
Vortons Revisited 

 

 

Abstract   

 

Reasons for introduction of vortons. Answers to vortons critiques, “modifications” and 

“improvements”. New interpretations of vorton results. 

The simplest solenoid vortex singularity is a vorton Ref.[1-5]. Finite core vortex tubes may 

be represented as superposition of vortons Ref.[1- 5].  Experimentally observed vortex 

structures topological metamorphoses could be seen in numerical vortons simulations 

without any additional assumptions. Vortons in plasma have magnetic dipole moments. 

Magnetic vorton tubes reconnect Ref.[3-5,14]. The 3D Euler equations of incompressible 

inviscid fluid mechanics develop singularities on timescales on the order of vortex rotations.  

Solutions to the 3D Navier-Stokes equations for incompressible viscous flow are smooth for 

all time, but they bifurcate and are not unique Ref.[6-8].   

The 3D Navier-Stokes equations probably have an inviscid attractor that exhibits inviscid 

turbulence and dissipation Ref.[1- 5, 10].  

 

SECTION 1: Navier-Stokes solutions and vorton dynamics. 

 

Original reasons for introduction of vortons were to resolve the most important structures 

for description of fully developed 3D turbulence, 3D vortex tubes Ref.(1-5), Eq.(1-5),  
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  where 6"78 is the unit antisymmetric tensor, and  x7(#) (t) and 98(#) (t) are the components of 

position and intensity, respectively, of the vorton labeled :. 
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Velocity field generated by individual vorton. 
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Vorticity field of individual vorton. See solenoid dipole field picture fig.(19). 
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Vorton intensity change due to interaction with other vortons. 
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 Vorton position change due to interaction with other vortons. 
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Fig.(1,2,19).  

 

 

 
 

Vortex tube clearly seen in a vorton ring. With vorticity cancelling out beyond it ref.(3-5). 

 



Non zero vorticity around radius of the ring ref.(3-5).

  Field of  solenoid dipole. Vortex and magnetic dipole Ref.(1-5,14).

  Fig. 19.

In fact we showed both analytically and numerically that chain of vortons approximates 

finite core vortex tubes with number of vortons corresponding to Reynolds number at hand 

Ref.(1-5), Fig.(1,2,19). 



Another hope was that by introducing simplest solenoid vortex singularities which are 

analytically tractable we would be able to pass through some unknown NS “singular events” 

without any additional assumptions. Those events turn out to be vortex reconnections 

corresponding to bifurcations and branching of NS solutions Ref.(1-5), Fig.(3-18). Both 

reasons appear to work out despite later vorton critiques, “modifications” and 

“improvements” Ref.(21-23). 

Thus bifurcation and branching of Navier-Stokes solutions Ref.[6-9] can be interpreted as 

inviscid vorton reconnections Ref.(3-5).  Very likely vortons  describe dynamics on the 

Navier-Stokes attractor Ref.[9].  From a physical point of view vortons resolve the entire 3D 

vorticity field, which is superposition of 3D vortex tubes and is the only important aspect for 

3D fully developed turbulence dynamics representation. And vortons showed ability to pass 

through NS “singular events” without any additional assumptions Ref.(3-5). 

We know from analysis Ref.[10] that the limit of a smooth sequence of functions may not be 

smooth. So even if Navier-Stokes solutions are all smooth, their inviscid limit could be 

singular.  These singular inviscid solutions express the bifurcation of viscous solutions and 

finite dissipation rates. Rudin's math analysis book Ref.[10] says that limit of smooth 

sequence could be singular. So even if NS solutions are smooth their limit/attractor could be 

singular/inviscid, especially if it explains all NS solutions dynamics without any additional 

assumptions and provide most economical description of dynamics of 3D NS solutions for 

fully developed turbulence.   

  

SECTION 2: Vortex singularities and inviscid energy dissipation 

 

Singular vortex dipoles, i.e. vortons, interact according to formulas Eq.(3,4),Ref.[1- 5].  As a 

consequence their amplitudes may self-amplify, a reflection of vortex stretching in three 

dimensions. 

 

The interaction energy of vortons  is given by Eq.(6),Ref.[1-5].   
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Interaction energy of vortons ref.(2-5). 

 

 

 

The self-energy of a single vorton is infinite, therefore it is not included in that formula. Due 

to the three dimensional stretching of vortons and self amplification, the interaction energy 

is not conserved.  We may imagine that it goes into or comes out of the infinite self-energy 

of individual vortons Ref.[1- 5]. 

 

In the real world this corresponds to the fact that internal rotational degrees of freedom of 

3D vortices are not resolved in the self-energy formula and interaction energy formula.  The 

stretching energy of vortex interactions may go into or out of unresolved rotational 

motions.  Physically energy is dissipated at small scales by viscosity, but the precise amount 

is determined by inviscid dynamics. 

 



The same phenomenon occurs in shock waves in compressible fluids, and also in magnetic 

field reconnection in the solar atmosphere.  Dissipation provides the mechanism, but 

inviscid dynamics governs the behavior while viscosity, diffusivity, and resistivity play mop-

up roles Ref.[16-18]. 

We performed numerical experiments with two vorton rings executing a “leapfrogging” 

cycle.  The rings always self-destructed after 5 periods, regardless of the number of vortons 

in the rings. 

Multiple reconnections then happened, with small rings appearing.  During the destruction 

of the original rings we observed a negative spike in the vorton interaction energy, and 

a Kolmogorov-like energy power spectrum developed. This agrees with the physical 

phenomena of energy transfer to small scales and inviscid dissipation of vorton interaction 

energy Eq.(5), 
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Vortons interaction energy as a function of wave number ref.(2-5). 

 

 

 

 Fig.(20). 

 

 
Energy spectrum of two leapfrogging vortex rings originally and at the moment of self 

distraction. Slope in log-log graph around -1.7.  Plus negative spike in time derivative of 

interaction energy during distraction of the rings ref.(2,3,5). 

 

Recent experiments on colliding vortex rings show strikingly similar behavior, with large 

numbers of vortex reconnections and the appearance of multiple small rings Ref.[19]. 

 

 

 



SECTION 3: 3D Navier-Stokes attractor dimension 

 

A chain of vortons can approximate a vortex tube with a finite core size that is roughly equal 

to the distance between vortons Ref.[1-5], see Fig.(5) for a ring with 80 vortons.  This 

observation allows us to estimate the dimension of the attractor of the 3D Navier-Stokes 

equations in fully-developed turbulence. 

We start by assuming that the vorticity consists of one-dimensional tubes whose core size is 

the Kolmogorov microscale Re^-3/4 Ref.[1-5,13] and a distance between neighbour vortons 

in a tube.  Therefore the number of vortons needed to resolve such tubes is on the order of 

Re^3/4. We deduce that the dimension of the Navier-Stokes attractor is Re^3/4, which is 

the cube root of the usual Kolmogorov estimate of Re^9/4 Ref.[1,13] based on resolving the 

3D velocity field. 

 

SECTION 4: Magnetic vortons 

 

The vorticity field of a vorton is identical in structure to the magnetic field of a magnetic 

dipole Fig.(19). In fact, in a turbulent plasma every vorton becomes magnetic due to the 

rotation of electrically charged plasma. So magnetic vortons interact both as a vorticity and 

magnetic dipoles Eq.(3,4,7). 

 Also, the magnetic amplitude and the vorticity amplitude will remain in a constant ratio, as 

they are stretched by the same fluid strain field.  Formulas Eq.(3,4,7) describe the evolution 

of the magnetic vorton amplitude and their dipole-dipole interaction; note that there is no 

self-amplification of magnetic dipole momentum since the Maxwell equations are linear 

Ref.[14].  

In section (3) we saw that chains of vortons provide an approximation of finite-core vortex 

tubes.  Similarly, chains of magnetic dipoles provide an approximation of finite core 

magnetic flux tubes, as may be observed in the Sun or in nuclear fusion experiments.  

Inviscid dissipation associated with reconnection of magnetic vorton tubes may be the 

energy source for the very high temperatures on the surface of the Sun.  

Our vorton horseshoe numerical experiments show reconnection and the expulsion of 

vortex rings, see Fig. [1,4,5].   

 



 

Perturbed horseshoe vortex and it expelling vortex ring ref.(3-5). 

 

 
Unperturbed horseshoe vortex and it expelling vortex ring ref.(3-5). 

 

 

These resemble the magnetic vortices that produce magnetic storms on Earth and disrupts 

magnetic confinement in plasma fusion experiments Ref.[16,17].  

 

SECTION 5: Instability of vorton collapse. 

 

As we saw in articles Ref.[3-5] the system of 3 slightly non-parallel vortons almost 

perpendicular to 3 vortons plane can start to collapse toward a point. Just before that 

collapse, however, vorton self-amplification commences and leads to explosive vortons 

amplitudes and distances growth.  

 

 
Fig.21 

 

Jump in vorticity during 3 vorton collapse, log vorticity intensity against time ref.(2,3). 

 

This could be a “turbulence” mechanism for the Big Bang initial stage of the Universe 

Ref.[15]. 



More precisely, imagine that the Universe starts as a point singularity fluctuation, and 

becomes a 2D or 3D turbulent fluid with gravity. In the 2D case gravity will collapse the 

Universe back to a singularity. However in 3D or quasi-3D the vorton amplitudes and 

distances increase exponentially, see Fig.(21) in Ref.[3-5]. This may explain why our world is 

3 dimensional! 

A quasi-3D frisbee-like world has 2 fully-developed dimensions and 1 short dimension; it 

might better be described as 2D+ or “frisbee-like”. In 2+D frisbee-like space the Universe 

may be slightly less complex, and have slightly more chances to fluctuate from the original 

singularity than a fully 3D Universe.  And once gravitational collapse explodes in quasi 3D 

universe it will never get to any more complex spaces. 

So vorton collapse followed by explosive self-amplification can also occur in 2D+. However 

in 2D+ gravitational force decays proportionally to 1/r instead of 1/r^2 as in 3D. 

A universe with two-plus dimensional structure could provide an alternative to “dark 

matter” as an explanation for anomalous rotation curves in galaxies. It has been observed in 

the edges of frisbee-like galaxies that star velocities do not depend on distance from the 

center.  Explicitly, setting centripetal acceleration v^2/r equal to gravitational acceleration 

(constant)*M/r, we deduce that v must be constant in such a situation. This is a necessary 

condition for galactic disk stability Ref.[12]. 

 

SECTION 6  Simulation of vortex structures dynamics and no slip boundary layer. 

Ref.[3-5]  
  

In this section we show how vorton simulations reproduce vortex structures typically 

observed in experiments Fig.(1-20).  

 

 
 

Crow instability of vortex tubes behind airplanes Ref. (3-5). Antiparallel  perturbed vortex 

tubes reconnect into vortex rings. 

 



 

 
 

Two parallel moving vortex rings merging and splitting in perpendicular direction ref.(3-5). 

 



 
Elliptic vorton ring splits into 2 rings in perpendicular direction ref.(3-5). 

  

 

 

 
Vortex ring approaches boundary under 45 degrees angle and turns into horseshoe vortex 

ref.(3-5). 

 

 

 

We performed numerical experiments with two vorton rings executing a “leapfrogging” 

cycle.  The rings always self-destructed after 5 periods, regardless of the number of vortons 

in the rings. Multiple reconnections then happened, with small rings appearing.  During the 



destruction of the original rings we observed a negative spike in the vorton interaction 

energy, and a Kolmogorov-like power spectrum developed Eq.(5,6),Fig.(20). This agrees with 

the physical phenomena of energy transfer to small scales and inviscid dissipation of vorton 

interaction energy Ref.(3-5).Recent experiments on colliding vortex rings show strikingly 

similar behavior Ref.[19], with large numbers of vortex reconnections and the appearance 

of multiple small rings ref.[19]. 

In wall-bounded flows vorticity is created via no-slip boundary conditions.  We represent 

this process by placing arrays of vorton tubes at a distance from the wall equal to the tube 

core size and perpendicular to velocity and mirror image vortons to represent boundary 

Ref.(3-5). The numerical scheme continues to generate vorticity at the wall to keep 

enforcing the no-slip condition.  The numerical experiments show that perturbations on the 

tubes then expel vortex rings into the flow away from the wall Ref.(3-5),Fig.(5,6).  

 
 

 

Using modern fast multipole numerical schemes to simulate vortex dynamics we can come 

up with number of necessary calculations per time step for boundary layer simulation 

where it typically number of operations =n*ln(n)=(Re^3/4)*ln(Re), when in our case number 

of vortices is Re^3/4 Ref.[1-5,11]. 

 

 

SECTION 7: CONCLUSIONS 

 

Using “vortons”, i.e. discrete solenoid vortex dipole elements, helps elucidate many aspects 

of the 3D Navier Stokes equations and their solutions. Vortons most economically describe 

the physics of 3D vortex and magnetic vortex structures. Instability of vorton collapse in 3D 

and quasi 3D turbulence proposed as explanation of aspects of the origin of the Universe 

and phenomena attributed to dark matter and dark energy. Magnetic vortons describe 

dynamics of combined vortex and magnetic tubes in plasma including reconnections. No-slip 

boundary shown as a source of vorticity at the boundary and inside the flow. Plus in the 

process of self distraction of 2 leapfrogging vortex rings and subsequent reconnections we 

observed power law energy spectrum and energy cascade towards small scales. 
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    where 6"78 is the unit antisymmetric tensor, and   x7(#) (t) and 98(#) (t) are the components of 
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Velocity field generated by individual vorton. 
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Vorticity field of individual vorton. See solenoid dipole field picture fig.(19). 
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Vorton intensity change due to interaction with other vortons. 
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 Vorton position change due to interaction with other vortons. 
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Vortons interaction energy as a function of wave number ref.(2-5). 
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Interaction energy of vortons ref.(2-5). 

 

 

Formula for force F between 2 magnetic dipoles m1 and m2 ref(14). 
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where μ0 is the magnetic constant, r ̂is a unit vector parallel to the line joining the centers of the two 

dipoles, and |r| is the distance between the centers of m1 and m2. 
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FIGURES: 
 

 

 
Perturbed horseshoe vortex and it expelling vortex ring ref.(3-5). 

 
Unperturbed horseshoe vortex and it expelling vortex ring ref.(3-5). 



 
Perturbed vortex tube near the wall and it expelling vortex ring ref.(3-5). 

 

 
Crow instability of vortex tubes behind airplanes Ref. (3-5). Antiparallel  perturbed vortex tubes 

reconnect into vortex rings. 



 
 

 
Two parallel moving vortex rings merging and splitting in perpendicular direction ref.(3-5). 



Eliptic vorton ring splits into 2 rings in perpendicular direction ref.(3-5). 

  

 

Vortex ring approaches boundary under 45 degrees angle and turns into horseshoe vortex ref.(3-5). 

 



Vortex tube clearly seen in a vorton ring. With vorticity cancelling out beyond it ref.(3-5).

           Fig.19.

                     Field of  solenoid dipole. Vortex and magnetic dipole Ref.(1-5,14).



 
Non zero vorticity around radius of the ring ref.(3-5). 

 

Energy spectrum of two leapfrogging vortex rings originally and at the moment of self 

distraction. Slope in log-log graph around -1.7.  Plus negative spike in time derivative of 

interaction energy during distraction of the rings ref.(2,3,5). 

 
 

                  Fig.20. 

 



Jump in vorticity during 3 vorton collapse, log vorticity intensity against time ref.(2,3). 

 
                  

               Fig.21. 

 

SECTION8 : Appendix A: Dark energy and the expansion of the Universe 

 

As we saw in the previous chapters, the instability of 3D vorton collapse leads to self-

amplification and explosive expansion of vorton amplitudes Ref.[1- 5]. An interesting 

fact is that until 5 billion years ago the Universe’s expansion was decelerating, but 

since then the expansion has accelerated ref.[15]. There is an antagonism between 

gravity pushing toward contraction and turbulent 3D vorticity interaction pushing 

toward expansion of Universe. More precisely, the gravitational field is consists of 

monopoles leading to a 1/r^2 strength falloff. Meanwhile vorticity is a dipole or 

quadrupole field with falloff proportional to 1/r^3 or faster. So in the early Universe 

gravity dominated vorticity interactions. But later vorticity self-amplification due to 

3D stretching led to dominance of the vorticity interactions and accelerated the 

Universe’s expansion, with gravity having no self amplification mechanism due to 

linearity of corresponding equations.The energy for vorticity/vorton interaction 

comes from the infinite self-energy of vortons being converted into vorton 

interaction energy. That is, vorton self-energy pushes the Universe to accelerated 

expansion. This observation is attributed to a mysterious “Dark Energy”, which may 

simply be a manifestation of vorton self and interaction energy. In section 1 we 

interpreted the infinite self-energy as belonging to unresolved internal rotational 

degrees of freedom of individual vortons. So the dark energy responsible for the 

accelerating Universe expansion is simply the transfer of internal rotational energy 

into interaction energy of the system of vortons. 

Gravity also by squeezing vorticity closer intensifies vortex interaction and 

stretching, self amplification and thus energy of interaction. 

 

Energy is conserved.   

 

As the vorton interaction energy, and thus dark energy, increases, we expect a 

corresponding decrease in gravitational interaction energy. In the 3D case the 

gravitational potential energy of universe is -(const)*(M^2)/r, while in the 2D it is 

(const)*(M^2)* ln(r), where M is universe mass and r is its radius ref.[20] and 

constants obviously are not the same. In the intermediate 2+D case we may be 

closer to the 2D or 3D formula depending on how much the third short dimension is 

developed compared to the two fully developed dimensions. We suspect that the 



short dimension became more fully developed 5B years ago when the Universe 

expansion changed from decelerating to accelerating. The gravitational energy 

released from expansion regime change went into the interaction energy of 

vortexes/vortons associated with dark energy. The above mentioned potential 

energy formula then became closer to the 3D case. 

Also in fully 3D physical space case as compared to 2+D case we have much stronger 

vorticity stretching with corresponding vorticity intensity self amplification and with 

commensurate vortexes interaction energy increase. 

 

 

SECTION 9: Appendix B: Elementary particles as generalized solutions  
  

The wave functions of elementary particles are often interpreted as probability amplitudes. 

When they take the form of Gaussian distributions for isolated particle, they look very much 

like test functions for generalized solutions of unknown nonlinear equations.  

The strong interactions between protons and neutrons could be interpreted as 

reconnections of strings in some exotic space.  William Thompson (Lord Kelvin) conjectured 

that fluid mechanics could provide examples for all other branches of mathematical 

physics.  

 

 


