Shortest Proof of Dark Numbers

Wolfgang Mückenheim

TH Augsburg
wolfgang.mueckenheim@hs-augsburg.de

Definition: Dark numbers are numbers that cannot be chosen as individuals.
Example: All \aleph_{0} unit fractions $1 / n$ lie between 0 and 1 . But not all can be chosen as individuals.
Proof of the existence of dark numbers.
Let $\operatorname{SUF}(x)$ be the Set of Unit Fractions in the interval $(0, x)$ between 0 and $x \in(0,1]$.
Between two adjacent unit fractions there is a non-empty interval defined by

$$
\forall n \in \mathbb{N}: 1 / n-1 /(n+1)=1 /(n(n+1))>0
$$

In order to accumulate a number of \aleph_{0} unit fractions, \aleph_{0} intervals have to be summed. This is more than nothing.

Therefore the set theoretical result

$$
\forall x \in(0,1]:|\operatorname{SUF}(x)|=\aleph_{0}
$$

cannot be correct.
Nevertheless no real number x with finite $\operatorname{SUF}(x)$ can be shown. They are dark.

