, y) for various bubble densities. Depending on whether regions of
high or low Z percolate across the horizon determines whether we’re in the metallic or insulating
phase, as is clear upon comparing with Figure 1.
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(α) theory with action

S =

∫
dd+2x

√−g

(
R− 2Λ

16πG
−Md

[
1

2
(∂Φ)2 +

e−Φ

2
(∂α)2 − V (α) + U(Φ)

L2

]
− Z(α)

4e2
F 2

)
. (10)

Here M is a mass scale, whose precise value is unimportant – we choose it so that Φ is strictly dimen-
sionless, for simplicity, and

Λ = −d(d+ 1)

2L2
. (11)

At G → 0, generalizing choices yields similar results, but (10) with axio-dilaton scalar kinetic terms
is essential. Z(α)’s cosine potentials may suit our needs, and arise due to instanton effects in effective
actions (as in QCD). In our holographic model, Z(α) isn’t suppressed by G/Ld (the scale of bulk’s
quantum corrections).

For conductor-insulator transitions, V (α) must have at least two minima, αc and αi, with Z(αc) > 0
and Z(αi) = 0. α drives the transition and Φ stabilizes it, although theories with finite Lifshitz or
hyperscaling-violating exponents may also work [21]. Insulators form when bubbles of α = αi percolate
across the horizon; we aim to demonstrate how to create and maintain these bubbles at low temperatures.
[21] is a citation. For this purpose, a simple choice of potentials, though certainly not the only, is

U(Φ) =
7λ2

2
− 3λΦ− 4λ2e−Φ/λ +

λ2

2
e−2Φ/λ, (12a)

V (α) = −α2 +
α4

2α2
0

, (12b)

Z(α) =

(
1− α

α0

)2

. (12c)

Using Z in [22], we set α0 → 0, λ > 2, and V (α) marginal to avoid axion backreaction on the dilaton. The
Harris criterion [21] implies inability to source disordered modes of all wavelengths without UV geometry
backreaction.

Let us begin by sourcing the dilaton with (positive) δ-like sources on the AdS boundary – analogous
to point-like impurities in the dual theory. Each impurity produces an expanding bubble which becomes
insulating; width of the “bubbles” of α is ∼ 1/T . If density of the impurities is n, then the bubbles
percolate across the horizon when T ≲

√
n. Within each bubble, α → α0, and thus at low temperatures

we obtain an insulator
A second mechanism for obtaining the transition is as follows: suppose α.
As T → 0 in the insulating phase, we predict:

σ(T ) ∼ exp

[
− 8

λ

(
ζ

T

)λ/2
]

(13)

Outlook4

Recent models [23, 24, 25, 26] propose momentum non-conservation in (quasi-2d) strange metals. We
constructed perfect conductors in strong disorder and predict finite charge density will not decrease
conductivity. We encourage extending holographic approach to charged black holes and finding non-
holographic field theories with disorder-resistant σq.
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