Irrationality of π Using Just Derivatives

Timothy Jones

April 12, 2023

Abstract

The quest for an irrationality of pi proof that can be incorporated into an analysis (or a calculus) course is still extant. Ideally a proof would be well motivated and use in an interesting way the topics of such a course. In particular $e^{\pi i}$ should be used and the more easily algebraic of derivatives and integrals - i.e. derivatives. A further worthy goal is to use techniques that anticipate those needed for other irrationality and, maybe even, transcendence proofs. We claim to have found a candidate proof.

Introduction

Invariably irrationality proofs use proof by contradiction. The number in question is assumed to be rational and a contradiction is derived. Why does this work? It works because irrational numbers are always changing; their tails change. Assuming that they don't change, that all zeros or 9s occur, eventually the approximation implicit in an irrational number represented by a rational becomes large enough that it is manifest that the fixed assumption can't work: there's a contradiction.

A combination of polynomials with fixed roots and ever changing partial sums of series seem a likely avenue to an irrationality proof. This is especially true as series in the form of a power series or e^{x} or $e^{i x}$ have partials that double as polynomials. Assuming the polynomial has a certain root and that the series for which the polynomial is a partial is also converging to this number should work to generate the schism mentioned. A natural candidate that embodies these ideas is Euler's famous formula:

$$
e^{\pi i}-1=0
$$

Derivatives of Polynomials

All polynomials are integer polynomials, z is a complex number, n and j are nonnegative integers, and p is a prime number.

Definition 1. Given a polynomial $f(z)$, lowercase, the sum of all its derivatives is designated with $F(z)$, uppercase.

Example 1. If $f(z)=c z^{n}$ then

$$
F(z)=\sum_{k=0}^{n} f^{(k)}(z)=c z^{n}+c n z^{n-1}+c n(n-1) z^{n-2}+\cdots+c n!.
$$

Lemma 1. If $f(z)=c z^{n}$, then

$$
\begin{equation*}
F(0) e^{z}=F(z)+f(z) \sum_{k=1}^{\infty} \frac{z^{k} n!}{(n+k)!} \tag{1}
\end{equation*}
$$

Proof. As $F(z)=c\left(z^{n}+n z^{n-1}+\cdots+n!\right), F(0)=c n!$. Thus,

$$
\begin{aligned}
F(0) e^{z} & =c n!\left(1+z / 1+z^{2} / 2!+\cdots+z^{n} / n!+\ldots\right) \\
& =c z^{n}+c n z^{(n-1)}+\cdots+c n!+c z^{n+1} /(n+1)!+\ldots \\
& =F(z)+c z^{n}\left(z /(n+1)+z^{2} /(n+1)(n+2)+\ldots\right) \\
& =F(z)+f(z) \sum_{k=1}^{\infty} \frac{z^{k} n!}{(n+k)!},
\end{aligned}
$$

giving (1).
Definition 2. Let

$$
\delta_{n!}=\sum_{k=1}^{\infty} \frac{z^{k} n!}{(n+k)!}
$$

Lemma 2.

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\delta_{n!}}{(p-1)!}=0 \tag{2}
\end{equation*}
$$

Proof. We have

$$
\left|\frac{\delta_{n!}(z)}{(p-1)!}\right|=\left|\frac{z /(n+1)+z^{2} /(n+1)(n+2)+\ldots e^{z}}{(p-1)!}\right|<\left|\frac{e^{z}}{(p-1)!}\right|
$$

and

$$
\lim _{n \rightarrow \infty}\left|\frac{e^{z}}{(p-1)!}\right|=0
$$

This implies (2).
Lemma 3. If $F(z)$ is the sum of the derivatives of $f(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$, then

$$
\begin{equation*}
F(0) e^{z}=F(z)+\sum_{k=0}^{n} c_{k} z^{k} \delta_{k!}(z) \tag{3}
\end{equation*}
$$

Proof. Let $f_{j}(z)=c_{j} z^{j}$, for $0 \leq j \leq n$. Using the derivative of the sum is the sum of the derivatives,

$$
F=\sum_{k=0}^{n}\left(f_{0}+f_{1}+\cdots+f_{n}\right)^{(k)}=F_{0}+F_{1}+\cdots+F_{n}
$$

where F_{j} is the sum of the derivatives of f_{j}. Using Lemma 1,

$$
\begin{equation*}
e^{z} F_{j}(0)=F_{j}(z)+f_{j}(z) \delta_{j!}(z) \tag{4}
\end{equation*}
$$

and summing (4) from $j=0$ to n, gives

$$
e^{z} F(0)=F(z)+\sum_{j=0}^{n} f_{j}(z) \delta_{j!}(z)
$$

This is (3).
Definition 3. If $f_{j}(z)=c_{j} z^{j}$, for $0 \leq j \leq n$, then define

$$
\epsilon_{n!}(f(z))=\sum_{j=0}^{n} f_{j}(z) \delta_{j!}(z)
$$

where

$$
f(z)=\sum_{j=0}^{n} f_{j}(z)
$$

Lemma 4.

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \frac{\epsilon_{n!}(z)}{(p-1)!}=0 \tag{5}
\end{equation*}
$$

Proof. As $\delta_{j!}(z)<e^{z}$ for $j=0, \ldots, n$,

$$
\left|\frac{\epsilon_{n!}(z)}{(p-1)!}\right|=\left|\frac{\sum_{j=0}^{n} f_{j}(z) \delta_{j!}(z)}{(p-1)!}\right| \leq e^{|z|} \sum_{j=0}^{n} \frac{\left|f_{j}(z)\right|}{(p-1)!}
$$

Then, noting

$$
\begin{equation*}
\sum_{j=0}^{n}\left|f_{j}(z)\right| \leq c \sum_{j=0}^{n}\left|z^{j}\right| \leq c n|z|^{r} \tag{6}
\end{equation*}
$$

where $c=\max \left\{\left|c_{0}\right|,\left|c_{1}\right|, \ldots,\left|c_{n}\right|\right\}$ and $|z|^{r}=\max \left\{|z|,|z|^{2}, \ldots,|z|^{n}\right\}$ and

$$
\lim _{p \rightarrow \infty} \frac{c n|z|^{r}}{(p-1)!}=0
$$

we arrive at (5). Note: r will not vary with n.

Structuring Roots

There is a relationship between the roots of $f(z)$ and those of $F(z)$. This will enable us to structure the roots of polynomials and apply (3) using z values that are roots of $f(z)$. A pattern will emerge of the following form

$$
0=I+\epsilon
$$

where I is a non-zero integer and ϵ is as small as we please: a contradiction.
Lemma 5. If polynomial $f(z)$ has a root r of multiplicity p, then $f^{(k)}(r)=0$ for $0 \leq k \leq p-1$ and each term of $f^{(k)}(r), p \leq k \leq n$ is a multiple of $p!$.

Proof. Suppose $r=0$ then, for some n we have $f(z)=z^{p}\left(b_{n} z^{n}+\cdots+b_{0}\right)$. Now $f(z)$ has $b_{0} z^{p}$ as its term with minimal exponent. Using the derivative operator, $D\left(z^{n}\right)=n z^{n-1}$, repeatedly, we see the 0 through $p-1$ derivatives of $f(z)$ will have a positive exponent of z in each term. This implies that $r=0$ is a root for these derivatives. Using the product of p consecutive natural numbers is divisible by $p!$, terms of subsequent derivatives will be multiples of $p!$.

If $r \neq 0$, then $f(z)=(z-r)^{p} Q(z)$, for some polynomial $Q(z)$. Let $g(z)=$ $f(z+r)=z^{p} Q(z+r)$. As $g^{(k)}=f^{(k)}$ for all $k, g^{(k)}(0)=f^{(k)}(r)$, and the $r=0$ case applies.

Lemma 6. If a and b are two non-zero Gaussian integers, then there exist a large enough prime p such that

$$
\frac{|p!a+(p-1)!b|}{(p-1)!}>1
$$

Proof. Suppose $a=a_{1}+i a_{2}$ and $b=b_{1}+i b_{2}$.

$$
\begin{aligned}
\mid p!a+ & (p-1)!b\left|=\left|p!\left(a_{1}+i a_{2}\right)+(p-1)!\left(b_{1}+i b_{2}\right)\right|\right. \\
& =(p-1)!\left|p a_{1}+i p a_{2}+b_{1}+i b_{2}\right| \\
& =(p-1)!\left|\left(p a_{1}+b_{1}\right)+i\left(p a_{2}+b_{2}\right)\right| \\
= & (p-1)!\sqrt{\left(p a_{1}+b_{1}\right)^{2}+\left(p a_{2}+b_{2}\right)^{2}}
\end{aligned}
$$

The square root contains the sum of two positive or zero integers. Then as both a and b are non-zero Gaussian integers, letting 0 indicate a zero value for a real or complex component and a 1 indicate a non-zero component the possibilities are

$$
a_{1} b_{1} \mid 00100111 \text { forcing } a_{2} b_{2} \mid 11011000
$$

The only possibility resulting in a zero sum $|p a+b|$ occurs with $b=-p a$ with $b \neq 0$. This is a 11 case. Assuming a_{1} and b_{1} are non-zero and $p>\max \left\{\left|b_{1}\right|\right\}$, then $p \nmid\left|b_{1}\right|$ and $\left(p a_{1}+b_{1}\right)^{2}$ must be non-zero as, if it is zero then then $p a_{1}+b_{1}=0$ and $p a_{1}=-b_{1}$ and $p \| b_{1} \mid$, a contradiction. So one or both summands are non-zero positive integers. As the square root of a number greater than 1 is greater than 1 , the Lemma is established.

Pi is Irrational

Theorem 1. π is irrational.
Proof. Suppose not. Then $e^{\pi i}=e^{r i}$ where r is a rational, say a / b. Modify the polynomial

$$
z^{p-1}(z-a i / b)^{p}
$$

to make it an integer polynomial:

$$
f(z)=(b z)^{p-1}(b z-a i)^{p} .
$$

Then, using Euler's formula and Lemma 1

$$
0=F(0)\left(e^{r i}+1\right)=F(r i)+F(0)+\epsilon_{n!}(f(z))
$$

There is a prime p large enough that the left hand side of

$$
\left|\frac{\epsilon_{n!}(f(z))}{(p-1)!}\right|=\left|\frac{F(r i)+F(0)}{(p-1)!}\right|
$$

is less than one per Lemma 4 and the right hand side is greater than one per Lemma 6, a contradiction.

Conclusion

This proof of the irrationality of π uses derivatives and limits at a level of a real analysis course based on Rudin or Apostol [1, 3]. It also anticipates proofs of the transcendence of e and π [2].

References

[1] Apostol, T. M. (1974). Mathematical Analysis, 2nd ed. Reading, Massachusetts: Addison-Wesley.
[2] Eymard, P., Lafon, J.-P. (2004). The Number π. Providence, RI: American Mathematical Society.
[3] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill.

