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Abstract

Under very general hypotheses, the behavior of dynamical systems described by a linear first
order differential equation is independent of the initial condition.

Theorem 1 Hp.
Jta(t)y=p5(t), (1)

where the coefficients a(t) and [ (t) are functions of class C* (X) being X = [tg, +00). Moreover
a (t) and each of its primitives diverges positively for t — +oo.
Th. The general integral of the (1) is
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for which the asymptotic behavior of the general integral is
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Dimostrazione. We apply the standard procedure for integrating (1). Precisely, an integral factor
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Multiplying the first and second sides of (1) by I (¢):
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from which
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where K is a constant of integration. It follows that by integrating, the constant of integration will
not appear as incorporated in K. Therefore the general integral is

y(t,K) = Ke W 4 ) /5 (t) et (4)



having defined v (f) = [ a/(t) dt. Performing an integration by parts in the integral a second member

of the (4): '
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hence the assertion:
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since by hypothesis 7 (t) t—+> +00. ®m
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From the theorem just proved it follows that yq (¢) is the so-called transitional term, while y; (t)
expresses the steady state behaviour. The latter does not depend on K, and therefore on the initial
condition y (ty) = yo.



