A PROBABILISTIC PROOF OF THE MULTINOMIAL THEOREM FOLLOWING THE NUMBER A_{n}^{p}

Atsu DEKPE

May 1, 2023

Abstract

: In this note, we give an alternate proof of the multinomial theorem following the number A_{n}^{p} using probabilistic approach. Although the multinomial theorem following the number A_{n}^{p} is basically a combinatorial result, our proof may be simple for a student familiar with only basic probability concepts.

1 INTRODUCTION

The following multinomial theorem based on number n^{p} (development based on a power of a number) is an important result with many applications in mathematics statistics and computations. The theorem states as follows:

Theorem 1

Let n and m be non-zero natural numbers, $x_{1}, x_{2}, \ldots, x_{m}$ real numbers:

$$
\left(x_{1}+x_{2}+\ldots+x_{m}\right)^{n}=\sum_{\sum_{i=1}^{m} k_{i}=n} \frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{m}^{k_{m}}(1.1)
$$

where k_{i} are natural integers.
For readers interested, they can see [5] for further interpretation. Recently, we have published another type of multinomial theorem based on numbers A_{n}^{p} and given some applications in the case of binomials. (see [1] for more details). In each case, the first demonstrations are based on a proof by induction using the binomial formula. A. Rosalsky proposed a probabilistic approach to this proof in the case of binomials [3] which will be generalized to the multinomial theorem by Kuldeep Kumar Kataria [4]. An urn contains x_{1} balls numbered 1, x_{2} balls numbered $2, \ldots, x_{m}$ balls numbered m, such that the total number of balls is $N=\sum_{i=1}^{m} x_{i}$. Consider an experiment where we draw a ball from the urn without
replacement, and note the number on it each time. By repeating this experiment n times. The probability mass function of the variables $X_{1}, X_{2}, \ldots, X_{m}$ is :

$$
P\left[X_{1}=k_{1}, X_{2}=k_{2}, \ldots, X_{m}=k_{m}\right]=n!\prod_{i=1}^{m} \frac{P_{i}^{k_{j}}}{k_{j}!}(1.2)
$$

where $\sum_{i=1}^{m} k_{i}=n$ and $P_{i}^{k_{j}}$ the probability of having the balls numbered i k_{j} times.
From (1.2) we have :

$$
1=\sum_{\sum_{i=1}^{m} k_{i}=n} n!\prod_{i=1}^{m} \frac{P_{i}^{k_{j}}}{k_{j}!}(1.3)
$$

Next we will establish and prove the multinomial theorem following the number A_{n}^{p}.

2 A probabilistic proof of the multinomial theorem following the number A_{n}^{p}

Theorem 2
Let m and n be two non-zero natural numbers and $x_{1}, x_{2}, \ldots, x_{m}$ natural numbers. Then,

$$
A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\sum_{\sum_{i=1}^{m} k_{i}=n} \frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2} \ldots A_{x_{m}}^{k_{m}}}
$$

Where k_{i} are non negative integers, $k_{i} \leq x_{i}$ and $A_{n}^{k_{i}}=k_{i}!C_{n}^{k_{i}}=k_{i}!\binom{n}{k_{i}}$
Proof: Let us consider :
$A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\left(x_{1}+x_{2}+\ldots+x_{m}\right)\left(x_{1}+x_{2}+\ldots+x_{m-1}\right) \ldots\left(x_{1}+x_{2}+\ldots+x_{m-n+1}\right)$

Using the distributivity property without resuming the number on the right side of the equation, it follows that for any natural numbers x_{i} we have :

$$
A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\sum_{\sum_{i=1}^{m} k_{i}=n} C_{n}^{k_{1}, k_{2}, \ldots, k_{m}} A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2}} \ldots A_{x_{m}}^{k_{m}}(2.1)
$$

where $C_{n}^{k_{1}, k_{2}, \ldots, k_{m}}$ are positive integers and k_{i} are non negative integers satisfaying $\sum_{i=1}^{m^{n}} k_{i}=n$. We just need to show that.

$$
\begin{equation*}
C_{n}^{k_{1}, k_{2}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}(2 \tag{2.2}
\end{equation*}
$$

We have $n \geq x_{i}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$ Let's put:

$$
P_{j}(i)=\frac{x_{i}^{j}}{x_{1}+x_{2}+\ldots+x_{m-j+1}}(2.3)
$$

Where x_{i}^{j} is the remaining number of the balls numbered i before the jth draw. $0 \leq P_{j} \leq 1$, substituting (2.3) in (1.3) we obtain

$$
A_{\left(x_{1}+x_{2}+\ldots+x_{m}\right)}^{n}=\sum_{\sum_{i=1}^{m} k_{i}=n} \frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2} \ldots} A_{x_{m}}^{k_{m}}(2.4)
$$

finally the subtraction of (2.4) from (2.1) gives :

$$
\sum_{\sum_{i=1}^{m} k_{i}=n}\left(C_{n}^{k_{1}, k_{2}, \ldots, k_{m}}-\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}\right) A_{x_{1}}^{k_{1}} A_{x_{2}}^{k_{2} \ldots} A_{x_{m}}^{k_{m}}=0(2.5) ; A_{x_{i}}^{k_{i}} \geq 0
$$

since (2.5) is a zero polynomial in m variables, (2.2) follows and the proof is complete.

REFERENCES

[1] A.Dekpe, Mutinomial development.https://vixra.org/combgt/2304
[2] D.Dacunha-Castelle and M.Duflo, exercise de probalites et statistiques. Masson, Paris 1982.
[3] A.Rosalsky, A simple and probabilistic proof of the binomial theorem, Amer.Statist. 61 no.2(2007).
[4] K.K. Kataria, A Probabilistic proof of the multinomial the, Amer.Math.Monthly, 123(2016).
[5] K.K.Kataria, Some Probabilistic interpretation of the multinomial theorem, Math.Mag, 90(2017).
[6] S.Abbas, Multinomial theorem Procured from Partial differential equation Applied Mathematics E-notes, 22(2022), 457-459.

