Bandlimited Functions and Timelimited Functions on Adeles

Gorou Kaku

E-mail : sabosan@m01.fitcall.net

Abstruct: Let $(\mathcal{F} f)(\eta)$ be the Fourier transform of $f(t)$. We will call the member of

$$
\mathfrak{B}=\{f(x)|(\mathcal{F} f)(\eta)=0, \forall \eta,|\eta|>\Omega\}
$$

"bandlimited". On the other hand, let

$$
D f(t)=\left\{\begin{array}{rll}
f(t) & \cdots & |t| \leq T / 2 \\
0 & \cdots & T / 2<|t|
\end{array}\right.
$$

for $f(t)$. We will call $D f(t)$ "timelimited". We will think of bandlimited functions and timelimited functions on adeles.

0.

Let K / \mathbb{Q} be a number field of degree n. Denote the completion of K at the place \mathfrak{p} of K by $K_{\text {p }}$.

Let $x \in \mathbb{R}$. Then $-x=\{-x\}+n$ where $\{-x\} \in[0,1)$ and $n \in \mathbb{Z}$. Put

$$
\lambda(x)=\{-x\}, \quad x \in \mathbb{R}
$$

Let $x \in \mathbb{Q}_{p}$. Then $x=\{x\}_{p}+n$ where $n \in \mathbb{Z}_{p}$. Namely $\{x\}_{p}$ is the fractional part of a p adic number x. Put

$$
\lambda(x)=\{x\}_{p}, \quad x \in \mathbb{Q}_{p}
$$

Denote the trace of the element ξ of K by

$$
S \xi=\xi+\xi^{(1)}+\cdots+\xi^{(n-1)}
$$

where $\xi, \xi^{(1)}, \cdots, \xi^{(n-1)}$ are conjugates of ξ. If $K=\mathbb{R}$ then $S \xi=\xi$, if $K=\mathbb{C}$ then $S \xi$ $=S(x+i y)=2 x$ and if $K=K_{p} / \mathbb{Q}_{p}$ then $S \xi \in \mathbb{Q}_{p}$.

Definition 0.1. Let k be a local field, namely k is \mathbb{R}, \mathbb{C} or K_{p}. Put

$$
\Lambda(\xi)==_{\operatorname{def}} \lambda(S \xi) \quad \xi \in k
$$

Proposition 0.1. k and \hat{k} are isomorphic by the map

Proposition 0.2. Let $d \xi$ be a Haar measure on k. The Fourier transform of $f(\xi) \in$ $L^{1}(k)$ is defined by

$$
(\mathcal{F} f)(\eta)=\int_{k} f(\xi) e^{-2 \pi i \Lambda(\eta \xi)} d \xi .
$$

The inverse Fourier transform is that

$$
f(\xi)=\int_{k}(\mathcal{F} f)(\eta) e^{2 \pi i \Lambda(\xi \eta)} d \eta .
$$

We will think of the function space $C_{c}{ }^{\infty}\left(K_{\mathfrak{p}}\right)$ of compactly supported, locally constant functions. The space $C_{c}{ }^{\infty}\left(K_{\mathfrak{p}}\right)$ is regarded as the \mathfrak{p}-adic Schwartz-Bruhat space $\mathcal{S}\left(K_{\mathrm{p}}\right)$. We will regard $L^{2}\left(K_{\mathfrak{p}}\right)$ as the completion of $\mathcal{S}\left(K_{\mathrm{p}}\right)$ and we shall think of the Fourier transform of $f(x) \in L^{2}\left(K_{\mathfrak{p}}\right)$. Any function in $C_{c}{ }^{\infty}\left(K_{\mathfrak{p}}\right)$ can be written as the sum of characteristic functions of balls. Set

$$
\mathrm{B}_{\leq N p^{n}}(a)=\left\{x \in K_{\mathfrak{p}}| | x-\left.a\right|_{\mathfrak{p}} \leq N \mathfrak{p}^{n}\right\} .
$$

Denote $\mathrm{B}_{\leq N_{p} p^{n}}(0)$ by $\mathrm{B}_{\leq N p^{n}}$. Let $\operatorname{Supp}(f) \subseteq \mathrm{B}_{\leq N p}$. Choose a suitable n such that $\mathrm{B}_{\leq N p^{n}}$ $\subseteq \mathrm{B}_{\leq N_{p} p}$. Then we can choose a finite set of points $\left\{a_{i}\right\} \subseteq \mathrm{B}_{\leq N_{p} p}$ and we obtain

$$
\mathrm{B}_{\leq N_{p} f}=\bigcup_{i=1}^{k} a_{i}+\mathrm{B}_{\leq N_{p^{p}}} .
$$

We can write $f(x)$ as

$$
f(x)=\sum_{i=1}^{k} c_{i} \vartheta_{\mathrm{B}_{\mathrm{SNSN}_{p}}\left(a_{i}\right)}(x) ; c_{i} \in \mathbb{C}, a_{i} \in K_{\mathfrak{p}} \text { and } n_{i} \in \mathbb{Z}
$$

where $\vartheta_{\mathrm{B}_{\leq N^{n}}\left(a_{i}\right.}(x)$ is the characteristic function of $\mathrm{B}_{\leq N^{n}}\left(a_{i}\right)$. We can regard $f(x)$ as the function of the form

$$
f(x)=\sum_{i=1}^{k} c_{i} \xi_{N p^{n}}\left(x-a_{i}\right) .
$$

where $\xi_{N p^{n}}$ is the the characteristic function of $\mathrm{B} \leq \mathrm{NP}^{n}$.
Let

$$
\mathfrak{B}=\left\{f(x) \in L^{2}\left(K_{\mathfrak{p}}\right)\left|(\mathcal{F} f)(\omega)=0, \forall \omega,|\omega|_{\mathfrak{p}}>\Omega\right\} .\right.
$$

Proposition 1.1. Put $N \mathfrak{p}^{-n} \leq \Omega$. Then $f(x) \in \mathfrak{B}$ has the form

$$
f(x)=\sum_{i=1}^{k} c_{i} \xi_{N p^{n}}\left(x-a_{i}\right) .
$$

Proof. Let $f(x)=\sum_{i=1}^{k} c_{i} \xi_{N_{p^{n}}}\left(x-a_{i}\right)$. Now, $\left(\mathcal{F} \xi_{N p^{n}}\right)(\omega)={N p^{n}} \xi_{\mathrm{pp}^{n}}(\omega)$ and $\left(\mathcal{F} \xi_{N p^{n}}(x-a)\right)(\omega)=e^{-2 \pi i N(a \omega)}\left(\mathcal{F} \xi_{N p^{n}}\right)(\omega)$. We see that

$$
(\mathcal{F} f)(\omega)=\sum_{i=1}^{k} c_{i} e^{-2 \pi i \Lambda(a, \omega)} N p^{n} \xi_{N p^{-n}}(\omega) .
$$

Then $(\mathcal{F} f)(\omega)$ vanishes for $|\omega|_{\mathfrak{p}}>\mathrm{Np}^{-n}$.

Let $N \mathfrak{p}^{d} \leq T<N \mathfrak{p}^{d+1}$ and put

$$
D f(x)=\left\{\begin{array}{ccc}
f(x) & \cdots & |x|_{\mathrm{p}} \leq T \\
0 & \cdots & |x|_{\mathrm{p}}>T
\end{array}\right.
$$

for $f(x) \in L^{2}\left(K_{\mathcal{p}}\right)$. Let

$$
\mathfrak{D}=\left\{D f(x) \mid f(x) \in L^{2}\left(K_{\mathfrak{p}}\right)\right\} .
$$

Proposition 1.2. $D f(x)$ has the form $\sum_{i=1}^{l} c_{i} \xi_{N p^{m}}\left(x-a_{i}\right)$. Here

$$
\mathrm{B}_{\leq N p^{d}}=\coprod_{i=1}^{l} a_{i}+\mathrm{B}_{\leq N p^{m}} .
$$

Proof. We see that

$$
D f(x)=f(x) \xi_{N p^{d}}(x)=\sum_{i=1}^{k} c_{i} \vartheta_{\mathrm{B}_{\mathrm{SNP}^{\prime}}\left(a_{i}\right) \cap \mathrm{B}_{\mathrm{SvNd}}}(x) .
$$

Choose a suitable m such that $\mathrm{B}_{\leq \mathrm{Np}^{m}} \subseteq \mathrm{~B}_{\leq \mathrm{Np}^{d}}$ and choose a finite set of points $\left\{a^{\prime}{ }_{i}\right\}$ $\subseteq \mathrm{B}_{\leq N_{p}{ }^{d} \text {. It will be enable us to write down }}$
 has a form

Here

$$
\sum_{i=1}^{l} c_{i} \vartheta_{\mathrm{B}_{S, p^{m}}\left(a_{i}\right)}(x)=\sum_{i=1}^{l} c_{i} \xi_{S_{p m}^{m}}\left(x-a_{i}\right)
$$

$$
\mathrm{B}_{\leq N p^{d}}=\bigcup_{i=1}^{l} a_{i}+\mathrm{B}_{\leq N \mathrm{~N}^{m}} .
$$

Theorem 1.1. Suppose that $D f(x)$ has the form $\sum_{i=1}^{l} c_{i} \xi_{N_{p^{m}}\left(x-a_{i}\right)}$ and $-d \leq-m \leq$ d. Then the Fourier transform $(\mathcal{F} D f)(\omega)$ vanishes for $|\omega|_{\mathrm{p}}>T$.

Proof. The Fourier transform $(\mathcal{F} D f)(\omega)$ vanishes for $|\omega|_{\mathfrak{p}}>N_{\mathfrak{p}}{ }^{-m}$. Here $m \leq d$. So $-d \leq-m$. Moreover, let $-d \leq-m \leq d$. Then we see that ($\mathcal{F D f})(\omega)$ vanishes for $|\omega|_{\mathfrak{p}}>T$. Namely, $D f(x)$ is a member of \mathfrak{B} of $\Omega=T$.

Definition 2.1. Let $L^{2}{ }_{A}$ be the class of all complex valued functions $f(t)$ defined for $-A \leq t \leq A$ and integrable in absolute square in the interval $(-A, A)$.

Given any $T>0$ and any $\Omega>0$, we can find a countably infinite set of real functions $\psi_{0}(t), \psi_{1}(t), \psi_{2}(t), \cdots$ and a set of real positive numbers

$$
\lambda_{0}>\lambda_{1}>\lambda_{2}>\ldots
$$

with the following properties:
i. The $\psi_{i}(t)$ are bandlimited, i.e. its Fourier transform $\left(\mathcal{F} \psi_{i}\right)(\omega)$ vanishes for $|\omega|>$ Ω; orthogonal on the real line and complete in $\mathfrak{B}=\left\{f(t) \in L^{2}(\mathbb{R}) \mid(\mathcal{F} f)(\omega)=0\right.$, $\forall \omega,|\omega|>\Omega\}$:

$$
\int_{-\infty}^{\infty} \psi_{i}(t) \psi_{j}(t) d t=\left\{\begin{array}{ll}
0 & i \neq j \\
1 & i=j
\end{array} \quad i, j=0,1,2, \cdots\right.
$$

ii. In the interval $-T / 2 \leq t \leq T / 2$, the ψ_{i} are orthogonal and complete in $L^{2}{ }_{T / 2}$:

$$
\int_{-T / 2}^{T / 2} \psi_{i}(t) \psi_{j}(t) d t=\left\{\begin{array}{ll}
0 & i \neq j \\
\lambda_{i} & i=j
\end{array} \quad i, j=0,1,2, \cdots .\right.
$$

iii. For all values of t, real or complex,

$$
\lambda_{i} \psi_{i}(t)=\int_{-T / 2}^{T / 2} \frac{\sin (\Omega(t-s))}{\pi(t-s)} \psi_{i}(s) d s \quad i=0,1,2, \cdots
$$

Both the ψ 's and the λ 's are functions of $c=\Omega T / 2$. In order to make this dependence explicit, we write

$$
\lambda_{i}=\lambda_{i}(c), \psi_{i}(t)=\psi_{i}(c, t), \quad i=0,1,2, \cdots
$$

Put

$$
a_{n}=\left(f, \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}=\int_{-\infty}^{\infty} f(t) \psi_{n}(c, t) d t .
$$

We shall call $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ the Fourier series expansion of $f(t)$. Let $f(t) \in L^{2}(\mathbb{R})$ and let $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ be the Fourier series expansion of $f(t)$:

$$
f(t) \sim \sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t) t \in \mathbb{R}
$$

Since $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ doesn't always converge and it doesn't always coincide with $f(t)$, we shall use " \sim ". We can calculate as follows;

$$
\begin{aligned}
0 & \leq\left\|f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& =\|f(t)\|_{L^{2}(\mathbb{R})}^{2}-2\left(f(t), \sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}+\left(\sum_{n=0}^{N} a_{n} \psi_{n}(c, t), \sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}
\end{aligned}
$$

$$
\begin{aligned}
& =\|f(t)\|_{L^{2}(\mathbb{R})}^{2}-2 \sum_{n=0}^{N}\left(f(t), a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}+\sum_{m, n=0}^{N}\left(a_{m} \psi_{m}(c, t), a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})} \\
& =\|f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}-2 \sum_{n=0}^{N}\left|a_{n}\right|^{2}+\sum_{n=0}^{N}\left|a_{n}\right|^{2} \\
& =\|f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}-\sum_{n=0}^{N}\left|a_{n}\right|^{2} .
\end{aligned}
$$

Thus
and

$$
\|f(t)\|_{L^{2}(\mathbb{R})}^{2} \geq \sum_{n=0}^{N}\left|a_{n}\right|^{2}
$$

$$
\left.\left\|f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(R)}{ }^{2}=\|f(t)\|_{L^{2}(R)}\right)^{2}-\sum_{n=0}^{N} \mid a_{n} \|^{2} .
$$

When $N \longrightarrow \infty$,
and

$$
\|f(t)\|_{L^{2}(\mathbb{R})}^{2} \geq \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}
$$

$$
\lim _{N \rightarrow \infty}\left\|f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2}=\|f(t)\|_{L^{2}(\mathbb{R})}^{2}-\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} .
$$

We can consider

$$
\lim _{N \rightarrow \infty}\left\|f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2}=\left\|f(t)-\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}{ }^{2} .
$$

It must be instructive that we can't show $\left\|f(t)-\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}{ }^{2}=\|f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}$
$-\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}$ directly. Now, we see that finite sums $f_{N}(t)=\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)$ permit approximations to $f(t)$ by bandlimited functions, i.e. $f_{N}(t)$. Let $f(t) \in \mathfrak{B}$

$$
\lim _{N \rightarrow \infty}\left\|f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2}=\|f(t)\|_{L^{2}(\mathbb{R})}^{2}-\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}=0
$$

since the $\psi_{n}(c, t)$ are complete in \mathfrak{B}. So, $\left\{f_{N}(t)\right\}$ converges to $f(t)$ in L^{2} norm. Then $f(t)$ can be integrable term by term, and

$$
\begin{aligned}
\int_{-T / 2}^{T / 2} f(t) \psi_{n}(c, t) d t & =\int_{-T / 2}^{T / 2} \sum_{i=0}^{\infty} a_{i} \psi_{i}(c, t) \psi_{n}(c, t) d t \\
& =\sum_{i=0}^{\infty} \int_{-T / 2}^{T / 2} a_{i} \psi_{i}(c, t) \psi_{n}(c, t) d t=\lambda_{n}(c) a_{n}
\end{aligned}
$$

Proposition 2.1. Let $f(t) \in L^{2}(\mathbb{R})$ and suppose that $f(t)$ is not a bandlimited function. Let $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ be the Fourier series expansion of $f(t)$:

$$
f(t) \sim \sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t), a_{n}=\int_{-\infty}^{\infty} f(t) \psi_{n}(c, t) d t \text { and } t \in \mathbb{R}
$$

Then $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$ and there exists a function $h(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ of \mathfrak{B} but $f(t) \neq$ $h(t)$.

Proof. It holds that $\|f(t)\|_{L^{2}(\mathbb{R})}{ }^{2} \geq \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}$. So $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$ because $\|f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}<$ ∞. Thus there exists a function $h(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ of \mathfrak{B}. But $f(t) \neq h(t)$ since $f(t)$ isn't bandlimited.

An interesting argument is given by D. Slepian and H.O. Pollak. Let $f(t) \in L^{2} T / 2$. Then

$$
f(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t), a_{n}=1 / \lambda_{n}(c) \int_{-T / 2}^{T / 2} f(t) \psi_{n}(c, t) d t
$$

The ψ_{i} are orthogonal and complete in $L_{T / 2}^{2}$,

$$
\|f(t)\|_{L^{2} r_{22}}{ }^{2}=\sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2}<\infty .
$$

Let

$$
h(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t), t \in \mathbb{R} .
$$

Namely $f(t)$ is a piece of a function $h(t)$. Suppose that $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ converges. It means $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. We can consider that $h(t)$ is integrable term by term, then a_{n} $=\int_{-\infty}^{\infty} h(t) \psi_{n}(c, t) d t$. The series $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ is the Fourier series expansion of $h(t)$ and $h(t)$ is bandlimited. On the other hand, if $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ doesn't converge then $\sum_{n=0}^{N}\left|a_{n}\right|^{2}$ grows without bound for increasing N. The function $h(t)$ can not be bandlimited. We shall consider that $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ is also the Fourier series expansion of $h(t)$. Namely, $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ is the "formal" Fourier series expansion of non-bandlimited function $h(t)$. Here $\lambda_{0}(c)>\lambda_{1}(c)>\lambda_{2}(c)>\cdots$. The $\lambda_{n}(c)$ approach zero rapidly for sufficient large n. Thus it may be happen that $\sum_{n=0}^{N}\left|a_{n}\right|^{2}$ grows without bound for increasing N but $\sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2}$ converges.

For any function $f(t) \in L^{2}(\mathbb{R})$, put

$$
D f(t)=\left\{\begin{array}{rll}
f(t) & \cdots & |t| \leq T / 2 \\
0 & \cdots & T / 2<|t|
\end{array} .\right.
$$

$D f(t)$ isn't bandlimited in general. We will think of approximations to $D f(t)$ by bandlimited functions $f_{N}(t)=\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)$. Here

$$
\begin{aligned}
&\left\|D f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}{ }^{2} \\
&=\|D f(t)\|_{L^{2}(\mathbb{R})}^{2}-2\left(D f(t), \sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}+\left(\sum_{n=0}^{N} a_{n} \psi_{n}(c, t), \sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})} \\
&\left.=\|D f(t)\|_{L^{2}(\mathbb{R})}^{2}-2 \sum_{n=0}^{N}\left(D f(t), a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}+\sum_{m=0}^{N}+a_{m} \psi_{m}(c, t), a_{n} \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})} \\
&=\|D f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}-2 \sum_{n=0}^{N} \bar{a}_{n}\left(D f(t), \psi_{n}(c, t)\right)_{L^{2}(\mathbb{R})}+\sum_{n=0}^{N}\left|a_{n}\right|^{2} .
\end{aligned}
$$

Let $f(t) \in L_{T / 2}^{2}$. Then

$$
f(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t), a_{n}=1 / \lambda_{n}(c) \int_{-T / 2}^{T / 2} f(t) \psi_{n}(c, t) d t .
$$

Now

$$
\int_{-T / 2}^{T / 2} f(t) \psi_{n}(c, t) d t=\int_{-\infty}^{\infty} D f(t) \psi_{n}(c, t) d t .
$$

Thus

$$
\int_{-\infty}^{\infty} D f(t) \psi_{n}(c, t) d t=\lambda_{n}(c) a_{n} .
$$

We can obtain the Fourier series expansion of $D f(t)$:

$$
D f(t) \sim \sum_{n=0}^{\infty} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t) .
$$

We shall adopt $\sum_{n=0}^{\infty} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t)$. Then

$$
\left\|D f(t)-\sum_{n=0}^{N} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}{ }^{2}=\|D f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}-\sum_{n=0}^{N} \lambda_{n}(c)^{2}\left|a_{n}\right|^{2} .
$$

When $N \longrightarrow \infty$,

$$
\left\|D f(t)-\sum_{n=0}^{\infty} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}{ }^{2}=\|D f(t)\|_{L^{2}(\mathbb{R})}^{2}-\sum_{n=0}^{\infty} \lambda_{n}(c)^{2}\left|a_{n}\right|^{2} .
$$

Here,

$$
\|D f(t)\|_{L^{2}(\mathbb{R})}^{2}=\int_{-\infty}^{\infty} D f(t) \overline{D f(t)} d t=\int_{-T / 2}^{T / 2} f(t) \overline{f(t)} d t=\|f(t)\|_{L^{2} \pi / 2}^{2} .
$$

The ψ_{i} are orthogonal and complete in $L_{T / 2}^{2}$, so $\|f(t)\|_{L_{T r 2}}{ }^{2}=\sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2}<\infty$. Thus

$$
\|D f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}=\sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2} .
$$

We can say that

$$
\left\|D f(t)-\sum_{n=0}^{\infty} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2}=\sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2}-\sum_{n=0}^{\infty} \lambda_{n}(c)^{2}\left|a_{n}\right|^{2},
$$

from the proposition 2.1, $\sum_{n=0}^{\infty} \lambda_{n}(c)^{2}\left|a_{n}\right|^{2}<\infty$, so

$$
=\sum_{n=0}^{\infty} \lambda_{n}(c)\left(1-\lambda_{n}(c)\right)\left|a_{n}\right|^{2} .
$$

Consider the proposition 2.1, we see that $\sum_{n=0}^{\infty} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t)$ is bandlimited but $D f(t) \neq \sum_{n=0}^{\infty} \lambda_{n}(c) a_{n} \cdot \psi_{n}(c, t)$.

On the other hand, there exists another function

$$
h(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t) \quad t \in \mathbb{R} .
$$

We will adopt it. Then

$$
\left\|D f(t)-\sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}{ }^{2}=\|D f(t)\|_{L^{2}(\mathbb{R})}{ }^{2}-2 \sum_{n=0}^{N} \lambda_{n}(c)\left|a_{n}\right|^{2}+\sum_{n=0}^{N}\left|a_{n}\right|^{2} .
$$

Therefore,

$$
\begin{aligned}
\left\|D f(t)-\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2} & =\|D f(t)\|_{L^{2}(\mathbb{R})}^{2}-2 \sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2}+\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \\
& =\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}-\sum_{n=0}^{\infty} \lambda_{n}(c)\left|a_{n}\right|^{2} .
\end{aligned}
$$

(i) If $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ converges then

$$
\left\|D f(t)-\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(\mathbb{R})}^{2}=\sum_{n=0}^{\infty}\left(1-\lambda_{n}(c)\right)\left|a_{n}\right|^{2} .
$$

Here $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ is bandlimited but $D f(t) \neq \sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$.
(ii) If $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$ doesn't converge then $\sum_{n=0}^{N}\left|a_{n}\right|^{2}$ grows without bound for increasing N and

$$
\left\|D f(t)-\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)\right\|_{L^{2}(R)}{ }^{2} \text { diverges. }
$$

So $D f(t) \neq \sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$.

Theorem 2.1. $D f(t)$ can't have the form $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$. Namely $D f(t)$ can't be bandlimited even in a sense "formally".

Proof. Suppose that $D f(t)$ has the form $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t)$. Then

$$
f(t)=\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, t), a_{n}=1 / \lambda_{n}(c) \int_{-T / 2}^{T / 2} f(t) \psi_{n}(c, t) d t .
$$

for $f(t) \in L^{2} T / 2$ since the restricted $D f(t)$ to the interval $[-T / 2, T / 2]$ is $f(t)$. However it is impossible for $D f(t)$ to have such a form according to the above argument.

Let $f(z) \in L^{2}(\mathbb{C})$. We will think of the Fourier transform

$$
(\mathcal{F} f)(\omega)=\int_{\mathbb{C}} f(z) e^{-2 \pi i \Lambda(\omega z)} d z
$$

Set $z=x+i y$ and $d z=2 d x d y$. Then

$$
(\mathcal{F} f)(\omega)=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x+i y) e^{-2 \pi i \Lambda(\omega(x+i y))} d x d y
$$

Let $\omega=\mu+i v . \Lambda(\omega(x+i y))=-2(\mu x-v y) \bmod 1$. Now $\Lambda(\omega x)=-2 \mu x \bmod 1$ and $\Lambda(\omega i y)=2 \nu y$ mod 1 . It holds that $e^{-2 \pi i \Lambda(\omega(x+i y))}=e^{-2 \pi i \Lambda(\omega x)} e^{-2 \pi i \Lambda(\omega i y))}$. We can compute as follows;

$$
\begin{aligned}
(\mathcal{F} f)(\omega) & =2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x+i y) e^{-2 \pi i \Lambda(\omega x)} e^{-2 \pi i \Lambda(\omega i y)} d x d y \\
& =2 \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(x+i y) e^{-2 \pi i \Lambda(i \omega y)} d y\right) e^{-2 \pi i \Lambda(\omega x)} d x
\end{aligned}
$$

Denote $\int_{-\infty}^{\infty} f(x+i y) e^{-2 \pi i \Lambda(i \omega y)} d y$ by $\left(\mathcal{F}_{y} f\right)(i \omega)$. We denote $(\mathcal{F} f)(\omega)$ as follows;

$$
\begin{aligned}
(\mathcal{F} f)(\omega) & =2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x+i y) e^{-2 \pi i \Lambda(\omega x)} e^{-2 \pi i \Lambda(\omega i y)} d x d y \\
& =2 \int_{-\infty}^{\infty}\left(\mathcal{F}_{y} f\right)(i \omega) e^{-2 \pi i \Lambda(\omega x)} d x=2\left(\mathcal{F}_{x}\left(\mathcal{F}_{y} f\right)(i \omega)\right)(\omega)
\end{aligned}
$$

Definition 3.1.

$$
\mathfrak{B}=\left\{f(x+i y) \in L^{2}(\mathbb{C})\left|\left(\mathcal{F}_{x}\left(\mathcal{F}_{y} f\right)(i \omega)\right)(\omega)=0, \forall \omega,|\omega|>\Omega\right\}\right.
$$

We shall call the member of \mathfrak{B} "bandlimited".

Lemma 3.1. Fix a positive real number Ω. Let $c=T / 2 \cdot 2 \Omega$. The Fourier transform $\int_{-\infty}^{\infty} \psi_{n}(c, t) e^{-2 \pi i \Lambda(\omega t)} d t$ of $\psi_{n}(c, t)$ vanishes for $|\omega|>\Omega$.

Proof. Let $\omega=\mu+i v$. Then

$$
\int_{-\infty}^{\infty} \psi_{n}(c, t) e^{-2 \pi i \Lambda(\omega t)} d t=\int_{-\infty}^{\infty} \psi_{n}(c, t) e^{-2 \pi i \Lambda((\mu+i v) t)} d t=\int_{-\infty}^{\infty} \psi_{n}(c, t) e^{-2 \pi i(-2 \mu) t} d t
$$

Thus $\int_{-\infty}^{\infty} \psi_{n}(c, t) e^{-2 \pi i \Lambda(\omega t)} d t$ vanishes for $|2 \operatorname{Re} \omega|>2 \Omega$. If $|\omega| \leq \Omega$ then $|\operatorname{Re} \omega| \leq \Omega$. Thus if $|\operatorname{Re} \omega|>\Omega$ then $|\omega|>\Omega$. Since $\int_{-\infty}^{\infty} \psi_{n}(c, t) e^{-2 \pi i \Lambda(\omega t)} d t$ vanishes for $|\operatorname{Re} \omega|>\Omega$, it vanishes for $|\omega|>\Omega$.

Lemma 3.2. If $\left(\mathcal{F}_{x} f\right)(\omega)$ vanishes for $|\omega|>\Omega$ then $f(z)=f(x+i y)$ has the Fourier series expansion $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, x)$. If $f(z)=f(x+i y)$ has the Fourier series expansion $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, x)$ then $\left(\mathcal{F}_{x} f\right)(\omega)$ vanishes for $|\omega|>\Omega$.

Proof. \quad Since $f(z) \in L^{2}(\mathbb{C})$; the function $f(x+i y)$, as a function of x, is considered to be integrable in absolute square. Suppose that $\left(\mathcal{F}_{x} f\right)(\omega)$ vanishes for $|\omega|>\Omega$, namely $f(x+i y)$ is "bandlimited". From the lemma, $\psi_{n}(c, x)$ is also "bandlimited". Therefore $f(x+i y)$ has the Fourier series expansion:

$$
\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, x), \quad a_{n}=\int_{-\infty}^{\infty} f(x+i y) \psi_{n}(c, x) d x .
$$

Suppose that $f(z)=f(x+i y)$ has the Fourier series expansion $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, x)$. Then $\left(\mathcal{F}_{x} f\right)(\omega)$ vanishes for $|\omega|>\Omega$ since $\int_{-\infty}^{\infty} \psi_{n}(c, x) e^{-2 \pi i(\omega(\omega x)} d x$ of $\psi_{n}(c, x)$ vanishes for $|\omega|>\Omega$.

Since $f(z) \in L^{2}(\mathbb{C})$; the function $\left(\mathcal{F}_{y} f\right)(i \omega)$, as a function of x, is considered to be integrable in absolute square. According to the above arguments, we can say as follows;

Proposition 3.1. Let $f(z) \in L^{2}(\mathbb{C})$.
$f(z) \in \mathfrak{B}$ if and only if $\left(\mathcal{F}_{y} f\right)(i \omega)$ has its Fourier series expansion $\sum_{n=0}^{\infty} a_{n} \psi_{n}(c, x)$.

For any function $f(z) \in L^{2}(\mathbb{C})$, put

$$
D f(z)=\left\{\begin{array}{ccc}
f(z) & \cdots & |z| \leq T / 2 \\
0 & \cdots & T / 2<|z|
\end{array} .\right.
$$

Set $z=x+i y$ and think of $D f(x+i y)$. Consider it as a function of x. If $T / 2<|x|$ then $T / 2<|z|$. Thus $D f(x+i y)$ vanishes for $|x|>T / 2$. Here

$$
\left(\mathcal{F}_{y} D f\right)(i \omega)=\int_{-\infty}^{\infty} D f(x+i y) e^{-2 \pi i(i(i o y)} d y .
$$

It also vanishes for $|x|>T / 2$. We can apply the case of \mathbb{R} to this case.

Theorem 3.1. $D f(z)$ can't be bandlimited even in a sense "formally".

The ring of adeles is defined as

$$
\mathbb{A}_{K}=\prod_{p<\infty}^{\prime} K_{\mathfrak{p}} \times \prod_{\mathfrak{p} \mid \infty} K_{p}
$$

Denote the ring of integers of $K_{\mathfrak{p}}$ by $\mathcal{O}_{\mathfrak{p}}$.

$$
\prod_{p<\infty}^{\prime} K_{\mathfrak{p}}=\left\{\left(r_{\mathfrak{p}}\right) \in \prod_{\mathfrak{p}<\infty} K_{\mathfrak{p}} \mid r_{\mathfrak{p}} \in \mathcal{O}_{\mathfrak{p}} \text { for almost all } \mathfrak{p}\right\} .
$$

The number field K has d_{1} real conjugate fields and $2 d_{2}$ imaginary conjugate fields. Here $n=d_{1}+2 d_{2}$. The field K has $d_{1}+d_{2}$ infinite places. Set

$$
K_{\mathfrak{p}}=\mathbb{R} \text { for } d_{1} \text { infinite places and } K_{\mathfrak{p}}=\mathbb{C} \text { for } d_{2} \text { infinite places. }
$$

Therefore

$$
\prod_{\mathfrak{p} \mid \infty} K_{\mathfrak{p}}=\mathbb{R}^{d_{1}} \times \mathbb{C}^{d_{2}} \cong \mathbb{R}^{n}
$$

Denote the set of infinite places by $S_{\infty}=\left\{\mathfrak{p}_{\infty_{1}}, \cdots, \mathfrak{p}_{\infty_{d_{1}}} ; \mathfrak{p}_{\infty_{d_{1}+1}}, \cdots, \mathfrak{p}_{\infty_{d}}\right\}$.
For each of places \mathfrak{p}, let $d r_{p}$ be a Haar measure on $K_{\mathfrak{p}}$ such that

$$
\int_{\mathcal{O}_{\mathfrak{p}}} d r_{\mathfrak{p}}=1 \text { for almost all } \mathfrak{p}
$$

Then we can write a Haar measure $d r$ on \mathbb{A}_{K} like $d r=\Pi_{p} d r_{p}$. Let $f(r)$ be a complex valued function on \mathbb{A}_{K}. For each of places \mathfrak{p}, if $f_{\mathfrak{p}}\left(\mathcal{O}_{\mathfrak{p}}\right)=\{1\}$ for almost all \mathfrak{p}, then we can write $f(r)$ like $f(r)=\prod_{\mathfrak{p}} f_{\mathfrak{p}}\left(r_{\mathfrak{p}}\right)$ similarly.

Definition 4.1.

$$
\begin{aligned}
& L^{1}\left(\mathbb{A}_{K}\right) \\
& =\left\{f(r)=\prod_{\mathfrak{p}} f_{\mathfrak{p}}\left(r_{\mathfrak{p}}\right) \mid f_{\mathfrak{p}}\left(r_{\mathfrak{p}}\right) \in L^{1}\left(K_{\mathfrak{p}}\right) \text { and } f_{\mathfrak{p}}\left(\mathcal{O}_{\mathfrak{p}}\right)=\{1\} \text { for almost all } \mathfrak{p}\right\} .
\end{aligned}
$$

Proposition 4.1. $\quad \mathbb{A}_{K}$ and $\hat{\mathbb{A}}_{K}$ are isomorphic by the map

Since $\Lambda_{p}\left(\mathcal{O}_{\mathfrak{p}}\right)=\{0\}$,

$$
e^{2 \pi i \Lambda(\eta r)}=\exp \left(2 \pi i \sum_{\mathfrak{p}} \Lambda_{\mathfrak{p}}\left(\eta_{\mathfrak{p}} r_{\mathfrak{p}}\right)\right)=\prod_{\mathfrak{p}} e^{2 \pi i \Lambda_{\mathfrak{p}}\left(\eta_{\mathfrak{p}} r_{\mathfrak{p}}\right)}
$$

Proposition 4.2. The Fourier transform of $f(r) \in L^{1}\left(\mathbb{A}_{K}\right)$ is defined by

$$
(\mathcal{F} f)(\eta)=\int_{\mathbb{A}_{K}} f(r) e^{-2 \pi i \Lambda(\eta r)} d r
$$

The inverse Fourier transform is that

$$
f(r)=\int_{\mathbb{A}_{K}}(\mathcal{F} f)(\eta) e^{2 \pi i \Lambda(r \eta)} d \eta
$$

It holds that

Denote the Schwartz-Bruhat space on \mathbb{A}_{K} by $\mathcal{S}\left(\mathbb{A}_{K}\right)$. We define a function of the space as linear combinations of the product $\prod_{\mathfrak{p}} f_{\mathfrak{p}}\left(r_{\mathfrak{p}}\right)$ where $f_{\mathfrak{p}_{\alpha_{i}}} \in \mathcal{S}\left(\mathbb{R}^{m}\right), f_{\mathfrak{p}} \in \mathcal{S}\left(K_{\mathfrak{p}}\right)$ and $f_{\mathfrak{p}}$ is the characteristic function $\xi_{N p^{0}}$ of \mathcal{O}_{p} for all but finitely many \mathfrak{p}. We will regard $L^{2}\left(\mathbb{A}_{K}\right)$ as the completion of $\mathcal{S}\left(\mathbb{A}_{K}\right)$. Let S be some finite set $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{k}\right\} \cup S_{\infty}$. Set

$$
\mathbb{A}_{S}=\prod_{p e S} K_{\mathrm{p}} \times \prod_{\mathrm{p} \in S} \mathcal{O}_{\mathrm{p}} .
$$

Let $\mathbb{A}^{S}=\prod_{p e S}\{1\} \times \prod_{p e S} \mathcal{O}_{p}$. \mathbb{A}^{S} is a compact subgroup of $\mathbb{A s}$. We shall identify K_{p} $(\mathfrak{p}<\infty)$ with $K_{\mathfrak{p}} \times \prod_{p, \in p}\{1\}$. Then we can decompose \mathbb{A}_{s} as follows;

$$
\mathbb{A}_{\mathrm{s}}=\prod_{\mathrm{p} \in \mathrm{~S}} K_{\mathrm{p}} \times \mathbb{A}^{\mathrm{S}}
$$

We see that

$$
\mathbb{A}_{K}=\cup_{\mathrm{S}} \mathbb{A}_{\mathrm{s}}
$$

For any function $f(r) \in L^{2}\left(\mathbb{A}_{K}\right)$, we will consider it as a function on \mathbb{A}_{s}.
Let $f(r) \in L^{2}\left(\mathbb{A}_{K}\right)$, as a function on \mathbb{A}_{s},

$$
f(r)=\prod_{p e S} f_{p}\left(r_{\mathrm{p}}\right) \times \prod_{p e s} \xi_{N p^{p}}\left(r_{\mathrm{p}}\right) .
$$

The Fourier transform of $f(r)$ will be

$$
(\mathcal{F} f)(\eta)=\prod_{p e S}\left(\mathcal{F} f_{p}\right)\left(\eta_{\mathrm{p}}\right) \times \prod_{\mathrm{peS}}\left(\mathcal{F} \xi_{\mathrm{Np}}\right)\left(\eta_{\mathrm{p}}\right)
$$

Let $r \in \mathbb{A}_{K}$. We will think of $r=\left(r_{\mathfrak{p}}\right)_{\mathfrak{p} \leq \infty} \in \mathbb{A}_{\mathbf{S}}$ where $\mathrm{S}=\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{k}\right\} \cup \mathrm{S}_{\infty}$. Its absolute value will be

$$
\begin{aligned}
& |r|=\left.\left|r_{p_{1}}\right| p_{1} \cdots\left|r_{p_{k}}\right|\right|_{p_{k}} \cdot \prod_{p \in S}\left|r_{p_{p}}\right|_{p} \cdot \prod_{p_{m}=s_{a}}\left|r_{p_{p_{k}}}\right|_{p_{p}} \\
& =N \mathfrak{p}_{1}^{n_{1}} N \mathfrak{p}_{2}{ }^{n_{2}} \cdots N \mathfrak{p}_{k}^{n_{k}} \cdot \prod_{\mathrm{veS}} N \mathfrak{p}^{n_{0}} \cdot \prod_{\mathfrak{p}_{\mathrm{e}} \in \mathrm{~S}_{\mathrm{o}}} t_{\mathrm{p}_{\mathrm{o}}}
\end{aligned}
$$

where $n_{i} \in \mathbb{Z}, n_{\mathfrak{p}} \leq 0$ for $\mathfrak{p} \notin S$ and $t_{p_{\infty}} \in \mathbb{R}$. If $|r| \neq 0$ then we will see that $n_{\mathfrak{p}}=0$ for almost places $\mathfrak{p} \notin$. Let

$$
\mathfrak{B}=\left\{f(r) \in L^{2}\left(\mathbb{A}_{K}\right)|(\mathcal{F} f)(\eta)=0,|\eta|>\Omega\} .\right.
$$

Definition 4.2. For a given $\Omega>0$, let $\Omega=N \mathfrak{p}_{1}{ }^{n_{1}} \cdots N \mathfrak{p}_{k}{ }^{n_{k}} \cdot \prod_{p e S} S p^{n_{0}} \cdot \Pi_{p_{\infty} \in S_{\infty}} t_{p_{p}}$. If $\left(\mathcal{F} f_{\mathfrak{p}_{i}}\right)\left(\eta_{\mathfrak{p}_{i}}\right)=0$ for $\eta_{\mathfrak{p}_{i}}\left|\eta_{\mathfrak{p}_{i}}\right| \mathfrak{p}_{i}>N \mathfrak{p}_{i}^{n_{i}}, \quad\left(\mathcal{F} f_{\mathfrak{p}}\right)\left(\eta_{\mathfrak{p}}\right)=0$ for $\eta_{\mathfrak{p}}\left|\eta_{\mathfrak{p}}\right|_{\mathfrak{p}}>N \mathfrak{p}^{n_{\mathfrak{p}}} \mathfrak{p} \notin \mathrm{S}$ and $\left(\mathcal{F} f_{p_{\infty}}\right)\left(\eta_{p_{\infty}}\right)=0$ for $\eta_{p_{\infty}}\left|\eta_{p_{\infty}}\right| p_{\infty}>t_{p_{\infty}}$ then $f(r) \in \mathfrak{B}$.

Let

$$
\mathfrak{D}=\left\{f(r) \in L^{2}\left(\mathbb{A}_{K}\right)|f(r)=0,|r|>T\} .\right.
$$

 Put

$$
D f_{p_{i}}\left(r_{p_{i}}\right)=\left\{\begin{array}{ccc}
f_{p_{i}}\left(r_{p_{i}}\right) & \cdots\left|r_{p_{p}}\right|_{p_{1}} \leq N p_{i}^{h_{i}} \\
0 & \cdots\left|r_{p_{i}}\right|_{p_{i}}>N p_{i}^{h_{i}}
\end{array}, \quad D f_{p}\left(r_{p}\right)=\left\{\begin{array}{ccc}
f_{p}\left(r_{p}\right) & \cdots\left|r_{p}\right|_{p} \leq N p^{h_{p}} \\
0 & \cdots\left|r_{p}\right|_{p}>N \mathfrak{p}^{p_{p}}
\end{array}\right.\right.
$$

and

Then $\prod_{\mathrm{p}} D f_{\mathrm{p}}\left(r_{\mathrm{p}}\right) \in \mathfrak{D}$.

Let $T=N \mathfrak{p}_{1}{ }^{h_{1}} \cdots N \mathfrak{p}_{k}{ }^{h_{k}} \cdot \prod_{p e S} N \mathfrak{p}^{h_{0}} \cdot \prod_{p_{\sim} \in S_{\mathrm{e}}} s_{\mathrm{p}_{\boldsymbol{\sim}}}$ and let $D f(r) \in \mathfrak{D}$ for the given T.
(1) For the places of $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{k}\right\} \subseteq S$,

$$
D f_{p_{i}}\left(r_{p_{i}}\right)=\sum_{g=1}^{l_{i}} c_{g} \xi_{N p_{p} m_{i}}\left(r_{\mathrm{p}_{i}}-a_{g}\right)
$$

and

$$
\left(\mathcal{F D f _ { p _ { i } }}\right)\left(\eta_{p_{i}}\right)=\sum_{g=1}^{l} c_{g} e^{-2 \pi i \lambda\left(a_{g} \eta_{i}\right)} N p^{m_{i}} \xi_{N p_{i}, m_{i}}\left(\eta_{p_{i}}\right) .
$$

$\left(\mathcal{F D f \mathfrak { p } _ { i }}\right)\left(\eta_{\mathfrak{p}_{i}}\right)$ vanishes for $\left|\eta_{\mathfrak{p}_{i}}\right|>N \mathfrak{p}_{i}^{-m_{i}}$.
(2) For the places $\mathfrak{p} \notin S$,

$$
D f_{p}\left(r_{p}\right)=\left\{\begin{array}{lll}
\xi_{N_{p}}^{h_{p}}\left(r_{p}\right) & \cdots & h_{p} \leq 0 \\
\xi_{N_{p}}\left(r_{p}\right) & \cdots & h_{p}>0 .
\end{array}\right.
$$

Put $\left\{h_{p}\right\}=h_{\mathfrak{p}}$ if $h_{\mathfrak{p}} \leq 0$ and $\left\{h_{\mathfrak{p}}\right\}=0$ if $h_{\mathfrak{p}}>0$. Then
$\left(\mathcal{F D} f_{\mathfrak{p}}\right)\left(\eta_{\mathfrak{p}}\right)=N \mathfrak{p}^{\left\{h_{\mathfrak{p}}\right\}} \xi_{N_{p}-\left\{h_{\mathfrak{p}}\right\}}\left(\eta_{\mathfrak{p}}\right)$ and it vanishes for $\left|\eta_{\mathfrak{p}}\right|>N \mathfrak{p}^{-\left\{h_{p}\right\}}$.
(3) For the places $\mathfrak{p}_{\infty} \in \mathrm{S}_{\infty}$,
$D f_{p_{\infty}}\left(r_{p_{\infty}}\right)$ can't be bandlimited. Only $0\left(r_{p_{\infty}}\right)$ can be bandlimited.
Then
$(\mathcal{F} 0)\left(\eta_{\mathfrak{p}_{\infty}}\right)$ vanishes for $\left|\eta_{p_{\infty}}\right|>t_{p_{\infty}}$ where $t_{p_{\infty}}$ is an arbitrary positive real number.

Let

$$
D f(t)=D f_{p_{1}}\left(r_{p_{1}}\right) \cdots D f_{\mathfrak{p}_{k}}\left(r_{p_{k}}\right) \cdot \prod_{p \in S} D f_{p}\left(r_{p}\right) \cdot \prod_{p_{s} \in S_{w}} 0\left(r_{p_{\boldsymbol{w}}}\right) .
$$

The Fourier transform of $D f(r)$ vanishes for $|\eta|>\Omega$ where $\Omega=N \mathfrak{p}_{1}{ }^{-m_{1}} \cdots N \mathfrak{p}_{k}{ }^{-m_{k}}$. $\prod_{p e S} \backslash p^{-\left\{h_{p}\right\}} \cdot \prod_{p_{p} \in S_{\infty}} t_{p_{\rho}}$.

Appendix

Here we define the Fourier transform of $f(t)$ as

$$
(\mathcal{F} f)(\omega)=\mathrm{F}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t .
$$

The Fourier inverse transform is

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(\mathcal{F} f)(\omega) e^{i \omega t} d \omega .
$$

cf. Define $(\mathcal{F} f)(\omega)=\mathrm{F}(2 \pi \omega)$. Then

$$
(\mathcal{F} f)(\omega)=\mathrm{F}(2 \pi \omega)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i \omega t} d t .
$$

and

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{F}(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{F}(2 \pi \omega) e^{i 2 \pi \omega t} d 2 \pi \omega=\int_{-\infty}^{\infty}(\mathcal{F f})(\omega) e^{2 \pi i \omega t} d \omega .
$$

The functions $\mathrm{S}_{0 n}(c, t)$ are called "angular prolate spheroidal functions". They are real for real t, are continuous functions of c for $0 \leq c$ and can be extended to be entire functions of the complex variable t. They are orthogonal in $(-1,1)$ and are complete in $L^{2}(-1,1)$. The functions $\mathrm{R}_{0 n}{ }^{(1)}(c, t)$ are called "radial prolate spheroidal functions". They differ from angular prolate spheroidal functions only by a real scale factor,

$$
\mathrm{R}_{0 n}{ }^{(1)}(c, t)=k_{n}(c) \mathrm{S}_{0 n}(c, t)
$$

We have the following equations;

$$
\begin{align*}
\frac{2 c}{\pi} \mathrm{R}_{0 n}{ }^{(1)}(c, 1)^{2} \mathrm{~S}_{0 n}(c, t) & =\int_{-1}^{1} \frac{\sin c(t-s)}{\pi(t-s)} \mathrm{S}_{0 n}(c, s) d s, \tag{1}\\
2 i^{n} \mathrm{R}_{0 n}{ }^{(1)}(c, 1) \mathrm{S}_{0 n}(c, t) & =\int_{-1}^{1} e^{i c t s} \mathrm{~S}_{0 n}(c, s) d s \quad n=0,1,2, \cdots . \tag{2}
\end{align*}
$$

Set $\lambda_{n}(c)=\frac{2 c}{\pi}\left(\mathrm{R}_{o n}^{(1)}(c, 1)\right)^{2}$ and set $u_{n}(c)^{2}=\int_{-1}^{1} \mathrm{~S}_{0 n}(c, t)^{2} d t$. We define

$$
\psi_{n}(c, t)=\frac{\sqrt{\lambda_{n}(c)}}{u_{n}(c)} \mathrm{S}_{0 n}\left(c, \frac{2 t}{T}\right) .
$$

Properties ii. follow from definitions and the orthogonality and completeness of $\mathrm{S}_{\mathrm{on}}(c, t)$ in $(-1,1)$.

From the equation (1),

$$
\frac{2 c}{\pi} \mathrm{R}_{0 n}{ }^{(1)}(c, 1)^{2} \mathrm{~S}_{0 n}\left(c, \frac{2 t}{T}\right)=\int_{-1}^{1} \frac{\sin c\left(\frac{2 t}{T}-s\right)}{\pi\left(\frac{2 t}{T}-s\right)} \mathrm{S}_{0 n}(c, s) d s .
$$

We have

$$
\int_{-1}^{1} \frac{\sin c\left(\frac{2 t}{T}-s\right)}{\pi\left(\frac{2 t}{T}-s\right)} \operatorname{Son}_{0 n}(c, s) d s=\int_{-1}^{1} \frac{\sin c \cdot \frac{2}{T}\left(t-\frac{T}{2} \cdot s\right)}{\pi \frac{2}{T}\left(t-\frac{T}{2} \cdot s\right)} \operatorname{Son}_{0 n}(c, s) d s .
$$

Put $\frac{T}{2} \cdot s=\sigma$. Then $d s=\frac{2}{T} d \sigma . \quad-T / 2 \leq \sigma \leq T / 2$ since $-1 \leq s \leq 1$. So

$$
\begin{array}{rlr}
\int_{-1}^{1} \frac{\sin c \cdot \frac{2}{T}\left(t-\frac{T}{2} \cdot s\right)}{\pi \frac{2}{T}\left(t-\frac{T}{2} \cdot s\right)} \mathrm{S}_{0 n}(c, s) d s & =\int_{-T / 2}^{T / 2} \frac{\sin c \cdot \frac{2}{T}(t-\sigma)}{\pi \cdot \frac{2}{T}(t-\sigma)} \mathrm{S}_{0 n}\left(c, \frac{2 \sigma}{T}\right) \frac{2}{T} d \sigma & \\
& =\int_{-T / 2}^{T / 2} \frac{\sin \Omega(t-\sigma)}{\pi(t-\sigma)} \mathrm{S}_{0 n}\left(c, \frac{2 \sigma}{T}\right) d \sigma & c=\Omega \frac{T}{2}
\end{array}
$$

We obtain

$$
\frac{2 c}{\pi} \mathrm{R}_{0 n}{ }^{(1)}(c, 1)^{2} \mathrm{~S}_{0 n}\left(c, \frac{2 t}{T}\right)=\int_{-T / 2}^{T / 2} \frac{\sin \Omega(t-\sigma)}{\pi(t-\sigma)} \mathrm{S}_{0 n}\left(c, \frac{2 \sigma}{T}\right) d \sigma .
$$

Multiplying both the sides by $\frac{\sqrt{\lambda_{n}(c)}}{u_{n}(c)}$,

$$
\lambda_{n}(c) \psi_{n}(c, t)=\int_{-T / 2}^{T / 2} \frac{\sin \Omega(t-\sigma)}{\pi(t-\sigma)} \psi_{n}(c, \sigma) d \sigma .
$$

The assertion of iii. is established.
From the equation (2),

$$
\begin{aligned}
2 i^{n} \mathrm{R}_{0 n}{ }^{(1)}(c, 1) \mathrm{S}_{0 n}\left(c, \frac{2 t}{T}\right) & =\int_{-1}^{1} e^{i c \cdot \frac{2 t}{T} \cdot s} \mathrm{~S}_{0 n}(c, s) d s \\
& =\int_{-1}^{1} e^{i \Omega t s} \mathrm{~S}_{0 n}(c, s) d s \quad c=\Omega \frac{T}{2} .
\end{aligned}
$$

Put $s=\frac{\omega}{\Omega}$. Then $d s=\frac{1}{\Omega} d \omega . \quad-\Omega \leq \omega \leq \Omega$ since $-1 \leq \frac{\omega}{\Omega} \leq 1$. So

$$
\int_{-1}^{1} e^{i \Omega t s} S_{o n}(c, s) d s=\int_{-\Omega}^{\Omega} e^{i \Omega t \cdot \frac{\omega}{\Omega}} \operatorname{Son}\left(c, \frac{\omega}{\Omega}\right) \frac{1}{\Omega} d \omega=\frac{1}{\Omega} \int_{-\Omega}^{\Omega} e^{i o t} \operatorname{Son}\left(c, \frac{\omega}{\Omega}\right) d \omega .
$$

Here

$$
\mathrm{S}_{0 n}\left(c, \frac{\omega}{\Omega}\right)=\mathrm{S}_{0 n}\left(c, \frac{2 \cdot \frac{\omega T}{2 \Omega}}{T}\right)
$$

We have

$$
2 i^{n} \mathrm{R}_{0 n}^{(1)}(c, 1) \mathrm{S}_{0 n}\left(c, \frac{2 t}{T}\right)=\frac{1}{\Omega} \int_{-\Omega}^{\Omega} e^{i \omega t} \mathrm{~S}_{0 n}\left(c, \frac{2 \cdot \frac{\omega T}{2 \Omega}}{T}\right) d \omega
$$

Thus

$$
2 i^{n} \Omega \mathrm{R}_{0 n}{ }^{(1)}(c, 1) \mathrm{S}_{0 n}\left(c, \frac{2 t}{T}\right)=\int_{-\Omega}^{\Omega} e^{i o t} \mathrm{~S}_{0 n}\left(c, \frac{2 \cdot \frac{\omega T}{2 \Omega}}{T}\right) d \omega
$$

Multiplying both the sides by $\frac{1}{2 \pi} \frac{\sqrt{\lambda_{n}(c)}}{u_{n}(c)}$,

$$
\frac{i^{n} \Omega \mathrm{R}_{0 n}^{(1)}(c, 1)}{\pi} \psi_{n}(c, t)=\frac{1}{2 \pi} \int_{-\Omega}^{\Omega} e^{i \omega t} \psi_{n}\left(c, \frac{\omega T}{2 \Omega}\right) d \omega .
$$

Since $\mathrm{R}_{0 n}{ }^{(1)}(c, 1)=\sqrt{\frac{\lambda_{n}(c) \pi}{2 c}}$,

$$
\frac{i^{n} \Omega \mathrm{R}_{0 n}^{(1)}(c, 1)}{\pi}=i^{n} \sqrt{\frac{\Omega^{2} \cdot \lambda_{n}(c) \pi}{\pi^{2} \cdot 2 c}}=i^{n} \sqrt{\frac{\Omega \lambda_{n}(c)}{\pi T}} \quad c=\Omega \frac{T}{2} .
$$

Thus it turns out that

$$
i^{n} \sqrt{\frac{\Omega}{\pi T}} \sqrt{\lambda_{n}(c)} \psi_{n}(c, t)=\frac{1}{2 \pi} \int_{-\Omega}^{\Omega} e^{i \omega t} \psi_{n}\left(c, \frac{\omega T}{2 \Omega}\right) d \omega
$$

We have

$$
\psi_{n}(c, t)=\frac{1}{2 \pi} \int_{-\Omega}^{\Omega} e^{i \omega t}\left(i^{-n} \frac{1}{\sqrt{\lambda_{n}(c)}} \sqrt{\frac{\pi T}{\Omega}} \psi_{n}\left(c, \frac{\omega T}{2 \Omega}\right)\right) d \omega
$$

It means that

$$
\mathcal{F}\left(\psi_{n}(c, t)\right)(\omega)=\left\{\begin{array}{ccc}
i^{-n} \frac{1}{\sqrt{\lambda_{n}(c)}} \sqrt{\frac{\pi T}{\Omega}} \psi_{n}\left(c, \frac{\omega T}{2 \Omega}\right) & \cdots & |\omega| \leq \Omega \\
0 & \cdots & |\omega|>\Omega
\end{array}\right.
$$

Namely $\psi_{n}(c, t)$ are bandlimited. The orthogonality and completeness of $\mathrm{S}_{0 n}(c, t)$ in $(-1,1)$ leads the orthogonality and completeness of $\mathrm{S}_{0 n}\left(c, \frac{\omega}{\Omega}\right)$ in $(-\Omega, \Omega)$. Therefore $\psi_{n}\left(c, \frac{\omega T}{2 \Omega}\right)$ are orthogonal and complete in $(-\Omega, \Omega)$. Since $i^{-n} \frac{1}{\sqrt{\lambda_{n}(c)}} \sqrt{\frac{\pi T}{\Omega}} \psi_{n}\left(c, \frac{\omega T}{2 \Omega}\right)$ is the Fourier transform of $\psi_{n}(c, t)$, we can show the orthogonality and the completeness of $\psi_{n}(c, t)$ in \mathfrak{B} by Parseval's theorem. The statement of i . is established.

References

[1] D. Slepian and H.O. Pollak, Prolate Spherodial Wave Functions, Fourier Analysis and Uncertainty - I, https://mast.queensu.ca/~driegert/papers/pswf 1.pdf.
[2] H. J. Landau and H.O. Pollak, Prolate Spherodial Wave Functions, Fourier Analysis and Uncertainty - II, https://mast.queensu.ca/~driegert/papers/pswf_2.pdf.
[3] J. T. Tate, Fourier Analysis in Number Fields and Hecke's Zeta-Functions, Trans. Lecture Notes Tohoku Univ. 2004.
[4] Mårten Nilsson, The Vladimirov Heat Kernel in the Program of Jorgeson-Lang, https://www.diva-portal.org/smash/get/diva2:1230266/FULLTEXT01.pdf.

