A PROBABILISTIC PROOF OF THE MULTINOMIAL THEOREM FOLLOWING THE NUMBER A_n^p

Atsu DEKPE

May 1, 2023

Abstract:

In this note, we give an alternate proof of the multinomial theorem following the number A_n^p using probabilistic approach. Although the multinomial theorem following the number A_n^p is basically a combinatorial result, our proof may be simple for a student familiar with only basic probability concepts.

1 INTRODUCTION

The following multinomial theorem based on number n^p (development based on a power of a number) is an important result with many applications in mathematics statistics and computations. The theorem states as follows:

Theorem 1

Let n and m be non-zero natural numbers, $x_1, x_2, ..., x_m$ real numbers:

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{\sum_{i=1}^m k_i = n} \frac{n!}{k_1! k_2! \dots k_m!} x_1^{k_1} x_2^{k_2} \dots x_m^{k_m} (1.1)$$

where k_i are natural integers.

For readers interested, they can see [5] for further interpretation. Recently, we have published another type of multinomial theorem based on numbers A_n^p and given some applications in the case of binomials. (see [1] for more details). In each case, the first demonstrations are based on a proof by induction using the binomial formula. A. Rosalsky proposed a probabilistic approach to this proof in the case of binomials [3] which will be generalized to the multinomial theorem by Kuldeep Kumar Kataria [4]. An urn contains x_1 balls numbered 1, x_2 balls numbered 2, ..., x_m balls numbered m, such that the total number of balls is $N = \sum_{i=1}^{m} x_i$. Consider an experiment where we draw a ball from the urn without

replacement, and note the number on it each time. By repeating this experiment n times. The probability mass function of the variables $X_1, X_2, ..., X_m$ is :

$$P[X_1 = k_1, X_2 = k_2, ..., X_m = k_m] = n! \prod_{i=1}^m \frac{P_i^{k_j}}{k_j!} (1.2)$$

where $\sum_{i=1}^{m} k_i = n$ and $P_i^{k_j}$ the probability of having the balls numbered i k_j times.

From (1.2) we have :

$$1 = \sum_{\sum_{i=1}^{m} k_i = n} n! \prod_{i=1}^{m} \frac{P_i^{k_j}}{k_j!} (1.3)$$

Next we will establish and prove the multinomial theorem following the number A_n^p .

2 A probabilistic proof of the multinomial theorem following the number A_n^p

Theorem 2

Let m and n be two non-zero natural numbers and $x_1, x_2, ..., x_m$ natural numbers. Then,

$$A^{n}_{(x_{1}+x_{2}+\ldots+x_{m})} = \sum_{\sum_{i=1}^{m} k_{i}=n} \frac{n!}{k_{1}!k_{2}!\ldots k_{m}!} A^{k_{1}}_{x_{1}}A^{k_{2}}_{x_{2}}\ldots A^{k_{m}}_{x_{m}}$$

Where k_i are non negative integers, $k_i \leq x_i$ and $A_n^{k_i} = k_i! C_n^{k_i} = k_i! \binom{n}{k_i}$ Proof : Let us consider :

$$A^{n}_{(x_{1}+x_{2}+\ldots+x_{m})} = (x_{1}+x_{2}+\ldots+x_{m})(x_{1}+x_{2}+\ldots+x_{m-1})\dots(x_{1}+x_{2}+\ldots+x_{m-n+1})$$

Using the distributivity property without resuming the number on the right side of the equation, it follows that for any natural numbers x_i we have :

$$A_{(x_1+x_2+\ldots+x_m)}^n = \sum_{\sum_{i=1}^m k_i = n} C_n^{k_1,k_2,\ldots,k_m} A_{x_1}^{k_1} A_{x_2}^{k_2} \ldots A_{x_m}^{k_m} (2.1)$$

where $C_n^{k_1,k_2,\ldots,k_m}$ are positive integers and k_i are non negative integers satisfaying $\sum_{i=1}^m k_i = n$. We just need to show that.

$$C_n^{k_1,k_2,...,k_m} = \frac{n!}{k_1!k_2!...k_m!} (2.2)$$

We have $n \ge x_i$ for i=1,2,...,m Let's put :

$$P_j(i) = \frac{x_i^j}{x_1 + x_2 + \dots + x_{m-j+1}} (2.3)$$

Where x_i^j is the remaining number of the balls numbered i before the jth draw. $0 \le P_j \le 1$, substituting (2.3) in (1.3) we obtain

$$A_{(x_1+x_2+\ldots+x_m)}^n = \sum_{\sum_{i=1}^m k_i = n} \frac{n!}{k_1!k_2!\ldots k_m!} A_{x_1}^{k_1} A_{x_2}^{k_2} \ldots A_{x_m}^{k_m} (2.4)$$

finally the subtraction of (2.4) from (2.1) gives :

$$\sum_{\sum_{i=1}^{m} k_i = n} \left(C_n^{k_1, k_2, \dots, k_m} - \frac{n!}{k_1! k_2! \dots k_m!} \right) A_{x_1}^{k_1} A_{x_2}^{k_2} \dots A_{x_m}^{k_m} = 0(2.5); A_{x_i}^{k_i} \ge 0$$

since (2.5) is a zero polynomial in m variables, (2.2) follows and the proof is complete.

REFERENCES

[1] A.Dekpe, Mutinomial development.https://vixra.org/combgt/2304

[2] D.Dacunha-Castelle and M.Duflo, exercise de probalites et statistiques. Masson, Paris 1982.

[3] A.Rosalsky, A simple and probabilistic proof of the binomial theorem, Amer.Statist.61 no.2(2007).

[4] K.K. Kataria, A Probabilistic proof of the multinomial the, Amer.Math.Monthly, 123(2016).

[5] K.K.Kataria, Some Probabilistic interpretation of the multinomial theorem, Math.Mag, 90(2017).

[6] S.Abbas, Multinomial theorem Procured from Partial differential equation Applied Mathematics E-notes, 22(2022), 457-459.