n-Sphere Factoring of the Seven Charmed Lambda Baryons

D.G. Grossman

May 4, 2023

Here's more evidence showing subatomic particles may be made of higher dimensional matter. The mass of the first charmed lambda baryon factors as a multiple of an 8 -sphere surface volume that is the sum of three large powers of two: 16384, 8192, and 4096. Just a coincidence? Maybe, but the seventh charmed lambda baryon also factors similarly, as a multiple of an 8-sphere surface volume that is the sum of two large powers of two: 32768, and 4096. The multiplier found in the first factoring can be expressed as 32768-4096 and the second multiplier can be expressed as $32768+4096$, which is quite a symmetrical relationship, and quite hard to explain if the factorings are each just random coincidences. Included with the factorings of the seven charmed lambda baryons are an explanation of how to do n-sphere factoring, and a tentative description of the higher dimensional structure of hadrons.

Contents

1.0 Introduction
2.0 How to Do n-Sphere Factoring
3.0 n-Sphere Factoring Spectrum of the Charmed Lambda Baryons
4.0 Individual n-Sphere Factorings of the Charmed Lambda Baryons
4.1 ^c+
$4.2 \Lambda c(2595)+$
$4.3 \Lambda c(2625)+$
$4.4 \Lambda c(2765)+$
$4.5 \Lambda c(2860)+$
$4.6 \quad \Lambda \mathrm{c}(2880)+$
$4.7 \Lambda c(2940)+$
5.0 Conclusion
6.0 References

APPENDIX A Quark Content Possibilities by Factoring Unit Used
APPENDIX B n-Sphere Surface Volume Formulae
APPENDIX C Values of n-Sphere Surface Volume Units of Factorization

1.0 Introduction

According to the n-sphere theory of hadron structure, there are no point particles (quarks) orbiting around one another inside hadrons. As a matter of fact, according to this theory, there is nothing 'inside' the 3D interior of hadrons. 100% of the matter of which hadrons are composed is found in the n-dimensional space that is immediately adjacent to the 3D location of the hadron. The surface of hadrons is not the surface of a 3D object, as is commonly thought. It is where the hadron's matter, which is entirely in higher dimensional space, and has the shape of the surface of an n-sphere, intersects our 3D space (aka the Higgs field, or surface of the universe's hypersphere). This architecture is possible because 3D space has zero thickness in the fourth and higher dimensional directions, so n-space is immediately adjacent to every point in our 3D space. It is assumed that half of a hadron's mass is on one side of the surface of the universe's hypersphere (the Higgs field), and half is on the other side. (You may be thinking at this point that if higher dimensional space is all around us, why can't we travel into higher dimensional space? It's because 'we' are made of hadrons, which are attached somehow to the surface of the universe's hypersphere (the Higgs field), so we cannot travel there. Only the matter of which hadrons are made - quark matter - can travel there, and for some reason it doesn't travel far into n-space - only one or two femtometers. Why that is, is currently unknown, but this is the picture n-sphere factoring is painting.)

2.0 How to Do n-Sphere Factoring

The n-sphere theory of hadron structure assumes all the matter of which hadrons are composed is higher dimensional matter, and occupies the surface volume of n-spheres of various dimensions, depending on the quark content of the hadron. Quarks are not considered particles, but volumes of n-sphere surfaces filled with matter. The up quark corresponds to matter filling the surface volume of a 2 -sphere, the down quark corresponds to matter filling the surface volume of a 3-sphere, etc. Here's a list of the quarks and their corresponding n-sphere surface volume formulae.

Quarks	n-Sphere Surface	
	Volu	e Formulae
u	S2 =	$2 \pi^{1} \mathrm{r}^{1}$
d	S3 =	$4 \pi^{1} \mathrm{r}^{2}$.
S	S4 =	$2 \pi^{2} \mathrm{r}^{3}$
c	S5 =	(8/3) $\pi^{2} \mathrm{r}^{4}$
b	S6 =	$\pi^{3} r^{5}$
t	S7 =	(16/15) $\pi^{3} \mathrm{r}^{6}$

Note that this quark model can be extended indefinitely. Using these quark definitions, how does one factor a hadron with nsphere surface volumes? If the quark content of the hadron is known, multiply the n-sphere surface volume formula associated with each quark in the hadron together along with Planck's constant's coefficient ($\mathrm{h}=6.62607015$). Also set $\mathrm{r}=1$. The value derived is the unit of factorization needed to factor that hadron, and any other hadrons with the same quark content.

Here's an example. The charmed mesons (D mesons) have quark content cd. The first charmed meson, $\mathbf{D +}$, has an experimental mass of $1870.0+-0.5 /+-1.0 \mathrm{MeV}$. The unit of factorization needed to factor $\mathrm{D}+$ is $\mathbf{c d h}=\left(8 / 3 \pi^{2} \mathrm{r}^{4}\right)\left(4 \pi^{1} \mathrm{r}^{2}\right) \mathrm{h}=$ (32/3 $\left.\pi^{3} r^{6}\right) h=2191.464153 \mathrm{MeV}$. (The value of ' r ' was set equal to 1 , when calculating the value of cdh.) Dividing that into 1870.0 one gets 0.853310787 . Multiplying that by 900 you get 767.979 , which probably should be 768 , because the experimental mass is not exact. So, the D+ meson factors as:

$$
\underline{768} \mathbf{~ c d h}=1870.0494 \mathrm{MeV}
$$

900

Notice that the factoring unit just derived for factoring cd mesons, $\mathbf{c d h}=\left(32 / 3 \pi^{3} r^{6}\right) h$, has the same powers of π and r in it as $\mathbf{S 7 h}=\left(16 / 15 \pi^{3} r^{6}\right)$ h. Both have (π, r) powers of $(3,6)$. The $\mathbf{S} 7 \boldsymbol{h}$ unit is just ten times smaller than the cdh unit. Except for that they are identical, so S7h can be used interchangeably with cdh. This is true of all units of factorization that are derived by multiplying the associated n-sphere surface volume formulae of quarks together. For any combination of quarks multiplied together (that results in π and r powers found in an n-sphere surface volume formula) a single n-sphere surface volume formula having the same π and r powers can be used instead. To find out which n-sphere surface volume formula can be used to factor which quark combinations see Appendix A, Quark Content Possibilities by Factoring Unit Used. Here is D+ factored with S7h:

7680 S7h $=1870.0494 \mathrm{MeV}$
900

The numerator of the factoring fraction is the sum of four consecutive powers of two: $7680=4096+2048+1024+512$, which adds to the credibility that this is the correct factoring for this meson.

3.0 n－Sphere Factoring Spectrum of the Charmed Lambda Baryons

	S8h／2700 Spectrum Step Size	$\begin{aligned} & \text { gering } / \text { udc } \\ & \text { ge }=652.7 \\ &=20.3\end{aligned}$	ompatible $03 \mathrm{MeV} / \mathrm{C}^{\text {a }}$（ $90 \mathrm{MeV} / \mathrm{C}^{2}$		
	n	$\text { n } \frac{S 8 \mathrm{~h}}{\underline{2700}}$	ExpMass	Error	Baryon
－－－7（4096）＝	112 （256）	2284.6964	2284.7	$0.6 / 0.7$	\c＋
｜	113 （256）	2305.0954			
｜	114 （256）	2325.4945			
।	115 （256）	2345.8936			
।	116 （256）	2366.2927			
I	117 （256）	2386.6917			
｜	118 （256）	2407.0908			
1	119 （256）	2427.4899			
4095	120 （256）	2447.8890			
｜	121 （256）	2468.2880			
，	122 （256）	2488.6871			
｜	123 （256）	2509.0862			
，	124（256）	2529.4853			
｜	125 （256）	2549.8843			
｜	126 （256）	2570.2834			
।	127 （256）	2590.6825	2590.49	calc＇d	人c（2595）+
－－8（4096）＝	128 （256）	2611.0816			
।	＋192	2626.3808	2626.6	$0.5 / 1.5$	人c（2625）+
｜	129 （256）	2631.4806			
｜	130 （256）	2651.8797			
｜	131 （256）	2672.2788			
｜	132 （256）	2692.6778			
｜	133 （256）	2713.0769			
I	134 （256）	2733.4760			
1	135 （256）	2753.8751			
4096	＋160	2766.6244	2766.6	2.4	人c（2765）+
।	136 （256）	2774.2741			
｜	137 （256）	2794.6732			
｜	138 （256）	2815.0723			
，	$139(256)$	2835.4714			
1	140 （256）	2855.8704	2856.1	$2.0 / 1.7$	人c（2860）+
1	141 （256）	2876.2695			
，	＋ 64	2881.3692	2881.2	$0.2 / 0.4$	人c（2880）+
，	142 （256）	2896.6686			
｜	143 （256）	2917.0677			
－－－ $9(4096)=$	144 （256）	2937.4667	2938.0	1.3	人c（2940）+

As can be seen from their locations at the top and bottom of the chart above，the experimental masses of the first and seventh charmed－lambda baryons factor with multipliers（n＇s）that are multiples of large powers of two．The first， $\boldsymbol{\Lambda c}^{\mathbf{+}}$ ， factors as 7 （4096） $\mathrm{S} 8 \mathrm{~h} / 2700 \mathrm{MeV}$ ，and the seventh，$\Lambda \mathrm{c}(2940)+$ ，factors as $9(4096) \mathrm{S} 8 \mathrm{~h} / 2700 \mathrm{MeV}$ ．The two multipliers－ $7(4096)$ and $9(4096)$－can also be expressed as $(32768-4096)$ and $(32768+4096)$ ．So，the experimentalists have found masses representing two of the three most significant factorings over the mass range shown above．Why haven＇t they found a mass representing the third－the $8(4096) \mathrm{S} 8 \mathrm{~h} / 2700$ factoring－which is actually the－most－significant－factoring in the mass range，because its multiplier is one large power of two： $8(4096)=32768=2^{15}$ ？I don＇t know the answer to that，but two charmed lambda baryons have been found close by on either side of its location（ 2611.0816 MeV ）．One is about 20 MeV less massive（ $\mathbf{\Lambda c} \mathbf{c}(\mathbf{2 5 9 5})+$ ），and the other is about 15 MeV more massive（ $\mathbf{\Lambda c} \mathbf{c} \mathbf{(2 6 2 5) +)}$ ．

Following along the lines of the question of why a representative mass of the most significant factoring－8（4096）S8h／2700 $=2611.0816 \mathrm{MeV}$－hasn＇t been discovered yet is the bigger question of why only seven lambda baryons have been found over the explored range out of a possible 32 at the 256 S8h／2700 factoring level， 64 at the $128 \mathrm{~S} 8 \mathrm{~h} / 2700$ level， 128 at the 64 S8h／2700 level，or 256 at the $32 \mathrm{~S} 8 \mathrm{~h} / 2700$ factoring level？A limitation of experimental uncertainty（error）can＇t be the explanation for this because uncertainty can be as small as 0.2 MeV approximately，whereas the difference between masses that are multiples of $32 \mathrm{~S} 8 \mathrm{~h} / 2700$ equals 2.5498 MeV ，so all 256 of the masses that factor as multiples of $32 \mathrm{~S} 8 \mathrm{~h} / 2700$ should have been found if the size of experimental uncertainty was the only obstacle to their discovery．

Details of the factorings of the seven charmed-lambda baryons that have been discovered so far are given in the next section. Also in the next section, the mass-differences that have been experimentally determined between the $\boldsymbol{\Lambda c}+$ baryon and baryons \#2, \#3, and \#4 are factored. That was done to get exact values for those mass-differences in order to check the consistency between baryon mass measurements. For some unexplained reason, PDG has determined the masses of the charmed lambda baryons \#2, \#3, and \#4 by adding the mass-difference between each of them and $\Lambda \mathbf{c} \boldsymbol{+}^{\prime}$ s mass to $\Lambda \mathbf{c} \boldsymbol{+}^{\prime}$ s mass. This works if the correct mass for $\boldsymbol{\Lambda c +}$ is used in the calculation, but it may not have been.

Prior to 2006, PDG’s best guess (FIT) as to $\Lambda c{ }^{+}$' s mass was 2284.9 MeV . Starting in 2006, after a more accurate measurement from BABAR of the $\Lambda \mathbf{c}+{ }^{\prime}$ s mass was reported, PDG changed their best guess (FIT) of $\Lambda \mathbf{c}+{ }^{\prime}$ s mass to 2286.46 MeV. They probably shouldn't have changed their FIT, because 2286.46 factors better with S10h than with S8h, meaning the 2286.46 mass is likely the mass of a dsc (Xi) baryon rather than a udc (Lambda) baryon. (S10h factors hadrons of dsc quark content, while S8h factors hadrons of udc quark content.) As a check, one can take the mass-difference between charmed lambda baryon \#2 and $\Lambda \mathbf{c +}$, and add that to the assumed $\boldsymbol{\Lambda} \mathbf{c}+$ mass, then check to see if that mass factors better with S8h or S10h. (Note: The mass-differences of baryons \#2, \#3, and \#4 with $\Lambda c+$ all factor with S8h, so another mass that factors with S8h, when added to one of those mass-differences, should also factor with S8h.) If one assumes $\Lambda \mathbf{c}+$ has a mass of 2286.46 MeV , and the \#2 - \#1 mass-difference (305.79 MeV) is added to it, one gets 2592.25 MeV , which does not factor well with S8h. However, if one assumes $\Lambda c+$ has a mass of 2284.9 MeV and the \#2-\#1 mass-difference (305.79 MeV) is added to it, one gets 2590.69 MeV , which does factor well with S8h, which is more evidence that the 2286.46 MeV mass is not the mass of a charmed-lambda baryon. The same check can be performed with the \#3-\#1 massdifference, which also gives a result showing that the 2286.46 MeV mass is probably not the mass of a $\Lambda \mathbf{c}$ baryon. Charmed baryon \#4's FIT mass was also determined by PDG using its mass-difference from $\Lambda \mathbf{c}+$, but for unknown reasons that FIT mass is correct.

In summary, two of the three FIT masses that were determined by PDG by adding the baryon's mass-difference with $\Lambda \mathbf{c +}$ back to $\Lambda c+$ are likely wrong, because PDG added the mass-differences to 2286.46 MeV instead of 2284.7 MeV . Here's a recap. Why one of the three is right is unknown. PDG does not explain their FIT calculations in detail.

Mass-Difference FITs

| \# | $\underline{\text { Baryon }}$ | $\underline{\text { 2022 PDG FIT (MeV) }}$ | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | $\Lambda c(2595)+$ | 2592.25 | wrong - should be 2590.69 |
| 3 | $\Lambda c(2625)+$ | 2628.11 | wrong - should be 2626.55 |
| 4 | $\Lambda c(2765)+$ | 2766.6 | right |

4.0 Individual n-Sphere Factorings of the Charmed Lambda Baryons

The following seven pages show the n-sphere factorings of each charmed lambda baryon. The quark content of a charmed lambda baryon is udc. That quark content is $\mathbf{S 8 h}$ compatible, and all factorizations on the following pages have been done using $\mathbf{S 8 h} / \mathbf{2 7 0 0}$ as the unit of factorization, except for the factoring of the new $\Lambda c+$ mass -2286.46 MeV - which has been factored with S10h to prove it is more likely a charmed Xi baryon, rather than a charmed Lambda baryon.

1. $\boldsymbol{\Lambda}_{\mathrm{C}}{ }^{+}$MASS

| VALUE (MeV) | | | |
| :--- | :--- | :--- | :--- | :--- |
| 2284.9 | 0.6 | | PDG FIT before 2006 |
| 2286.46 | 0.14 | PDG FIT 2006-2023 | |
| 2284.7 | $0.6 / 0.7$ | best EXPMASS before 2006 | |

FACTORING of 2284.9 (Old FIT)
S8h Factoring Implies a udc (Lambda) Baryon

FACTORING	W/ PARSED NUMERATOR	THRMASS (MeV)
28672 S8h $=$	$(\underline{16384}+8192+4096)$	$\mathrm{S} 8 \mathrm{~h}=2284.6963$
2700	2700	
28672 S8h $=$	$(\underline{214}+213+212)$	$\mathrm{S} 8 \mathrm{~h}=2284.6963$
2700	2700	

FACTORING of 2286.46 (New FIT)
S10h Factoring Implies a dsc (Xi) Baryon
FACTORING $\quad \frac{\text { W/ PARSED NUMERATOR }}{700}$
$\frac{9472}{700} \mathrm{~S} 10 \mathrm{~h}=\frac{(8192+1024+256)}{700} \mathrm{~S} 8 \mathrm{~h}=2286.4820$
$\frac{9472}{700} \mathrm{~S} 10 \mathrm{~h}=\frac{(213+210+28)}{700} \quad \mathrm{~S} 8 \mathrm{~h}=2286.4820$

Prior to 2006, PDG’s FIT for this baryon's mass was 2284.9 MeV . In 2006 PDG changed their FIT to 2286.46 because of a new measurement from BABAR. As can be seen from the factorings above, the earlier 2284.9 MeV mass estimate factors convincingly with S8h, which is compatible with udc (charmed lambda baryon) quark content, whereas the 2286.46 MeV mass factors convincingly with S10h, which is compatible with dsc (charmed xi baryon) quark content. In light of this, the correct mass of the $\Lambda \mathrm{c}+$ is most likely 2284.696 MeV , not 2286.46 MeV .

The factoring of 2284.7 MeV can also be expressed as ($\mathbf{3 2 7 6 8} \mathbf{- 4 0 9 6)} \mathbf{S 8} \mathbf{h} / \mathbf{2 7 0 0}$, which is symmetrical to the factoring of the seventh charmed lambda baryon $\mathbf{(3 2 7 6 8}+\mathbf{4 0 9 6}) \mathbf{S 8 h} / \mathbf{2 7 0 0}$. The charmed lambda baryon exactly midway between them, the one that factors as $\mathbf{3 2 7 6 8} \mathbf{~ S 8 h} / \mathbf{2 7 0 0}$, with mass 2611.0815 MeV , has not been discovered yet. According to n-sphere factoring logic, masses with factorings involving large powers of two should be formed, and therefore observed more often than masses with factorings involving smaller powers of two. Why a mass of this factoring, $\mathbf{3 2 7 6 8} \mathbf{~ S 8 h} / \mathbf{2 7 0 0}$, which involves a very large power of two $\left(32768=2^{15}\right)$, hasn't been observed yet is unknown.

2. $\Lambda_{c}(2595)^{+}$MASS

The mass is obtained from the $\Lambda c(2595)+-\Lambda c+$ mass-difference measurements.
VALUE (MeV)
2592.25 0.28 PDG FIT Result from adding the mass-difference (305.79 MeV) to 2286.46
2590.49

Result from adding the mass-difference (305.79 MeV) to 2284.7

FACTORING of 2590.49 MeV
FACTORING $\frac{\text { W/PARSED NUMERATOR }}{\text { THRMASS (MeV) }}$
$\frac{32512}{2700} \mathrm{~S} 8 \mathrm{~h}=\frac{\left(\frac{32768-256) S 8 h}{2700}=2590.6824\right.}{32512} \mathrm{~S} 8 \mathrm{~h}=\frac{(215-28)}{2700} \mathrm{~S} 8 \mathrm{~h}=2590.6824$

人c(2595)+ - $\Lambda \mathbf{c}+$ MASS-DIFFERENCE
VALUE (MeV)
305.79 0.14/0.20

FACTORING of 305.79 MeV

```
FACTORING W/ PARSED NUMERATOR THRMASS (MeV)
    3840 S8h = (\underline{2048+1024+512+256)S8h = 305.9861}
    2700 2700
```

The mass that PDG currently reports for this baryon is very likely too big by the difference between the new and old values of the $\Lambda c+$'s mass. In 2006 PDG increased its FIT (its best guess) of the mass of the $\Lambda c+$ by 1.56 Mev , from 2284.9 MeV to 2286.46 MeV, because of a new better measurement by BABAR. The new measurement was more accurate, (2286.46 +0.14 MeV), but unknown to PDG it factors as a charmed-Xi baryon, not a charmed-Lambda baryon.

3. $\Lambda_{\mathrm{c}}(2625)^{+}$MASS

The mass is obtained from the $\Lambda c(2625)+-\Lambda c+$ mass-difference measurements.
VALUE (MeV)
2628.11 0.19 PDG FIT
2626.55

Result from adding the mass-difference (341.65 MeV) to 2286.46
Result from adding the mass-difference (341.65 MeV) to 2284.9

FACTORING of 2626.55 MeV

FACTORING	W/ PARSED NUMERATOR	THRMASS (MeV)
$\underline{32960} \mathrm{~S} 8 \mathrm{~h}=(\underline{32768+128+64}) \mathrm{S} 8 \mathrm{~h}=2626.3808$		
2700	2700	
$\underline{32960} \mathbf{S 8 h}$	$(\underline{215}+27+26) S 8$	2626.380
2700	2700	

人c(2625)+ - $\Lambda \mathbf{c}+$ MASS-DIFFERENCE

VALUE (MeV)
$341.65 \quad 0.13$ PDG FIT

FACTORING of 341.65 MeV
FACTORING $\quad \frac{\text { W/ PARSED NUMERATOR }}{\text { THRMASS (MeV) }}$
$\frac{4288}{\mathbf{2 7 0 0}} \mathbf{S 8 h}=\frac{(\mathbf{4 0 9 6 + 1 2 8 + 6 4}) \mathbf{S 8 h}=341.6844}{2700}$

PDG states in its listing for this baryon that its FIT mass (2628.11 MeV) was obtained from the $\Lambda c(2625)+-\Lambda c+$ massdifference measurements, which means the mass-difference (341.65 MeV) had to be added to 2286.46 MeV .

$$
\frac{\text { New Mass of } \Lambda \mathrm{c}^{+}}{2286.46 \mathrm{MeV}}+\frac{\text { MassDiff }}{341.65 \mathrm{MeV}}=2628.11 \mathrm{MeV}
$$

That result (2628.11 MeV) doesn't factor as well with S8h as the mass which results from adding the mass-difference to the old value of $\Lambda c+$'s mass: 2284.9 MeV .

$$
\frac{\text { Old Mass of } \Lambda c^{+}}{2284.9 \mathrm{MeV}}+\frac{\text { MassDiff }}{341.65 \mathrm{MeV}}=2626.55 \mathrm{MeV}
$$

This value for $\Lambda c(2625)+$'s mass (2626.55 MeV) factors very convincingly with S8h, which is more evidence that the true value of $\Lambda c+$'s mass is close to the old PDG value (2284.9 MeV), not the new value, 2286.46 MeV , currently maintained by PDG.

4. $\Lambda_{c}(2765)^{+}$MASS

The mass is obtained from the $\Lambda c(2765)+-\Lambda c+$ mass-difference measurement.

```
VALUE (MeV)
2766.6 2.4 PDG FIT
2764.8
```

2766.56 Result from adding the mass-difference (480.1 MeV) to 2286.46
Result from adding the mass-difference (480.1 MeV) to 2284.7

FACTORING of 2266.56 MeV

FACTORING $\frac{\text { W/ PARSED NUMERATOR }}{}$ 27720 $S 8 h$$=\frac{(32768+1024+512+256+128+32) S 8 h}{2700}=2766.6244$	
$\frac{34720}{2700} \mathrm{~S} 8 \mathrm{~h}=$	$\frac{(215+210+29+28+27+25)}{2700}$

人c(2765)+ - $\Lambda \mathbf{c}+$ MASS-DIFFERENCE

```
VALUE (MeV) 480.12 .4
```


FACTORING of 480.1 MeV

The FIT mass of this baryon was also calculated from the mass-difference between itself and $\boldsymbol{\Lambda} \mathbf{c}+$, and if PDG added its mass-difference to the new value of $\boldsymbol{\Lambda} \mathbf{c}^{+}$, one would expect it to be off from the n-sphere calculated mass by 1.56 MeV , but it isn't. PDG's fit mass (2766.6 MeV) is very close to the n-sphere factored mass (2766.6244 MeV). Why this FIT mass is right and the previous two, which were calculated the same way supposedly - using mass-differences - are wrong, is unknown. PDG does not explain its FIT procedure in detail.

5. $\Lambda_{c}(2860)^{+}$MASS

VALUE (MeV)
2856.1 2.0/1.7 PDG FIT

FACTORING of 2856.1 MeV

$\Lambda_{c}(2860)^{+}-\Lambda_{c}^{+}$MASS-DIFFERENCE (Theoretical)

```
MASS OF \Lambdac(2860)+ = 35840 S8h/2700 = 2855.8704 MeV
MASS OF \Lambda \ + = - 28672 S8h/2700 = - 2284.6963 MeV
MASS-DIFFERENCE = 7168 S8h/2700 = 571.1741 MeV
7168=4096 + 2048 + 1024
7168 = 2 12 + 2 21 + 2 20
7168=7(1024)
```

This baryon factors at the $1024 \mathrm{~S} 8 \mathrm{~h} / 2700$, or $2^{10} \mathrm{~S} 8 \mathrm{~h} / 2700$ blocksize, which is quite a significant factoring. Only two other charmed lambda baryons factor with a larger blocksize. They are the first and seventh baryons, both of which factor with the $4096 \mathrm{~S} 8 \mathrm{~h} / 2700$, or $2^{12} \mathrm{~S} 8 \mathrm{~h} / 2700$ blocksize.

No experimental mass-difference between itself and $\Lambda \mathrm{c}+$ was reported by PDG for this baryon, but its theoretical massdifference is easily calculated to be $7168 \mathrm{~S} 8 \mathrm{~h} / 2700$, or 7(1024) S8h/2700.
6. $\Lambda_{c}(2880)^{+}$MASS

VALUE (MeV)
2881.63 0.24 PDG FIT
2882.46 Result from adding the mass-difference (596 MeV) to 2286.46
2880.7 Result from adding the mass-difference (596 MeV) to 2284.7

FACTORING of 2881.63 MeV

FACTORING	W/ PARSED NUMERATOR	THRMASS (MeV)
36160 S8h $=$	$68+2048+1024+256+$	2881.3692
2700	2700	
36160 S8h $=$	$(215+211+210+28+26)$	2881.3692
2700	2700	

人c(2880)+ $-\Lambda \mathbf{c}+$ MASS-DIFFERENCE
VALUE (MeV)
596 1/2

FACTORING of 596 MeV

$\frac{\text { FACTORING }}{}$	$\frac{\text { W/ PARSED NUMERATOR }}{2700}$
$\frac{7488}{270}=\left(\frac{4096+2048+1024+256+64}{S 8}\right)$	S8h $=596.6729$

This baryon factors to a $\mathbf{6 4 ~ S 8 h / 2 7 0 0}$ blocksize, which is moderately significant. The value of $64 \mathrm{~S} 8 \mathrm{~h} / 2700$ is 5.0997 MeV approximately.

```
7. }\mp@subsup{\Lambda}{c}{}(2940)+\quad MAS
VALUE (MeV)
2939.6 1.3/1.5 PDG AVG
2938.0 1.3
2939.8 1.3/1.0
2944.8 3.5/2.5
```

FACTORING of 2938.0, 2939.8, 2944.8 MeV

		COMPARISON THR \& EXP		
FACTORING	W/ PARSED NUMERATOR	THRMASS	EXPMASS	ERROR
$\underline{36864}$ S8h $=$	$(32768+4096)$	$\mathrm{S} 8 \mathrm{~h}=2937.4667$	2938.0	1.3
2700	2700			
$\underline{36896}$ S8h $=$	$(32768+4096+32)$	$\mathrm{S} 8 \mathrm{~h}=2940.0166$	2939.8	1.3/1.0
2700	2700			
36960 S8h =	$2768+4096+64+$	$S 8 \mathrm{~h}=2945.1163$	2944.8	$3.5 / 2.5$
2700	2700			

One of the experimental masses reported by PDG for this baryon (2938.0 MeV) is very close to the theoretical value $(32768+4096) S 8 h / 2700=2937.4667 \mathrm{MeV}$. The other two experimental masses reported for this baryon factor as being close to $32 \mathrm{~S} 8 \mathrm{~h} / 2700 \mathrm{MeV}$, and $96 \mathrm{~S} 8 \mathrm{~h} / 2700 \mathrm{MeV}$ more massive.

5.0 Conclusion

Two of the seven charmed lambda baryons factor with a very large power of two blocksize: $\mathbf{4 0 9 6} \mathbf{~ S 8 h} / \mathbf{2 7 0 0}$.
The first factors as 7 times that, and the seventh charmed lambda baryon factors as $\mathbf{9}$ times that.

1st	Λc^{+}	$=7(4096 \mathrm{~S} 8 \mathrm{~h} / 2700) \mathrm{MeV}$
7th	$\Lambda \mathrm{c}(2940)+$	$=9(4096 \mathrm{~S} 8 \mathrm{~h} / 2700) \mathrm{MeV}$

These two factorings especially, but also the five other factorings that factor convincingly with smaller blocksizes, give credibility to the belief that hadrons are made of higher dimensional matter.

6.0 References

Quark Content Possibilities by Factoring Unit Used

$\frac{\text { Factoring Unit }}{\text { If....... }}$
Mass factors with
$\mathrm{u} \quad \mathrm{S} 2 \mathrm{~h}=(1,1)$
d $\quad \mathrm{S} 3 \mathrm{~h}=(1,2)$
s S4h $=(2,3) \quad \mathrm{du}$
c $\quad \mathrm{S} 5 \mathrm{~h}=(2,4) \mathrm{dd}$
b \quad S6h $=(3,5)$ ddu ds, uc
t \quad S7h $=(3,6) \quad$ ddd \quad dc
v \quad S8h $=(4,7)$ dddu dds, udc sc , db, ut
$\mathrm{w} \quad$ S9h $=(4,8)$ dddd ddc cc, dt
x \quad S10h $=(5,9) \quad$ ddddu ddds dsc, ddb cb, st
y \quad S11h $=(5,10)$ ddddd dddc dcc ct

$$
\text { z } \quad \text { S12h }=(6,11) \quad \text { dddddu } \quad \text { dddds } \quad \text { ddcs } \quad \text { ccs, dcb } \quad \text { bt, cv }
$$

$$
\text { S13h }=(6,12) \quad \text { dddddd } \quad \text { ddddc ddcc } \quad \text { ccc } \quad \text { t t }
$$

S14h $=$	$(7,13)$	ddddddu	ddddds	dddcs	dccs	ccb	tv
S15h $=$	$(7,14)$	ddddddd	dddddc	dddcc	dccc	cct	tw

| S16h $=(8,15)$ | dddddddu | dddddds | ddddcs | ddccs | cccs | btc | vw | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S17h $=(8,16)$ | dddddddd | ddddddc | ddddcc | ddccc | cccc | tt s | ww | | |
| S18h $=(9,17)$ | ddddddddu | ddddddds | dddddcs | dddccs | dcccs | cccb | t tb | wx | |
| S19h $=(9,18)$ | ddddddddd | dddddddc | dddddcc | dddccc | dcccc | ccct | t t t | wy | |
| S20h $=(10,19)$ | dddddddddu | dddddddds | ddddddcs | ddddccs | ddcccs | ccccs | cccv | tt w | xy |
| S21h $=(10,20)$ | dddddddddd | ddddddddc | ddddddcc | ddddccc | ddcccc | ccccc | cccw | ttx | yy |

All quark combinations for the factoring units from S4h to S9h are shown. For the factoring units from S10h to S21h not all possible quark combinations are shown, especially for the triquarks (qqq, baryons) and the diquarks (qq, mesons). This was done so the table wouldn't look too complex and potentially confusing.

The parentheses enclosing two integers separated by a comma that is just to the right of the factoring units, such as the $(1,2)$ in the line S3h = (1,2), means the surface volume formula of that factoring unit has the powers 1 and 2 for ' π ' and ' r '. In the case of S3h, $\mathrm{S} 3=4 \pi^{1} \mathrm{r}^{2}$. ' π ' is raised to the power 1 , and ' r ' is raised to the power 2 , that's why it's written $\operatorname{S3h}=(1,2)$. Using this parentheses notation for surface volume formula representation makes it easy to determine which factoring unit will factor which quark combinations, or vice versa, which quark combinations can be factored by which factorung unit.

For instance, if you want to know which factoring unit will factor 'ddd', since ' d ' $=\mathrm{S} 3=(1,2)$, just add the corresponding integers together of the product $(1,2)(1,2)(1,2)$. You are multiplying numbers together (' π ' and ' r ') that are raised to integer powers, and, powers add, so you get $(3,6)$. Now find the line with $(3,6)$ in it. It is $S 7 h=(3,6)$. So the factoring unit needed to factor 'ddd' is S7h.

APPENDIX B

n-Sphere Surface Volume Formulae

(Dimension 2 - Dimension 21)

Sphere		Surface	(π, r)
Dimension	$\underline{\mathrm{Sn}}$	Volume Formula	Powers
2	S2 =	$2 \pi^{1} \mathrm{r}^{1}$	$(1,1)$
3	S3 =	$4 \pi^{1} \mathrm{r}^{2}$	$(1,2)$
4	S4 =	$2 \pi^{2} \mathrm{r}^{3}$	$(2,3)$
5	S5 =	8/3 $\pi^{2} \mathrm{r}^{4}$	$(2,4)$
6	S6 =	$\pi^{3} \mathrm{r}^{5}$	$(3,5)$
7	S7 =	$16 / 15 \quad \pi^{3} \mathrm{r}^{6}$	$(3,6)$
8	S8 =	$1 / 3 \quad \pi^{4} r^{7}$	$(4,7)$
9	S9 =	32/105 $\pi^{4} \mathrm{r}^{8}$	$(4,8)$
10	S10 =	$1 / 12 \pi^{5} \mathrm{r}^{9}$	$(5,9)$
11	S11 =	$64 / 945 \pi^{5} \mathrm{r}^{10}$	$(5,10)$
12	S12 =	$1 / 60 \pi^{6} \mathrm{r}^{11}$	$(6,11)$
13	S13 =	128/10395 $\pi^{6} r^{12}$	$(6,12)$
14	S14 =	$1 / 360 \pi^{7} r^{13}$	$(7,13)$
15	S15 =	$256 / 135135 \pi^{7} r^{14}$	$(7,14)$
16	S16 =	$1 / 2520 \pi^{8} \mathrm{r}^{15}$	$(8,15)$
17	S17 =	512/2027025 $\pi^{8} \mathrm{r}^{16}$	$(8,16)$
18	S18 =	$1 / 20160 \pi^{9} \mathrm{r}^{17}$	$(9,17)$
19	S19 =	1024 / $34459425 \pi^{9} \mathrm{r}^{18}$	$(9,18)$
20	S20 =	$1 / 181440 \pi^{10} \mathrm{r}^{19}$	$(10,19)$
21	S21 =	2048/654729075 $\pi^{10} \mathrm{r}^{20}$	$(10,20)$

APPENDIX C

Values of n-Sphere Surface Volume Units of Factorization

(Dimension 2 - Dimension 21)

