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Abstract. In this paper it is shown that the Banach space of continuous,
R

2- or C-valued functions on a simply connected either 2-dimensional
real or 1-dimensional complex compact region can be decomposed into
the topological direct sum of two subspaces, a subspace of integrable
(and conformal) functions, and another one of unintegrable (and anti-
conformal) functions. It is shown that complex integrability is equivalent
to complex analyticity. This can be extended to real functions. The
existence of a conjugation on that Banach space will be proven, which
maps unintegrable functions onto integrable functions.
The boundary of a 2-dimensional simply connected compact region is
defined by a Jordan curve, from which it is known to topologically divide
the domain into two disconnected regions. The choice of which of the two
regions is to be the inside, defines the orientation. The conjugation above
will be seen to be the inversion of orientation. Analyticity, integrability,
and orientation on R

2 (or C) therefore are intimately related.

1. Introduction: Prelminaries and problem statement
Let K stand for either R, R2, or C. A function f from V to either R, R2, or
C is is called continuous on V , if is well-defined and continuous in an open
environment U ⊂ K of V . The set of continuous K-valued functions on V then
is a Banach space C(V,K) with the supremum norm ∥∥̇ : f 7→ supx∈V ∥f(x)∥K,
where ∥·∥K stands for the absolute value for K = R, the Euclidean norm for
K = R2, and the absolute value for K = C. In the following, we’ll briefly write
C(V ) for C(V,K), when it is clear what the target space K is.

A path γ in V is a continuous mapping γ : [0, 1] → V , where [0, 1]
denotes the closed real interval from 0 to 1. V s called connected, if for each
x, y ∈ V there is a path γ in V with γ(0) = x and γ(1) = y. A compact set
V ⊂ K is a closed and bounded subset of K. V will be called closed region, if
it is the closure of a non-void open and connected set. The path γ is called
closed if γ(0) = γ(1), and a connected V is called simply connected, if all
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closed paths in V are point homotopic in V , i.e.: if V has no holes. Let V be
a simply connected, closed region and f ∈ C(V,K). Then for every piecewise
continuously differentiable path γ : [0, 1] → V , the path integral

∫
γ

f(s)ds :=∫ 1
0 f(γ(t)) dγ(t)

dt dt is a well-defined, continuous linear functional on C(V,K). A
function f ∈ C(V,K) is called integrable, if and only if

∫
γ

f(s)ds = 0 for every
closed path γ in V . In all cases, if f is integrable, then the path integrals
from a fixed startpoint in V to the variable endpoint in V define a function
If , which is commonly called primitive of f . (Since two primitives of the
same function f differ utmost by the choice of the startpoint, which adds an
additive constant, the primitives are naturally defined as equivalence classes.)
While this is trivial for one real dimension, i.e: for V ⊂ R, and it is simple
in the complex (also 1-dimensional) case, with two real dimensions V ⊂ R2,
both f ∈ C(V,R) and f ∈ C(V,R2) there is a twist: primitives of integrable
f ∈ C(V,R) are functions If ∈ C(V,R2), while the primitives of f ∈ C(V,R2)
are functions If ∈ C(V,R). So, if If itself is integrable again to I2f , then
I2f will be in the same space of continuous functions on V as f , and the mth

order primitive Imf of f will be element of C(V,R) or C(V,R2), depending
on whether m is even or odd.

For now, let us restrict to the unproblematic complex case C(V,C) with
V ⊂ C:
If f ∈ C(V,C) is integrable, then f can be uniquely path integrated from a
fixed z0 = x0 + iy0 in the interior of V to any other z = x + iy ∈ V , which –
up to an additive constant of integration – defines a function If ∈ C(V,C),
which is complex differentiable and for which dIf(z)

dz holds. If is therefore
called anti-derivative or primitive of f . Clearly, if f is integrable, then it is
integrable to all orders, i.e. the nth primitive Inf exists for all n ∈ N. For
the next, a definition of complex analyticity is needed: If ∈ C(V,C) is called
(complex) analytic, if for all z0 ∈ V there is an environment Uϵ(z0), such that
for all z ∈ Uϵ(z0): f(z) =

∑
k≥0 ck(z − z0)k is on Uϵ(z0) the uniform limit of

the power series
∑

k≥0 ck(z − z0)k, where ck ∈ C for all k.
We’ll refer to Cauchy theory as the contents of his original article [3].

The following shows that it can be based on the integrability only:

Proposition 1.1 (Corollary of Cauchy theory). If V ⊂ C is a compact and
simply connected region and f : V ∋ z 7→ f(z) is continuous and integrable
(w.r.t. dz), then f is analytic on V .

Its proof uses the following

Lemma 1.2. Let V ⊂ C be a compact and simply connected region.
(i) If f ∈ C(V,C) is integrable and If is its primitive, then the square

If2 := If · If is integrable.
(ii) If f, g ∈ C(V,C) are integrable, the product If · Ig of their primitives If

and Ig is integrable.

Proof. (i) follows from d
dz If2(z) = 2If(z) · f(z), because then 2If(z) · f(z)

has a primitive, namely If2, so If2 itself is integrable either. To prove (ii), we
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consider the square (If + Ig)2 of the primitives If and Ig for two integrable
functions f and g. Since then If + Ig is integrable, the square is integrable,
so If · Ig = 1

2 ((If + Ig)2 − If2 − Ig2) is integrable. □

Proof of proposition 1.1. First, we may assume that f is already the primitive
of a continuous function on V : Because if we prove that the primitive If of
f is analytic and therefore differentiable to any order, then f itself will be
analytic. By Cauchy theorem, g(z) := 1

z−z0
is integrable in all convex regions

of C \ {z0}, and by the integration formula,
∫

γ
g(z)dz = 2πi for all closed

paths that wind in positive orientation around z0 once (see: [1][Theorem 6]).
Let Dϵ(z0) be the disk of radius ϵ around z0, and let f be continuous and
integrable on the closure V of Dϵ(z0). Then the product fg is continuous and
integrable an all convex subsets of V \ {z0} (by 1.2), f(z) − f(z0) converges
to zero as z → z0, and therefore, with γr being the circular path of radius
r > 0 around z0 with r < ϵ:∣∣∣∣∣

∫
γr

f(z) − f(z0)
z − z0

dz

∣∣∣∣∣ ≤ 2πsup|z−z0|≤r

∣∣f(z) − f(z0)
∣∣ ,

which (by continuity of f in z0) converges to zero as r → 0. So, by integrability
of fg outside of z0,

∫
γ

f(z)
z−z0

dz = f(z0)
z−z0

dz = 2πif(z0) for every closed curve
in V \ {z0}, which with positive orientation winds exactly once around z0.
The rest is standard: We have f(ζ) = 1

2πi

∫
γr

f(z)
z−ζ dz for all ζ ∈ Dr(z0) with

r < ϵ, which is a locally analytic and bounded function within the interior of
the punctured disk Dr(z0) \ {z0}, and therefore is analytic in the interior of
Dr(z0). □

The above offers numerous open topics to explore:
(1) The characteristic properties of integrable functions as a subspace of

C(V,C) should be examined:
– is it closed?
– is it open?
– does if have a topological compement, and if so: what is this com-

plement?
(2) For V ⊂ R2 the complex isomorphism ι : V ∋ (x, y) 7→ x + iy ∈ C

isomorphically transforms f ∈ C(V,R2) to ιfι−1 ∈ C(ιV,C). So

Tι : C(V,R2) ∋ f 7→ ιfι−1 ∈ C(ιV,C)

is an isomorphism of Banach spaces, which will be called complex iso-
morphism, either. Then it is to expect that every relation for the com-
plex functions can be mapped via T −1

ι from C(ιV,C) to C(V,R2), and
this includes integrability and analyticity along with it. By the Weier-
straß convergence theorem ([1][Ch. 8 1.1]) this pulled-back space of an-
alytic functions should be closed in C(V,R2), and therefore the complex
analytic functions would be closed in C(ιV,C).
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2. Integrability decomposition
Let V be a simply connected, closed and compact region of R2 or C and
f ∈ C(V,K), where K stands for either R, R2, or C. f will be called integrable
at the point z ∈ V , if and only if there are some h0 > 0 such that the path
integrals

∫
γh

f(s)ds of positively (i.e. counter-clockwise) orientated, closed
paths once around the boundaries of circles of radius h < h0 around z are
defined, and such that

∫
γh

f(s)ds = o(hm) holds for any m ∈ N ∪ {0} as

h → 0, which means that 1
hm

∣∣∣∫γh
f(s)ds

∣∣∣ → 0 as h → 0. Because the value

of the path integration gets inverted in sign, 1
hm

∣∣∣∫γh
f(s)ds

∣∣∣ → 0 for h → 0
likewise holds if the paths γh go the opposite way with negative orientation.
A function f ∈ C(V,K), which is not integrable at z ∈ V will be called
unintegable at z. As such f is unintegrable at z ∈ V , if and only if there is
some h0 > 0, some C0 > 0, and m ∈ N, such that for any δ > 0 with δ < h0

there is a positive h < δ:
∣∣∣∫γh

f(s)ds
∣∣∣ ≥ C0hm, where again (γh)h>0 is the

familiy of positively orientated paths with (winding) index 1 along circles of
radius h around z.

Proposition 2.1 (Integrability decomposition). Let V ⊂ R2 be be a simply
connected compact region and K stand for either R or R2.

(i) C(V,K) is the topological direct sum of two subspaces: the space of inte-
grable functions Y+(V,K) and a complementary space Y−(V,K) of un-
integrable functions.

(ii) C(ιV,C) is the topological direct sum of two subspaces: the space of in-
tegrable functions Y+(ιV,C) and a space Y−(ιV,C) of (strictly) uninte-
grable functions.

Proof. The asserted decomposition of C(ιV,C) follows from the decomposi-
tion of C(V,K) through the complex isomorphism Tι. So it suffices to prove
the first statement.

So, let f ∈ C(V,K). Then f is to be continuous on an open super-
set U of V , and we define Q as set of all squares Q(d, x, y) = {(x′, y′) ∈
R2 |

∣∣x′ − x
∣∣ ,

∣∣y′ − y
∣∣ ≤ d/2} for (x, y) ∈ V and some d > 0. Let Γ(Q)

be the set of all positively (i.e.: anti-clockwise) orientated paths γ(d, x, y)
around the boundaries of the Q(h, x, y) with d > 0 and (x, y) ∈ V . Then
pγ : f 7→ pγ(f) := ∥

∫
γ

f(s)ds∥ ≥ 0, (γ ∈ Γ(Q)), defines a family of contin-
uous seminorms on C(V,K). The set of all f ∈ C(V,K), for which pγ(f) = 0
for all γ ∈ Γ(Q) then is closed in C(V,K), since it is the intersection of the
closed sets. It contains all integrable(, continuous) functions on V .

Let Y+(V,K) denote this closed space of C(V,K). Then its complement
is an algebraic subspace, which is open in C(V,K). We call it space of non-
integrable functions and denote it by Y−(V,K).

To finish up, it remains to be shown that Y+(V,K) is also open, or
equivalently to prove that Y−(V,K) is closed. We need to refine this family
of seminorms, in order to make further progress:
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For each f ∈ C(V,K) the function

F : [0, d] × V ∋ (h, x, y) 7→
∫

γ(h,x,y)

f(s)ds ∈ K

is uniformly continuous on [0, d] × V , but also:
∣∣F (h, x, y) − F (h′, x, y)

∣∣ =
o(h − h′) (for h, h′ < d). So, F is (right) differentiable (at h = 0) in its
first argument for h → 0, and F is continuously differentiable in h for each
(x, y) ∈ V for 0 < h < d. And because every f ∈ C(V,K) can be isometrically
extended as a continuous function onto the closed d-environment of V , the
mapping

p : C(V,K) ∋ f 7→ suph∈[0,d],(x−y)∈V
1

4h

∣∣F (h, x, y)
∣∣ ≥ 0

is a well-defined semi-norm on C(V,K), and it is a norm on its (open) subspace
Y−(V,K) of unintegrable functions. Let’s inspect the last statement in detail:
For f ∈ Y−(V,K), there is some (x, y) ∈ V , such that for any δ > 0 there is
an h > 0 with h < δ and

∣∣∣∫γ(h,x,y)
f(s)ds

∣∣∣ > 0, where γ(h,x,y) is the path once
around the boundary of the h-square centered at (x, y). So, γ(h,x,y) is the
sum of two paths, γ(h,x,y) = γ(h,x,y),R −γ(h,x,y),L, where γ(h,x,y),L starts from
the lower left corner along the y-axis to the upper left corner, then along
the upper upper side along the x-axis from top left to upper right corner,
and γ(h,x,y),R is the path from the lower left corner to upper right corner
across the lower right corner. Unintegrability of f at (x, y) then mandates∫

γ(h,x,y)
f(s)ds = 2

∫
γ(h,x,y),R

f(s)ds. So, by continuity of f :

limh→0 sup
(x,y)∈V

∣∣∣∣∣ 1
4h

∫
γ(h,x,y)

f(s)ds

∣∣∣∣∣ ≥

∣∣∣∣∣f(x, y)
∫

γ(h,x,y),R

1
4h

ds

∣∣∣∣∣ ,

and therefore p(f) ≥ 1
2 sup(x,y)∈V

∣∣f(x, y)
∣∣. So, p is stronger than the supre-

mum norm, so p itself is a norm on Y−(V,K). On the other hand, clearly:
p(f) ≤ sup(x,y)∈V

∣∣f(x, y)
∣∣, so on Y−(V,K), p is equivalent to the supremum

norm. Hence Y−(V,K) is closed, its algebraic complement Y+(V,K) is open,
the canonical projections to the quotient spaces π± : C(V,K) ∋ f 7→ [f ]± ∈
C(V,K)/Y±(V,K) are (bi-)continuous, and C(V,K) is the topological direct
sum of its closed and open subspaces Y±(V,K) – as was asserted. □

The decomposition into the spaces Y±(V,K) and Y±(ιV,C) resp. is a
provisional result and not the final decomposition: One would want the in-
tegrable and unintegrable subspaces to be isomorphic. We’ll see next, that
there are conjugations on C(V,R2) and C(ιV,C), which map the Y−-spaces
into their complementary Y+-spaces, but leave a subspace of the Y+-spaces
invariant. The goal then will be to extract that subspace and to decompose
Y+ further.
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3. Conjugation, Jacobians, and C0-spaces
Again, let V ⊂ R2 be a simply connected compact region.
For f = (f1, f2) ∈ C(V,R2) and f = Re(f) + iIm(f) ∈ C(ιV,C) the functions

f c := (f1 − f2) and f c := (̄f) := Re(f) − iIm(f)

will be called conjugates of f , where in particular z̄ denotes the complex
conjugate of z ∈ C. So, in the complex case, f c(z) := f(z).

Then the conjugation is a an isometric isomorphism on C(V,R2) and an
isometric antilinear bijection on C(ιV,C), such that (f c)c = f for all f , i.e.:
the conjugation is an idempotent mapping in all cases.

We now examine the spaces of integrable and unintegrable functions, in
order to identify the conjugation-invariant subspaces. We may restrict mainly
to C(V,R2), as the results will carry over to the complex case via the complex
isomorphism.

Both, C(V,R2) and C(ιV,C), have the infinitely differentiable functions
C∞(V,R2) and C∞(ιV,C) as dense subspaces (see: [4]). Restricting to these
has the advantage that the structure of the subspaces can be classified by the
types of the Jacobi matrices (i.e.: the derivatives) of its elements. With this
we have: The derivative of every continuously differentiable f ∈ C(V,R2) can
be represented by matrix-valued function Df , called the Jacobian, given by

Df(x, y) =
(

a(x, y) b(x, y)
c(x, y) d(x, y)

)
, with a, b, c, d ∈ C(V,R)

By Green’s theorem (see e.g.: [1][Ch. 5 5.2]), a continuously differen-
tiable function f ∈ C(V,R2) is integrable if and only if its Jacobian Df is a
symmetric matrix

Df(x, y) =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
, where a, b, c ∈ C(V,R).

These then comprise all continuously differentiable elements from Y+(V,R2).
And the unintegrable, continuously differentiable fY−(V,R2) then have the
Jacobian Df

Df(x, y) =
(

0 −b(x, y)
b(x, y) 0

)
, where b ∈ C(V,R) \ {0}.

The conjugation on C(V,R2) now maps the Jacobian

Df(x, y) =
(

a(x, y) b(x, y)
c(x, y) d(x, y)

)
for an abitrary continuously differentiable f ∈ C(V,R2) to:(

1 0
0 −1

) (
a(x, y) b(x, y)
c(x, y) d(x, y)

)
=

(
a(x, y) b(x, y)

−c(x, y) −d(x, y)

)
,
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hence it inverts the integrability: It maps Y−(V,R2) into Y+(V,R2), but it is
not onto, because its image does not contain the diagonal elements(

a(x, y) 0
0 d(x, y)

)
.

This determines its invariant subspace w.r.t. integrability inversion, which
will be denoted by C0(V,R2). Because these diagonal matrix functions are
globally diagonal on V , a must not change in the y-direction, and d must be
constant in the x-direction. So,

Df(x, y) =
(

a(x, y) 0
0 d(x, y)

)
mandate a(x, y) = a(x) and d(x, y) = d(y) for (x, y) ∈ V , so a and d are
functions on the x- and y-coordinate projections on V , namely Vx := {x ∈
R | (x, y) ∈ V } and Vy := {y ∈ R | (x, y) ∈ V }, and both are bounded,
closed intervals, since V is to be a simply connected compact region. And a
and b have primitives given by Ia(x) :=

∫ x

−∞ a(t)dt and Ib(y) :=
∫ y

−∞ b(t)dt,
so that the primitive of Df is given by the pair of functions f : V ∋ (x, y) 7→
(Ia(x), Ib(y)). And because the set of continuously differentiable functions
is dense in C(V,R2), it follows that C0(V,R2) is the closed subspace of all
f : V ∋ (x, y) 7→ (f1(x), f2(y)) ∈ R2 with f1 ∈ C(Vx,R) and f2 ∈ C(Vy,R).
Next, C0(V,R2) is open too, because for every f = (f1, f2) ̸= 0, either f1 ̸= 0
or f2 ̸= 0, where both are continuous, real-valued functions on intervals. If
f1 ̸= 0, then

∣∣f1(x)
∣∣ > ϵ for some (x, y) ∈ V an some ϵ > 0. Then there is

a function g ∈ C(Vx,R) contained in the ϵ-environment of f1, and likewise
there is for f2, in case f2 ̸= 0. That proves the openedness of C0(V,R2).

As announced above, we then define C+(V,R2) := Y+(V,R2)/C0(V,R2),
rename C−(V,R2) := Y−(V,R2), and get the desired decomposition

C(V,R2) = C+(V,R2) ⊕ C0(V,R2) ⊕ C−(V,R2)

into the the topological direct sum of its constituents C±(V,R2) and C0(V,R2).
We consider C(V,R): There is no conjugation defined on it, yet the

Y±(V,R) are both non-trvial, and they have an integrability inversion with a
nontrivial C0(V,R) as invariant subspace of C(V,R):
If f ∈ C(V,R) is continuously differentiable, then its derivative is given by its
gradient ∇f := (∂xf, ∂yf). It exists irrespective of whether ∇f is integrable
again to its primitive, or not. Suppose, that ∇f was not integrable. What
we know from the above is that ∇f is the sum of three components ∇f =
g++g−+g0 with g± ∈ C±(V,R2) and g0 ∈ C0(V,R2), where g− ̸= 0. To enforce
the integration of ∇f back to f , g− must be transformed to its integrable
counterpart via conjugation: (Igc

0)c; this would allow to retain f from ∇f ,
even when non-integrable.

It is well-known that C±(V,R) are both non-trivial:
f(x = r cos(t), y = r sin(t)) := r2 sin(t/r) for (x, y) ̸= 0 and f(0, 0) := 0 with
(x, y) in V := {(x, y) | − 1 ≤ x, y ≤ 1}, is an example of an unintegrable
function at the origin, so represents a non-zero element f ∈ C−(V,R), and
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hence its conjugate represents a member of C+(V,R).
To show that C0(V,R) is non-trivial either, it suffices to integrate f ∈ C0(V,R2):
f(x, y) = (f1(x), f2(y)) is integrable and has If(x, y) = If1(x) + If2(y) as
primitives, where again If1, If2 are the primitives If1(x) :=

∫ x

−∞ f1(t)dt

and If2(y) :=
∫ y

−∞ f2(t)dt. By differentiating the continuously differentiable
f ∈ C0(V,R2), we even get the general result directly for all g ∈ C0(V,R): it
consists of all functions g = g1 + g2 with g1 ∈ C0(Vx,R) and g2 ∈ C0(Vy,R).
And again, this is an open and closed subspace of C(V,R).

An immediate consequence of the above is that primitives of (integrable)
functions of C(V,K) are integrable again to any order. (The special case K = C

is analogous to K = R.)
As to the differentiation, the situation then is similar: if f ∈ C+(V,K) ⊕
C0(V,K) is n times continuously differentiables, then all its n derivatives are
in C+(V,K) ⊕ C0(V,K) for some K = R,R2,C,C2. However: if f ∈ C−(V,K),
then latest at the 2nd derivative, the anti-symmetry of the Jacobian

Dg(x, y) =
(

0 −b(x, y)
b(x, y) 0

)
, where b ̸= 0

impedes further differentiability, because of ∂y∂xg(x, y) = ∂xb(x, y) = −∂x∂yg(x, y).
That said, f ∈ C(V,K) is continuously differentiable to an order of 2 or more,
only if f ∈ C(V,K) ∈ C+(V,K) ⊕ C0(V,K).

Summarizing, it was shown:

Proposition 3.1. 1. The subspaces Y+(V,K) and Y+(ιV,C) contain open
and closed invariant subspaces C0(V,K) and C0(ιV,C) consisting of con-
tinuous functions f , for which ∂x∂yf = ∂y∂xf ≡ 0 holds.

2. Y−(V,K) and Y−(ιV,C) are isomorphic to the quotient spaces Y+(V,K)/C0(V,K)
and Y+(ιV,C)/C0(ιV,C), resp.

3. For C(V,R2) and C(ιV,C), the conjugation f → f c maps Y−(V,K) onto
Y+(V,K)/C0(V,K), and Y−(ιV,C) onto Y+(ιV,C)/C0(ιV,C).

4. Primitives of integrable functions are integrable.

We define C+(ιV,C) := Y+(ιV,C)/C0(ιV,C) and C−(ιV,C) := Y−(ιV,C)
in line with C+(V,K) := Y+(V,K)/C0(V,K) and C−(V,K) := Y−(V,K), the
corresponding canonical projections will be denoted by

Π0 : C(V,K) → C0(V,K),
Π0 : C(ιV,C) → C0(ιV,C),
Π± : C(V,K) → C±(V,K) as well as
Π± : C(ιV,C) → C±(ιV,C).

Since integrable functions have been defined as elements from the Y+-spaces,
which include the C0-spaces as a subspace, the functions from C+(V,K) and
C+(ιV,C) will be called strictly integrable.

Then we can state:

Corollary 3.2. The following holds as a topological direct sum:
1. C(V,K) = C+(V,K) ⊕ C0(V,K) ⊕ C−(V,K)
2. C(ιV,C) = C+(ιV,C) ⊕ C0(ιV,C) ⊕ C−(ιV,C)
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From inspection of the Jacobians, note that the product of two in-
tegrable functions from C(V,R) or C+(V,R2) is integrable again (where for
C+(V,R2) the product is a function in C(V,R)).

4. Conformality, holomorphic and anti-holomorphic functions
As was shown above, C(ιV,C) splits into the topological sum of a strictly
integrable, a strictly unintegrable, and an invariant subspace. From Proposi-
tion 1.1 we know that all integrable functions are analytic, and then it will be
straightforward to derive the analyticity of the unintegrable ones (see below).

The a-priori concern however is, how the vector space of holomorphic
functions will fit into this, especially regarding the closedness of the space
C+(ιV,C) in C(ιV,C). So, let’s look into this:

The Jacobian for a continuously differentiable f ∈ C+(V,R2)⊕C0(V,R2)
is given by

Df(x, y) =
(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
, where a, b, c ∈ C(V,R).

Under the complex isomorphism Tι it transforms to

D(Tιf)(x, y) = D(ιfι−1)(x, y) =
(

a(x, y) −ib(x, y)
ib(x, y) c(x, y)

)
, where a, b, c ∈ C(ιV,R).

But: The definition of an holomorphic function demands c ≡ a (see: e.g. [1]).
This is solved by splitting the diagonal matrix up into the sum of a symmetric
and an anti-symmetric part:(

a 0
0 c

)
= 1

2

(
a + c 0

0 a + c

)
+ 1

2

(
a − c 0

0 −(a − c)

)
,

which defines continuous projections on C0(V,R2) and C0(ιV,C), respectively.
The spaces C0(V,R2) and C0(ιV,C) therefore decompose into toplogical direct
sums of symmetric subspaces C0,sym(V,R2) and C0,sym(ιV,C), as well as anti-
symmetric subspaces C0,asym(V,R2) and C0,asym(ιV,C). So,

C(V,R2) = Cconf (V,R2) ⊕ Caconf (V,R2), where

Cconf (V,R2) := C+(V,R2) ⊕ C0,sym(V,R2),
Caconf (V,R2) := C−(V,R2) ⊕ C0,asym(V,R2) and likewise

C(ιV,C) = Cconf (ιV,C) ⊕ Caconf (ιV,C), where
Cconf (ιV,C) := C+(ιV,C) ⊕ C0,sym(ιV,C), and

Caconf (ιV,C) := C−(ιV,C) ⊕ C0,sym(ιV,C).
The functions of Cconf (V,R2) and Cconf (ιV,C) are called conformal, and the
functions of Caconf (V,R2) and Caconf (ιV,C) are defined as anti-conformal
functions. With this, a real-valued function f ∈ C(V,R) will be called confor-
mal, if and only if it is integrable and its primitive (which then is an R2-valued
function) is conformal.
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Remark 4.1. Cconf (V,R2) is the closure of the subspace of all differentiable
f = (f1, f2) of C(V,R2), for which ∂xf1 = ∂yf2 holds, Caconf (V,R2) the
closure of differentiable f ∈ C(V,R2), for which ∂xf1 = −∂yf2. Analogously,
Cconf (ιV,C) is the closure of all f ∈ C(ιV,C), for which the partial derivatives
exist and ∂xRe(f) = ∂Im(f)(x+iy)

i∂y
holds, and Caconf (ιV,C) the closure of f

with existing partial derivatives, such that ∂xRe(f) = − ∂Im(f)(x+iy)
i∂y

.

The decomposition of C(V,R2) and C(V,C) into the topological direct
sum of their conformal and anti-conformal subspaces will be called conformal
split.
Then we get:

Proposition 4.2. Let V ⊂ R2 be a simply connected compact region. The
functions of Cconf (ιV,C) are exactly those, which obey the Cauchy-Riemann
equations (see: [1]), which – by the definition – are holomorphic functions
on V . Its (complex) conjugated space Caconf (ιV,C) therefore consists of all
anti-holomorphic functions on V .

Proof. The functions in Cconf (ιV,C) are integrable. By Proposition 1.1 these
functions then are analytic on V , so continuously differentiable on V in its x-
and y-coordinates. Because all elements of Cconf (ιV,C) are conformal, they
are holomorphic (which by definition means that they satisfy the functions
are continuously differentiable in x- and y-coordinate and satisfy the Cauchy-
Riemann equations). All non-zero elements in its topological complement
are either not integrable or anti-conformal, conflicting the Cauchy-Riemann
equations. So, no other holomorphic functions exist on V . □

Remark 4.3. The conformal split allows a pragmatic access to integrability:
fconf = (f1, f2) ∈ Cconf (V,R2) if and only if f1 ≡ f2. Likewise, faconf =
(f1, f2) is in Caconf (V,R2) if and only if f1 ≡ −f2. So, fconf = (g, g) and
faconf = (hc, −hc) for some conformal functions g, h ∈ C(V,R). As a confor-
mal function, g is integrable to a function (Ig, Ig), so the primitive Ifconf

of fconf is Ig, which we can write as Ifconf = Ig(1, 1); the second order
primitive of fconf then writes to I2fconf = (I2g, I2g), and so forth. Anal-
ogously, we can assign Ifaconf := (Ih)c(1, −1) as the primitive of faconf ,
I2faconf := ((I2h)c, (I2h)c) as 2nd-order primitive, and so forth.

Lemma 4.4. Let V ⊂ R2 be a simply connected compact region. If f ∈ C(ιV,C)
is analytic on ιV , then its conjugate f c is analytic on (−i)ιV .

Proof. If f(z) =
∑

k ck(z − z0)k is analytic (on V ), then f̄(z) :=
∑

k c̄k(z −
z0)k is analytic (on V ). The conjugate f c is defined by f c : z 7→ f(z), so we
have f c(z) = f̄(z̄). Now, g : (−i)ιV ∋ (ix+y) 7→

∑
k c̄k(−i)k((ix+y)−(ix0 +

y0))k is analytic on (−i)ιV , and f c = g, since (−i)((ix + y) − (ix0 + y0)) =
(x − iy) − (x0 − iy0). □

Because every f ∈ C(ιV,C) can be extended to a continuous function f̃
on a square area Q(h) ⊃ ιV with the origin as center and of sufficiently large
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side length h > 0, such that supz∈Q(h)

∣∣∣f̃(z)
∣∣∣ ≤ 2 supz∈ιV

∣∣f(z)
∣∣, C(ιV,C) is

continuously embedded into C(Q(h),C), and we can ensure ιV to contain −iz
and z̄ with every z ∈ ιV . So, there appears to be no substantial reason, to
exclude conjugates of analytic functions from being analytic functions.

The results can be summarized for C(ιV,C) as:

Corollary 4.5. Let ιV ⊂ C be a simply connected compact region. C(ιV,C) is
the topological direct sum of the subspace Cconf (ιV,C) of analytic and holo-
morphic functions f(x + iy) = g(x) + ih(iy), and its conjugated subspace
Caconf (ιV,C) of anti-holomorphic functions.

That solves the integrability and analyticity posed as to the complex
space, but still we have no analogous results for the spaces C(V,R2) (and
C(V,R). This asks for some explanation:
Complex analysis is essentially built upon the 2-dimensional Laplace equation

∆f(x, y) := (∂2
x + ∂2

y)f(x, y) ≡ 0.

Within C, ∆ factors into the commuting product ∆ = (∂x − i∂y)(∂x + i∂y).
Hence, in there, ∆f ≡ 0 reduces to first order differential equations, and the
solutions are the sums of functions that solve (∂x −i∂y)f = 0 or (∂x +i∂y)f =
0. So, the idea was to pick any differentiable function f(x + iy), for which
then (∂x − i∂y)f(x + iy) ≡ 0, so ∆f ≡ 0. The hindsight: these functions are
analytic (by Cauchy theory). The problem: By the Weierstraß convergence
theorem, these functions proved not to be dense in the space of continuous
functions f : V ∋ z 7→ f(z) ∈ C, where V ̸= ∅ is a simply connected open
region in C. What was proved in here was, that the conjugated differentiable
functions f c : z 7→ f(z̄) are needed either, in order to get ∆f ≡ 0 fulfilled for
a dense set of continuous functions f : U → C.

What one would then obviously would want to do, is to pull the results in
the complex via the complex isomorphism T −1

ι to the C(V,R2). The concern
is, that for a well-behaved, integrable complex function f(reiϕ), the preimage
T −1

ι f is a function g(r, ϕ) with a polar symmetry, which generally will be
strictly unintegrable at the origin: For example, if g(r, ϕ) = r2 sin(4ϕ), the
path integral along ϕ from 0 to 2π will not vanish. And as discussed above,
this means that ∂x∂yg = −∂y∂xg (at the origin), which in turn suggests to
look for a (possibly compact) Lie group to apply. However, there is apparently
no suitable one. To get at results for C(V,R2) at all, it will be necessary to
build from ground up.

5. Algebraic extension of R2 and C(V,R2)
An orientation on the vector field Rn is an embedding

φ : Kn ∋ (x1, . . . , xn) 7→
∑

1≤k≤n

akxk ∈ A

into an associative algebra A over the field R with unit element 1, such that
akaj = −ajak for all 1 ≤ k < j ≤ n and a2

k = 1 for all k = 1, . . . , n. (For



12 Hüttenbach

K = C and n = 1 the orientation is implicitly interpreted to be “in line with”
or as “given by” the direction of the real part.)

In the 2-dimensional case, n = 2, we define two numbers e1 and e2 (not
contained in C), for which

(i) e1e1 = e2e2 ≡ 1,
(ii) e1e2 = −e2e1, and
(iii) e1e2 ≡ +i.
(From conditions (i) and (ii) follows that e1e2 = ±i, and in order to determine
the sign of that value, (iii) is needed.)

Then φ+ : R2 ∋ (x, y) 7→ ζ := e1x + e2y and φ− : R2 ∋ (x, y) 7→ ζ̃ :=
e1x− e2y are a vector space isomorphisms of R2 onto the target spaces φ±R

2,
which we denote by R2

±.
By defining on R2

± the metrics, induced by the quadratic form

Q : φ±R
2 ∋ e1x ± e2y 7→ (e1x ± e2y)2 = x2 + y2 = ∥e1x ± e2y∥2,

φ± become isometries.
Along with ζ = e1x + e2y also ζ ′ = e2x + e1y solves the algebraic

equation (a + b)2 = a2 + b2. Because of e1e2 = i, i(e2x + e1y) = e1x − e2y,
and iζ ′ = (e1x − e2y) follows. To be in line with the complex functions, iζ ′

will be called conjugate of ζ and denoted with either ζc or ζ̃.

φ± : R2 ∋ (x, y) 7→ ζ = e1x ± e2y ∈ R
2
±

then define two global coordinate charts over the manifold (R2, φ±) of positive
and negative orientation.

Remark 5.1. 1. e1 and e1 are numbers, not just symbols: they are defined
solely based on the imaginary i, which is not a symbol, but a number.

2. Sofar, R2
± are vector spaces, which are equivalent to R2, but they readily

extend to a non-commutative, associative algebra, which will be denoted
by A, in which the product is defined as algebra extension of:

· : R2
± × R

2
± ∋ (e1x ± e2y, e1x′ ± e2y′) 7→ xx′ + yy′ ± (ixy′ − iyx′) ∈ A.

3. Due to e1e2 = i, the algebra A is inevitably complex. However it is not
an algebra over the field C: As an algebra over C, i would commute with
all elements, which is not the case for A.

4. Anti-commutativity of e1 and e2 with e1e2 ≡ +i implies: iek = −eki,
(k = 1, 2), so (ekx + iy)2 = x2 − y2 follows for k = 1, 2.

Next, ζ2 > 0 for all non-zero ζ ∈ R2
±. Therefore the the Euclidean

topology of R2 (and its isometric space R2
±) extends onto A, so R2 and R2

±
are isometrically embedded into A.

With this we define C+(φ+V,A) as vector space of all functions Tφ+ :=
φ+fconf φ−1

+ , where fconf ∈ Cconf (V,R2), and likewise C−(φ−V,A) is defined
as vector space of all Tφ− := φ−faconf φ−1

+ with faconf ∈ Caconf (V,R2). For
ζ = e1x ± e2y ∈ R2

± ̸= 0 the multiplicative inverse 1
ζ = ζ

x2+y2 is well-defined,
and likewise ζm = (e1x ± e2y)m exists for m ∈ N.
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Since R2
± and A are finite dimensional normed spaces, the vector spaces

C(φ±V,A) of A-valued continuous functions on φ± are well-defined, and are
Banach spaces with the supremum norm, which isometrically embed C±(φ±V,A)
as closed subspaces.

For ζ0 ∈ φ±V a function f ∈ C±(φ±V,A) will be called differentiable in
ζ0 if and only if df(ζ=ζ0)

dζ
:= limζ→ζ0(f(ζ) − f(ζ0)) 1

ζ−ζ0
exists (as an A-valued

function). df(ζ)
dζ will be called derivative of f .

Remark 5.2. (i) Note that the divisional term 1
ζ−ζ0

is factored to the right
side of f : This is to ensure uniqueness of the limit in the case that the
target values f(ζ) do not commute with the variable ζ. As long as f(ζ)
is real-valued, however, the ordering of the product is irrelevant: “left”
and “right” derivative coincide.

(ii) In particular, we then have: ( df(ζ)
dζ )c = dfc(ζ̃)

dζ̃
, where f c : ζ̃ 7→ (f(ζ̃))c.

Since A is a finite-dimensional algebra, the Euclidean metrics defines a
natural topology on A, through which differentiability of functions f : U → A

for open U ⊂ A get well-defined.
The chain rule also holds for differentiable functions g : φ±V → A and
f : g(φ±V ) → A, where df(u=g(ζ))

du now denotes the derivative Df(u) of f at
u ∈ g(φ±V ) ⊂ A.
Also, the product rule holds for two commuting, differentiable functions
f, g : φ±V → A: if f(ζ)g(ζ) = g(ζ)f(ζ) for all ζ ∈ φ±V , then d(f(ζ)g(ζ))

dζ =
df(ζ)

dζ g(ζ) + f(ζ) dg(ζ)
dζ .

In view of the isometry of φ± : R2 → R2
±, a real-valued function f ∈

C(V,R) is differentiable in some point (x0, y0), if and only if φ±V ∋ ζ 7→
f(ζ = φ±(x, y)) is differentiable in ζ0 = e1x0 ± e2y0.

Because C±(φ±V,A) are the images of conformal and anti-conformal
subspaces of C(V,R2), every f ∈ C+(φ+V,A) writes as

f(ζ) = e1g(ζ) + e2g(ζ), where g : V ∋ (x, y) 7→ g(ζ := e1x + e1x) ∈ R

is conformal. Then path integration of f along a path γ ⊂ φ+V in e1x- and
e2y-coordinates from ζ0 = e1x0 + e2y0 to ζ = e1x + e2y equals the path-
invariant integral of G : (x, y) 7→ (g(x, y), g(x, y)) from (x0, y0) to (x, y),
so f is integrable, and If = (Ig)1 ≡ (Ig)2, where (Ig)1 and (Ig)2 denote
the projections of Ig = ((Ig1, (Ig)2) onto its x- and y-coordinates. The 2nd

primitive I2fconf of fconf then results into
I2f : ζ 7→ e1I2g(x, y) + e2I2g(x, y).

By induction, fconf is integrable to all orders, If is differentiable, and dIfconf

dζ =
fconf .

Likewise, for f ∈ C(φ−V,A), f(ζ̃) = e1gc(x, y) − e2gc(x, y), where g ∈
C(V,R) is conformal again, and If(ζ̃) = (Igc(x, y))c defines the primitive of
f . Then I2f = (I2gc(x, y))c is its second primitive, f has primitives of all
orders, If is differentiable on (φ−V ) w.r.t. ζ̃, and dIf(ζ̃)

dζ̃
= f(ζ̃).
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Next, we define analyticity:
A function f ∈ C(φ+V,A) is called analytic on φ+V , if for each ζ0 in φ+V
there is an open neighbourhood U ⊂ R2

+, of ζ0, such that f(ζ) =
∑

k≥0 ck(ζ −
ζ0)k, where the power series is to converge uniformly on U . Analogously, f ∈
C(φ−V,A) is called analytic, if every ζ̃0 ∈ φ−V has an open neighbourhood
U ⊂ R2

− of ζ̃0, on which f the uniformly converging limit f(ζ̃) =
∑

k≥0 ck(ζ̃ −
ζ̃0)k.

On the positive/negative orientated φ±R
2 let

Ψ± : ζ = e1x ± e2y 7→ 1
ζ

be the Cauchy function. Then Ψ±(ζ0 − ζ) = 1
ζ0

∑
k≥0

(
ζ−1

0 ζ
)k exists for∣∣∣ζ−1

0 ζ
∣∣∣ < 1, and the series uniformly converges in ζ on all compact simply

connected regions not containing the pole ζ0. So, it is analytic on these re-
gions.

Remark 5.3. Ψ+ is conformal on simply connected regions not containing the
origin, because
(1) the constant function and the identity id : R2

+ ∋ ζ 7→ ζ ∈ A are confor-
mal,

(2) the addition f + g of two conformal functions f and g is conformal,
(3) if f is conformal, then 1

f is conformal on all simply connected regions,
on which f has no zeros.
Since also the product of two conformal functions is conformal again, the

path integral
∫

γ
f(ζ)Ψ+(ζ0 − ζ)dζ along f ∈ C+(φ+V,A) along a (piecewise

smooth) path γ ⊂ φ+V \ {ζ0} is a conformal function of ζ0.

6. Analyticity of C(V,R2)
For r > 0 the paths γ± : [0, 2π] ∋ t 7→ r(e1 cos(t)±e2 sin(t)) ∈ R2

± are circular
paths around the origin with positive and negative orientation from and to
e1r. The path integrals

∫
γ+

Ψ+(ζ)dζ and
∫

γ−
Ψ−(ζ̃)dζ̃ along these paths then

calculate to∫
γ+

Ψ+(ζ)dζ =
∫ 2π

0
(e1 cos(t) + e2 sin(t))(−e1 sin(t) + e2 cos(t))dt (6.1)

=
∫ 2π

0
(e1e2(cos2(t) + sin2(t)))dt =

∫ 2π

0
idt = 2πi, and

∫
γ−

Ψ−(ζ̃)dζ̃ =
∫ 2π

0
(e1 cos(t) − e2 sin(t))(−e1 sin(t) − e2 cos(t))dt (6.2)

=
∫ 2π

0
−(e1e2(cos2(t) + sin2(t)))dt =

∫ 2π

0
−idt = −2πi.

This gives
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Proposition 6.1. 1. Every conformal fconf ∈ C(V,R2) extends as an ana-
lytic function f+ : φ+V → A, where φ+ : R2 → R2

+ is the chart with pos-
itive orientation. The Cauchy-formula holds for f+:

∫
γ

f+(ζ) 1
ζ−ζ0

dζ =
2πif+(ζ0), where γ ⊂ φ+V is a positively orientated Jordan curve
around ζ0 (i.e: a piecewise continuously differentiable closed curve loop-
ing once around ζ0 at some distance ϵ > 0 from ζ0 with positive orien-
tation).

2. Every anti-conformal faconf ∈ C(V,R2) extends as analytic function f− :
φ−V → A, where φ− : R2 → R2

− is the chart with negative orientation.
The Cauchy-formula holds for f−:

∫
γ

f−(ζ̃) 1
ζ̃−ζ̃0

dζ̃ = −2πif−(ζ̃0), where
γ ⊂ φ−V is a negatively orientated Jordan curve around ζ̃0.

Proof. Since f ∈ C+(φ+V,R2) is integrable on V , the path integrals (within
φ+V ) from startpoint a ∈ φ+V to endpoint b ∈ φ+V are path independent.
By the above, the Cauchy function Ψ+(ζ) = 1

ζ is analytic on convex sets not
containg the origin, hence integrable on there. The Cauchy-formula f(ζ0) =

1
2πi

∫
γ

f(ζ) 1
ζ−ζ0

dz then follows from equation 6.1 togther with the continuity
of f for all closed, positively orientated Jordan curves γ ⊂ ιV around ζ0.
Then, as in Proposition 1.1, f(ζ0) is within the encircled open region the
uniform limit of a power series on ϵ-neighbourhoods of ζ0, so analytic in
there.
For f ∈ C−(φ−V,R2) the the proof is analogous with equation 6.2. □

Corollary 6.2. The complex isomorphism Tι maps C+(φ+V,R2) onto the com-
plex subspace Cconf (ιV,C) of holomorphic functions, and is given by: Tι : f 7→
e1fe1. Hence, the power series expansion f(z) =

∑
k ck(z − z0)k of any holo-

morphic function f ∈ C(ιV,C), determines the power series expansion for
T −1

ι f ∈ C+(φ+V,R2) to be (T −1
ι f)(ζ) =

∑
k(e1ck)(ζ − ζ0)k.

7. Summary and outlook
As its essence, it was shown that analyticity is driven by integrability, rather
than by differentiability: while differentiability has a strictly local, pointwise
definition, integrability relies on simply connected compact regions. Path
integration always comes with a right-handed, positive and a left-handed,
negative orientation. Parity mandates the symmetry of both, and that brings
in the perhaps unexpected anti-conformal “fermionic-like” algebraic structure
besides the expected conformal “bosonic-like” one:

C(V,K) = Cconf (V,K) ⊕ Caconf (V,K),

where conformal and anti-conformal subspaces contain a parity-invariant sub-
space C0(V,K), such that C(V,K) allows a decomposition into C0(V,K) and its
symmetric and anti-symmetric complements C±(V,K), which are bosonic and
fermionic transversal harmonic functions.
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For real dimensions of n > 2 (or complex dimension n ≥ 2), similar
results follow by replacement of the numbers e1 and e2 with anti-commuting
Hermititian n × n-matrices α1, . . . , αn such that α2

1 = · · · = α2
n ≡ 1 holds.

The implications to physics are clear: The symmetric C+-subspaces of
continuous functions describe a bosonic behaviour, while their conjugated
C−-subspaces are fermionic.

Another direct consequence is to the stability of mechanical systems:
It is currently held that such dynamical systems may evolve into chaotic
systems, even by small perturbations of the system. Due to the above shown
analyticity, that should not happen in conserved mechanical systems for small
perturbations.
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