Exact Mass of the Charmed Lambda Baryon

D.G. Grossman
April 26, 2023

In 2006 Particle Data Group changed their FIT of the mass of the Charmed Lambda+ baryon from $2284.9+-0.6 \mathrm{MeV}$, to $2286.46+-0.14 \mathrm{MeV}$ (an increase of 1.56 Mev), because they said the new BABAR measurement was so much better, meaning more accurate. True, the measurement is more accurate, but n-sphere factoring shows the new mass found by BABAR is probably not the mass of a Lambda(c) baryon (udc quark content), but rather it is likely the mass of a $\mathrm{Xi}(\mathrm{c})$ baryon (dsc quark content). This paper explains the arguments for the two quark content assignments, and gives an expression for the exact mass of each baryon. (Since Planck's constant was declared exact recently, n -sphere factoring of hadron experimental masses results in expressions yielding exact theoretical masses.)

1.0 Introduction

The masses of all hadrons can be represented as multiples of n-sphere surface volumes times Planck's constant's coefficient ($h=6.62607015$). This is suspected of being true because when an n-sphere surface volume times h, is divided into a hadron's mass, many times the result is an integer or a small denominator fraction, the numerator of which is either a power of two, or is the sum of a few powers of two. For instance, the second experimental mass listed by PDG for the cd meson \mathbf{D}^{+}, is $1870.0+-0.5 /+-1.0 \mathrm{MeV}$. Its n-sphere factoring is $\mathbf{7 6 8 0} / \mathbf{9 0 0} \mathbf{S 7 h}=\mathbf{1 8 7 0 . 0 4 9} \mathbf{~ M e V}$, where $\mathrm{S7h}$ is an abbreviation for the surface volume of a unit radius 7 -sphere times h . (S7h was used as the unit of factorization in this case, because it is compatible with cd quark content. More on this later.) The numerator of the factoring fraction, 7680, is the sum of four consecutive powers of two: $7680=4096+2048+1024+512$. All hadrons seem to factor with either powers of two, sums of powers of two, or sums of powers of two minus a smaller power of two in the numerator of the factoring fraction. As another case in point (the subject of this paper) the lambda(c)+ baryon with experimental mass 2284.7 MeV , factors with three consecutive powers of two in the numerator of its factoring fraction: $16384+8192+4096$.

Why does n-sphere surface volume factoring work? The theory is that all the matter of a hadron is composed of higher dimensional matter, and occupies the volume in n-sphere surfaces of various dimensions depending on the 'quark content' of the hadron. Quarks are not considered particles, but volumes of n-sphere surfaces filled with matter. The up quark correspnds to matter filling the surface volume of a 2 -sphere, the down quark corresponds to matter filling the surface volume of a 3 -sphere, etc. Here's a list of the quarks and their corresponding n-sphere surface volume formulae.

Quark	$\underline{\text { n-Sphere Surface }}$	
	Volu	ne Formula
u	S2 =	$2 \pi \mathrm{r}^{1}$
d	S3 =	$4 \pi \mathrm{r}^{2}$
S	S4 =	$2 \pi^{2} r^{3}$
C	S5 =	(8/3) $\pi^{2} \mathrm{r}^{4}$
b	S6 =	$\pi^{3} \mathrm{r}^{5}$
t	S7 =	$(16 / 15) \pi^{3} r^{6}$

Note that this quark model can be extended indefinitely. How can n-dimensional matter exist 'in' our 3D space? Because the matter of which hadrons are composed only intersects 3D space (the Higgs field). Higher dimensional matter is not 'in' 3D space. No matter exists 'in' 3D space. The 3D interior of hadrons is devoid of matter. The surface of the proton and all other hadrons, does not define the surface of a 3D object, as is commonly thought, but rather, it defines the intersection between the hadron's higher dimensional matter and our 3D space (the Higgs field). 100% of the matter of which hadrons are composed resides in the higher dimensional space exterior to, and immediately adjacent to, the hadron's apparent 3D location. (This architecture is possible because 3D space has zero thickness in the fourth and higher dimensional directions, therefore 4D and higher dimensional space is next to every point in 3D space.)

2.0 n-Sphere Surface Volume Factoring

How does one factor a hadron with n-sphere surface volumes? If the quark content of the hadron is known, multiply all the n-sphere surface volume formula associated with each quark in the hadron together along with Planck's constant's coefficient ($\mathrm{h}=6.62607015$). The unit of factorization derived is then divided into the hadron's mass. In the case of the $\mathbf{c d}$ meson \mathbf{D}^{+}mentioned above, its unit of factorization would be $\mathbf{c d h}$, or S5S3h, or $\left(8 / 3 \pi^{2} r^{4}\right)\left(4 \pi r^{2}\right)$. Multiplying, one gets ($32 / 3 \pi^{3} r^{6}$)h as the unit of factorization. Substituting $\mathrm{r}=1$, and solving, one gets 2191.4641 MeV for the value of that unit of factorization. It can be used to factor any cd meson. Dividing it into the experimental mass of the $\mathrm{D}+$ meson (1870.0) one gets 0.85333 . Multiplying that by 900 you get 768 . (The 900 divisor works for this factoring because of the 3's in the decimal expansion of 0.85333 .) The complete factoring is: $768 / 900 \mathbf{c d h}=1870.0494 \mathrm{MeV}$. The numerator, 768 is the sum of two powers of two: $768=512+256$.

Notice that the factoring unit just derived for factoring cd mesons, $\mathbf{c d h}=\left(32 / 3 \pi^{3} \mathrm{r}^{6}\right) \mathrm{h}$, has the same powers of π and r in it as $\mathbf{S 7 h}=\left(16 / 15 \pi^{3} \mathrm{r}^{6}\right)$ h. Both have (π, r) powers of $(3,6)$. The $\mathbf{S 7 h}$ unit is just ten times smaller than the $\mathbf{c d h}$ unit. Except for that they are identical, so $\mathbf{S 7 h}$ can be used interchangeably with cdh. This is true of all units of factorization that are derived by multiplying the associated n-sphere surface volume formulae of quarks together. For any combination of quarks multiplied together (that results in π and r powers found in an n-sphere surface volume formula) a single n-sphere surface volume formula having the same π and r powers can be used instead. To find out which n-sphere surface volume formula can be used to factor which quark combinations see Appendix A, Quark Content Possibilities by Factoring Unit Used.

3.0 Factorization of the 2284.7 MeV Mass with S8h

Since the charmed lambda baryons have quark content udc, their masses can be factored not only with udch, but also with S8h (S8 represents the surface volume formula of an 8 -sphere. See Appendix D for its formula.), because udch and S8h each have (π, r) powers of (4,7) in their respective formulae. They differ only in their constants of multiplication - udch is 64 times larger than $\mathbf{S 8} \mathbf{h}$. Below is the factoring of the 2284.7 experimental mass done with $\mathbf{S 8 h}$.

	FACTORING	THRMASS (MeV)
$\frac{28672}{2700}$	$S 8 \mathrm{~h}=(\underline{16384+8192+4096})$	$\mathrm{S} 8 \mathrm{~h}=2284.6963$
	2700	
$\frac{28672}{2700}$	$S 8 h=\left(2^{14}+2^{13}+2^{12}\right)$	$\mathrm{S} 8 \mathrm{~h}=2284.6963$
	2700	
	COMPARISON of EXPMASS	VS THRMASS
	EXPMASS (MeV) THRMASS (MeV)	DIFF (MeV)
	2284.7 - 2284.6963	$=0.0037$

This factoring is convincing, meaning probably correct, for two reasons. First, the theoretical mass given by the factoring expression (2284.6963 MeV) closely matches a highly accurate experimental mass measurement (2284.7 MeV). They differ by only 0.0037 MeV , and the statistical and systematic errors of the 2284.7 mass measurement are only 0.6 and 0.7 MeV respectively, which indicates it's a very accurate measurement. Secondly, concerning the factoring expression, the numerator of the fraction that is the multiplier of the unit of factorization $(\mathrm{S} 8 \mathrm{~h})$ is the sum of three consecutive and relatively large powers of two: $16384+8192+4096$. These two factors, along with the fact that the S8h unit is compatible with udc quark content makes it highly likely that the expression $\mathbf{2 8 6 7 2} / \mathbf{2 7 0 0} \mathbf{S 8 h}$ represents the exact mass of the $\Lambda \mathrm{c}^{+}$ baryon. The next section will show that the mass adopted by PDG in 2006 for the $\Lambda \mathrm{c}+$ baryon's mass (2286.46 MeV) is most likely the mass of a charmed Xi baryon ($\Xi \mathbf{\Xi}$), because it factors much better with S10h than with S8h, indicating it has quark content dsc, not udc. (Note: dsc $=\left(4 \pi r^{2}\right)\left(2 \pi^{2} r^{3}\right)\left(8 / 3 \pi^{2} r^{4}\right)=64 / 3 \pi^{5} r^{9}$, and S10h $=1 / 12 \pi^{5} r^{9}$, so both have (π, r) powers of $(5,9)$ so $\mathbf{S 1 0 h}$ can be used to factor dsc baryons.)

4.0 Factorization of the 2286.46 MeV Mass with S10h

In 2006 Particle Data Group changed their FIT for the mass of the $\Lambda c+$ from $2284.9+-0.6 \mathrm{MeV}$ to the more accurate $2286.46+-0.14 \mathrm{MeV}$ BABAR determined mass value. It was deemed a 'better' measurement because it was more accurate, but n-sphere surface volume factoring puts its classification as a charmed-lambda baryon in doubt, because a charmed lambda baryon has quark content udc and factors with S8h, whereas the 2286.46 BABAR mass factors much better with S10h, so probably has dsc quark content (if its a baryon), which means it is a charmed-xi baryon.

As shown above, the S10h factoring of the 2286.46 mass is very convincing (meaning likely correct). The theoretical and experimental masses match closely. The error of the 2286.46 measurement is +-0.14 MeV , and the difference between the experimental and theoretical masses is only 0.022 MeV , which is just 16% of the 0.14 MeV error, and the numerator of the factoring fraction is the sum of three relatively large powers of two: $8192+1024+256$. All these points add up to the conclusion that this is the correct factoring for the 2286.46 MeV mass. Factoring it with S 8 h results in a numerator that is not the sum of relatively large powers of two as the S10h factoring is. The S8h factoring is: $(16384+8192+4096+$ $22) / 2700$ S8h. The 22 in the numerator is not even close to a small power of two, and rounding the 22 in the numerator down to 16 , or rounding it up to 32 places the theoretical mass out of the error range of the experimental mass's measurement, so S8h/2700 factoring for this mass is not correct. Other S8h factorings using divisors other than 2700, even other power of three based divisors such as 8100 , have been tried to no avail, but the search was not exhaustive, so there is still a possibility an S8h factoring better than the S10h factoring could be found, but because of the closeness of the S10h factoring result to the 2286.46 MeV measurement and the large powers of two in the numerator of the S10h factoring's fraction, the chances of a better S8h factoring being found is small.

5.0 Summary and Conclusion

Because the 2284.7 MeV mass factors convincingly with S8h (which is udc compatible, or Lambda(c) baryon compatible), and the $\mathbf{2 2 8 6 . 4 6 ~ M e V}$ mass doesn't factor convincingly with S8h, but does factor convincingly with S10 (which is dsc compatible, or Xi (c) baryon compatible) the true mass of the charmed-lambda baryon is most probably (to eight digits of accuracy): $\mathbf{2 2 8 4 . 6 9 6 3} \mathbf{~ M e V}$, not $\mathbf{2 2 8 6 . 4 6 ~ M e V}$. The exact mass is given by the expression: $\mathbf{2 8 6 7 2} \mathbf{~ S 8 h} / \mathbf{2 7 0 0} \mathbf{~ M e V}$. (It is correct to say that expression represents the exact mass of the Λc^{+}because ' h ' was recently (2019) declared exact.)

The factoring, $28672 \mathrm{~S} 8 \mathrm{~h} / 2700$, of the $\Lambda \mathrm{c}+$ baryon begs the question, "Is the factoring of a hadron congruent in some way to its structure?" It's possible, especially when considering the factoring of similar hadrons. For instance, another charmed lambda baryon, the $\Lambda_{c}(2860)^{+}$also factors with a divisor of 2700 , and with a sum of powers of two in its factoring fraction's numerator. (See Appendix A for details of its factoring.) It factors as $(32768+2048+1024) \mathrm{S} 8 \mathrm{~h} / 2700$, which is exactly $7168 \mathrm{~S} 8 \mathrm{~h} / 2700 \mathrm{MeV}$ greater than the mass of the $\Lambda \mathrm{c}+$ baryon, and $7168=4096+2048+1024+512$. So, n-sphere factoring may give clues to hadron structure.

6.0 References

[1] P.A. Zylaet al.(Particle Data Group), Prog. Theor. Exp. Phys.2020, 083C01 (2020) and 2021 update

7.0 Appendices

Appendix A Factorization of $\boldsymbol{\Lambda}_{c}{ }^{+}$and $\boldsymbol{\Lambda}_{\boldsymbol{c}}(2860)^{+}$
Appendix B Quark Content Possibilities by Factoring Unit Used
Appendix C Examples of n-Sphere Surface Volume Factoring of Some Hadron Masses
Appendix D n-Sphere Surface Volume Formulae
Appendix E Values of n-Sphere Surface Volume Units of Factorization

APPENDIX A

Factorization of $\boldsymbol{\Lambda}_{c}{ }^{+}$and $\boldsymbol{\Lambda}_{\mathrm{c}}(2860)^{+}$

$\Lambda_{c}{ }^{+}$MASS

EXPMASS (MeV)
$2284.70 .6 / 0.7$
$\frac{\text { FACTORING }}{2700} \mathrm{~S} \mathrm{~h}=\frac{(16384+8192+4096)}{2700} \mathrm{~S} 8 \mathrm{~h}=2284.6963$
$\frac{28672}{2700} \mathrm{~S} \mathrm{~h}=\left(\frac{\left(2^{14}+2^{13}+2^{12}\right)}{2700} \quad \mathrm{~S} 8 \mathrm{~h}=2284.6963\right.$
$\Lambda_{c}(2860)^{+}$MASS

EXPMASS (MeV)
2856.1 2.0/1.7 PDG FIT
$\frac{\text { FACTORING }}{2700} \mathrm{~S} \mathrm{~h}=\frac{(32768+2048+1024)}{2700} \mathrm{~S} 8 \mathrm{~h}=2855.8704$
$\frac{35840}{2700} \mathrm{~S} 8 \mathrm{~h}=\quad\left(\frac{\left(2^{15}+2^{11}+2^{10}\right)}{2700} \quad \mathrm{~S} 8 \mathrm{~h}=2855.8704\right.$
$\Lambda_{c}(2860)^{+}-\Lambda_{c}{ }^{+}$MASS DIFFERENCE

```
35840\frac{S8h}{2700}}-28672\frac{S8h}{2700}=7168\frac{S8h}{2700}=571.1740\textrm{MeV}/\mp@subsup{\textrm{c}}{}{2
7168 = 4096 + 2048 + 1024
7168 = 2 12 + 2 11 + 2 20
```


APPENDIX A

Quark Content Possibilities by Factoring Unit Used

The quark combinations shown above include only those quark combinations that result in an n-sphere surface volume formula similar equation. If two or more even dimension quark formulae are multiplied together, the result is not an n sphere surface volume formula similar equation. Those are not listed. Examples are $u u, u s, u b, s s, s b, b b$, etc. All valid quark combinations for the factoring units from S4h to S9h are shown (I think). For the factoring units from S10h to S21h not all possible valid quark combinations are shown, especially for the triquarks (qqq, baryons) and the diquarks (qq, mesons). This was done so the table wouldn't look too complex and potentially confusing.

The parentheses enclosing two integers separated by a comma that is just to the right of the factoring units, such as the $(1,2)$ in the line $\mathrm{S} 3 \mathrm{~h}=(1,2)$, means the surface volume formula of that factoring unit has the powers 1 and 2 for ' π ' and ' r '. In the case of S3h, S3 = $4 \pi^{1} r^{2}$. ' π ' is raised to the power 1 , and ' r ' is raised to the power 2 , that's why it's written $\mathrm{S} 3 \mathrm{~h}=(1,2)$. Using this parentheses notation for surface volume formula representation makes it easy to determine which factoring unit will factor which quark combinations, or vice versa, which quark combinations can be factored by which factorung unit.

For instance, if you want to know which factoring unit will factor 'ddd', since 'd' = S3 = (1,2), just add the corresponding integers together of the product $(1,2)(1,2)(1,2)$. You are multiplying numbers together (' π ' and ' r ') that are raised to integer powers, and, powers add, so you get $(3,6)$. Now find the line with $(3,6)$ in it. It is $S 7 h=(3,6)$. So the factoring unit needed to factor 'ddd' is S7h.

APPENDIX C

Examples of n-Sphere Surface Volume Factoring of Some Hadron Masses Showing a Compatible Quark Content for Each

Subatomic Particle ρ (770)	$\frac{\text { ExpMass }}{775.02}$	$\frac{\text { Error }}{0.35}$	n-Sphere Factoring	ThrMass		Compatible QuarkConten
			4.44444	S5h =	775.071	dd
η	547.865	0.031	2.66666	S6h	547.8660	ds
Δ (1232)	1232.9	1.2	6.00000	S6h	1232.698	ddu
K (1430)	1438	8/4	7.00000	S6h	1438.148	ds
$\Delta(1700)$	1643	6/3	8.00000	S6h =	1643.598	ddu
$X i^{0}$	1314.86	0.20	6.00000	S7h $=$	1314.878	ddd
Xi ${ }^{-}$	1321.71	0.07	6.03125	S7h =	1321.727	ddd
a2 (1700)	1721	11/44	8.00000	S8h =	1721.172	CS
Ds	1967.0	1.0/1.0	64/7	S8h =	1967.053	cs
Ds (2460)	2458.9	1.5	80/7	S8h	2458.817	cs
B2 (5747)	5737.2	0.7	26.66666	$\mathrm{S8} \mathrm{~h}=$	5737.239	bd
Ds	1967.0	1.0/1.0	10.00000	S9h =	1967.053	CC
Ds (2460)	2458.9	1.5	12.50000	S9h =	2458.817	cc
Ds (2700)	2688	4	13.66666	S9h =	2688.307	cc
Ds (2700)	2710	2	13.77777	$\mathrm{S} 9 \mathrm{~h}=$	2710.163	cc
Bj (5732)	5704	4/10	29.00000	$\mathrm{S9h}=$	5704.455	cc
Ds (2212)	2112.2	0.4	12.5000	S10h =	2112.195	bc
Ω (2250)	2253	13	13.3333	S10h =	2253.008	dsc
Ds1 (2536)	2534.6	$0.3 / 0.7$	15.0000	S10h =	2534.634	bc
Ds2 (2572)	2572.2	$0.3 / 1.0$	15.2222	S10h $=$	2572.185	bc
Ds0 (2590)	2591	13	15.3333	S10h =	2590.960	bc
Pc (4337)	4337	7/4	25.6666	S10h $=$	4337.041	ddddu
Pc (4457)	4449.8	1.7/2.5	26.3333	S10h =	4449.692	ddddu
Y (4500)	4506	11	26.6666	$\mathrm{S10h}=$	4506.017	ddddu
b1 (1235)	1236	16	9.0000	S11h $=$	1235.936	ddddd
$\mathrm{X}(2175)$	2197.4	4.4	16.0000	S11h $=$	2197.219	ddddd
Z (3985)	3982.5	1.8	29.0000	$\mathrm{S} 11 \mathrm{~h}=$	3982.461	ddddd
$\mathrm{X}(4660)$	4669	21/3	34.0000	$\mathrm{S11h}=$	4669.092	ddddd
Ds (2860)	2866.6 (avg)		27.0000	S12h $=$	2866.605	bt
D (3000) ${ }^{\circ}$	2971.8	8.7	28.0000	S12h $=$	2972.775	bt
D (3000) ${ }^{\circ}$	3008.1	4.0	28.3333	$\mathrm{S} 12 \mathrm{~h}=$	3008.165	bt
Dsj(3040)	3044	8	28.6666	$\mathrm{S} 12 \mathrm{~h}=$	3043.555	bt
Ω	1673.4	1.7	21.3333	S13h $=$	1673.398	ccc
Xi(1950)	1952	11	24.8888	S13h $=$	1952.298	ccc
Xi (2500)	2505	10	31.9375	S13h $=$	2505.195	ccc
fj (2220)	2223.9	2.5	40.0000	S14h =	2223.630	vt
Xc0 (1P)	3415.5	$0.4 / 0.4$	61.4400	S14h $=$	3415.496	ccsd
Xc2 (1P)	3557.8	0.2/4	64.0000	S14h	3557.808	ccsd
$\eta \mathrm{b}$ (1S)	9394.8	2.7/3.1	169.0000	S14h =	9394.839	vt
f0 (980)	977.3	0.9/3.7	99.7500	S18h =	977.298	cccb
f0 (980)	982.2	1.0/8.1	100.2500	S18h	982.197	cccb
f0 (980)	984.7	0.4/2.4	100.5000	S18h	984.646	cccb

APPENDIX D

n-Sphere Surface Volume Formulae

(Dimension 2 - Dimension 21)

Sphere		Surface	(π, r)
Dimension	$\underline{\text { Sn }}$	Volume Formula	Powers
2	S2 =	$2 \pi^{1} \mathrm{r}^{1}$	$(1,1)$
3	S3 =	$4 \pi^{1} \mathrm{r}^{2}$	$(1,2)$
4	S4 =	$2 \pi^{2} \mathrm{r}^{3}$	$(2,3)$
5	S5 =	8/3 $\pi^{2} \mathrm{r}^{4}$	$(2,4)$
6	S6 =	$\pi^{3} \mathrm{r}^{5}$	$(3,5)$
7	S7 =	16/15 $\pi^{3} \mathrm{r}^{6}$	$(3,6)$
8	S8 =	$1 / 3 \pi^{4} r^{7}$	$(4,7)$
9	S9 =	$32 / 105 \pi^{4} \mathrm{r}^{8}$	$(4,8)$
10	S10 =	$1 / 12 \pi^{5} r^{9}$	$(5,9)$
11	S11 =	$64 / 945 \pi^{5} \mathrm{r}^{10}$	$(5,10)$
12	S12 =	$1 / 60 \pi^{6} \mathrm{r}^{11}$	$(6,11)$
13	S13 =	$128 / 10395 \pi^{6} \mathrm{r}^{12}$	$(6,12)$
14	S14 =	$1 / 360 \pi^{7} \mathrm{r}^{13}$	$(7,13)$
15	S15 =	$256 / 135135 \pi^{7} \mathrm{r}^{14}$	$(7,14)$
16	S16 =	1/2520 $\pi^{8} \mathrm{r}^{15}$	$(8,15)$
17	S17 =	$512 / 2027025 \pi^{8} \mathrm{r}^{16}$	$(8,16)$
18	$\mathrm{S} 18=$	$1 / 20160 \pi^{9} \mathrm{r}^{17}$	$(9,17)$
19	S19 =	1024 / $34459425 \pi^{9} \mathrm{r}^{18}$	$(9,18)$
20	S20 =	$1 / 181440 \pi^{10} \mathrm{r}^{19}$	$(10,19)$
21	S21 =	2048 / 654729075 $\pi^{10} \mathrm{r}^{20}$	$(10,20)$

APPENDIX E

Values of n-Sphere Surface Volume Units of Factorization

(Dimension 2 - Dimension 21)

$\underline{\text { Sphere }}$	$\underline{\text { Unit of }}$	
$\underline{\text { Dimension }}$	$\underline{\text { Factorization }} \quad \underline{\text { Formula }} \quad\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	

2	S2h =	$2 \pi^{1} \mathrm{r}^{1} \mathrm{~h}=41.63282661$
3	S3h =	$4 \pi^{1} \mathrm{r}^{2} \mathrm{~h}=83.26565322$
4	S4h =	$2 \pi^{2} \mathrm{r}^{3} \mathrm{~h}=130.7933822$
5	S5h =	$8 / 3 \pi^{2} \mathrm{r}^{4} \mathrm{~h}=174.3911763$
6	S6h =	$\pi^{3} \mathrm{r}^{5} \mathrm{~h}=205.4497644$
7	S7h =	$16 / 15 \pi^{3} \mathrm{r}^{6} \mathrm{~h}=219.1464153$
8	S8h	$1 / 3 \pi^{4} \mathrm{r}^{7} \mathrm{~h}=215.1464901$
9	S9h =	$32 / 105 \pi^{4} \mathrm{r}^{8} \mathrm{~h}=196.7053624$
10	S10h =	$1 / 12 \pi^{5} \mathrm{r}^{9} \mathrm{~h}=168.9756582$
11	S11h =	$64 / 945 \pi^{5} \mathrm{r}^{10} \mathrm{~h}=137.3262492$
12	S12h =	$1 / 60 \pi^{6} \mathrm{r}^{11} \mathrm{~h}=106.1705373$
13	S13h =	$128 / 10395 \pi^{6} \mathrm{r}^{12} \mathrm{~h}=78.44057013$
14	S14h	$1 / 360 \pi^{7} \mathrm{r}^{13} \mathrm{~h}=55.59076334$
15	S15h =	$256 / 135135 \pi^{7} \mathrm{r}^{14} \mathrm{~h}=37.91204905$
16	S16h =	1/2520 $\pi^{8} \mathrm{r}^{15} \mathrm{~h}=24.94907624$
17	S17h =	$512 / 2027025 \pi^{8} \mathrm{r}^{16} \mathrm{~h}=15.88056197$
18	S18h =	$1 / 20160 \pi^{9} \mathrm{r}^{17} \mathrm{~h}=9.797479330$
19	S19h =	1024/34459425 $\pi^{9} \mathrm{r}^{18} \mathrm{~h}=5.869441980$
20	S20h =	$1 / 181440 \pi^{10} \mathrm{r}^{19} \mathrm{~h}=3.419965454$
21	S21h $=$	2048/654729075 $\pi^{10} \mathrm{r}^{20} \mathrm{~h}=1.940989032$

