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Figure 1. Prof. Helmut Moritz at the blackboard, Prof. Antonio Marussi (left) and Prof.
Nathaniel Grossmann (right) [10]
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Application of the Conformal Theory of Refraction
-

HELMUT MORITZ

1 INTRODUCTION

A light ray or an electromagnetic wave of high frequency describes a slightly curved
path in the atmosphere, rather than a straight line. In electronic distance measure-
ment the straight distance s = AB between two points A and B is to be computed
from the measured travel time T . This is usually done in two steps :

1 . Computation of the length S of the curved light path between A and B from
the travel time T .

2. Computation of the chord s = AB from the curved arc S.

It is, however, possible to give a method of directly obtaining the straight dis-
tance s from the travel time T , without needing the curved arc S. By an extension
of this method vertical and lateral refraction affecting measured directions can be
treated as well ; we thus obtain a unified theory of all geodetically important phe-
nomena of refraction.

A convenient geometrical visualization of this method is furnished by the theory
of conformal mapping in space. Conformal mapping between two surfaces being
familiar to geodesists, it is gratifying that the reduction of electronically measured
distances and observed directions for atmospheric refraction is the precise three-
dimensional analogue of the reduction of distances and directions in the conformal
mapping of a surface such as an ellipsoid onto a plane.

2 REFRACTION AND CONFORMAL MAPPING

Essentially the same laws hold for the propagation of light and of radio waves of
high frequency. Henceforth we shall speak only of light, implying high-frequency
radio waves as well. According to the well-known Fermat principle, light traveling
from point A to Point B describes the shortest path; the travel time:

T =

∫ B

A

dt =

∫ B

A

ds

v
(2.1)
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is a minimum.The instantaneous light velocity v is related to the constant light ve-
locity in vacuum c by:

v =
c

n

where n is the index of refraction. Hence (2.1) becomes:

T =
1

c

∫ B

A

nds

where:
ds =

√
dx2 + dy2 + dz2

is the ordinary line element. If we define the element of "optical length" s̄ by:

ds̄ = nds = n
√
dx2 + dy2 + dz2 (2.2)

then:

T =
1

c

∫ B

A

ds̄ (2.3)

Since c is a constant, Fermat’s principle is equivalent to

s̄ = minimum (2.4)

The optical length has indeed the dimension of a length. It is obtained from the
measured travel time T by simple multiplication by c according to:

s̄ = cT

hence the optical length s can be considered the direct result of electronic distance measure-
ment.

For the moment, assume for simplicity that the light is propagated along the
xy-plane, which we shall denote by S. Then z = 0, and we have by (2.2):

ds2 = n2(dx2 + dy2) (2.5)

whereas the ordinary line element is given by:

ds2 = dx2 + dy2 (2.6)

Obviously ds̄ in (2.5) may be considered the line element in isothermic coordinates
of a certain curved surface S̄. The condition (2.4), s̄ = minimum, defines geodesic
lines on this surface S̄.
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The length of such a geodesic on S̄, the geodesic distance, is identical with the
optical length and can therefore be considered the direct result of measurement. The
reduction for refraction consists in computing the straight distance AB in the plane:

s =
√

(xB − xA)2 + (yB − yA)2

from the measured optical length s. The plane S is related to the surface S̄ by a
conformal mapping, since the line elements (2.5) and (2.6) have the form correspond-
ing to such a mapping; hence the relation between the geodesic distance s̄ and the
straight distance s is given by the conventional reduction of distances in conformal
mapping:

∆s̄ = s̄− s

which, physically, is precisely the reduction of the measured optical length s̄ for
refraction.

Consider now the measurement of directions, again in the plane, disregarding
the third dimension . The direct result of our measurement is the angle between
light rays in the plane S. These light rays are geodesics in our auxiliary surface
S̄; in the plane S they are consequently the image curves of these geodesics. The
angle between image curve and chord is well-known as the arc-to-chord or angle
correction of conformal mapping (Bomford, 1962, p.169); it is thus identical with
the angle between light path and straight line which is needed for the reduction of
measured angles for refraction.

Hence we see that the introduction of our auxiliary surface S̄ helps to reduce
the problem of refraction to the theory of conformal mapping familiar to geodesists.
In this way we achieve two purposes : first, we obtain a uniform treatment of the
influence of refraction on observed angles and electronically measured distances;
and second, there results a conceptual simplification: the relatively complicated light
paths are represented by the simplest curves, the geodesics, in the auxiliary surface,
and the travel time of the light waves gets a simple geometrical interpretation as
geodesic distance.

Clearly the light ray moves in three-dimensional space and not in a plane. This
means that we must restore the z-coordinate, which we have omitted for simplicity.
The essential relations, however, which we have just found, remain intact. The plane
S is replaced by three-dimensional ordinary space R, and the auxiliary surface S̄ is
replaced by an auxiliary space R̄. Since S̄ is a curved surface, R̄ will in general be
a curved "Riemannian" space (it is no longer Euclidean). Hence the light rays are
geodesics in this auxiliary space R̄, and the measured optical length (proportional
to the travel time of light) is the geodesic distance in R̄. We may thus say that there
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is a certain (fictitious) curved space R̄ in which we measure directly by means of its
geodesics, both when observing angles and measuring distances electronically.

The transition from this "refraction space" with linear element given by:

ds̄2 = n2(dx2 + dy2 + dz2) (2.7)

to ordinary Euclidean space with:

ds2 = dx2 + dy2 + dz2 (2.8)

is effected through a three-dimensional conformal mapping ; the reduction of ob-
served horizontal and vertical angles and electronically measured distances is iden-
tical with angle and distance correction of this conformal mapping.

The mathematical properties of three-dimensional conformal mappings and their
application to the problem of refraction have been studied extensively ; we mention
(Marussi, 1953), (Moritz, 1962), and (Hotine, 1965). Hence we need not go into the
details here. We shall instead use the principles just explained to give explicit, prac-
tically applicable formulas for the reduction of angles and distances for refraction.

3 THE EICONAL EQUATION

The geodesics in Riemannian space are described by two differential equations:
1. the ordinary differential equation for the geodesic curve; and
2. the partial differential equation for the geodesic distance.
These two equations occur in many different contexts. (In mechanics, for in-

stance, we have Newtons equation of motion, which is a system of ordinary dif-
ferential equations corresponding to 1., and the Hamilton-Jacobi equation, which is
a partial differential equation corresponding to 2.). They therefore deserve closer
attention.

Let the square of the linear element of a three-dimensional space in curvilinear
coordinates x1, x2, x3 :

ds2 =
∑
i,j=1

aijdxidxj (3.1)

Then the ordinary differential equation for the geodesic line is:

d2xi

ds2
+

1

2

3∑
k,l,r=1

air
[
∂ark
∂xl

+
∂arl
∂xk

− ∂akl
∂xr

]
dxk

ds

dxl

ds
= 0 (i = 1, 2, 3) (3.2)
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and the partial differential equation for the geodesic distance s is:

3∑
i,j=1

aij
∂s

∂xi

∂s

∂xj

= 1 (3.3)

Here the matrix (aij) is simply the inverse to the matrix (aij).
The reader familiar with Ricci calculus will notice that the formulas (3.1) through

(3.3) could be simplified by the use of certain notational conventions peculiar to this
calculus. We have purposely dispensed with these conventions here in order to be
more generally intelligible.

It should be mentioned that the formulas (3.1) through (3.3) are as well valid for a
surface if all subscripts are assumed to take the values 1 ,2 only and if consequently
the summation goes from 1 to 2 instead of from 1 to 3. To get the familiar form,
substitute:

x1 = u, x2 = v,

(3.4)

a11 = E, a12 = a21 = F, a22 = G

Then (3.1) becomes:
ds2 = Edu2 + 2Fdudv +Gdv2 (3.5)

Furthermore, assume that the coordinates u, v are orthogonal ; then F ≡ 0. In this
case it is readily shown that:

a11 =
1

E
, a12 = a21 = 0, a22 =

1

G

Then (3.2) becomes the system:

u” +
1

2E
(Euu

′2 + 2Evu
′v′ −Guv

′v′2) = 0

(3.6)

v” +
1

2G
(−Evu

′2 + 2Guu
′v′ +Gvv

′2) = 0

where: u′ =
du

ds
;Eu =

∂E

∂u
, etc. The distance equation (3.3)) takes the form:

1

E

(
∂s

∂u

)2

+
1

G

(
∂s

∂v

)2

= 1 (3.7)

These equations are important in geometrical geodesy, for computations on the ref-
erence ellipsoid on which u and v are orthogonal coordinates (usually, geographical
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coordinates φ and λ). The system (3.6), in a somewhat modified form, is the usual
starting point for solving the "direct geodetic problem", the computation of coordi-
nates from distance and azimuth.

Similarly, (3.7) is the best starting point for the solution of the "inverse geode-
tic problem", the computation of geodesic distance s and azimuth α from coordi-
nates. Curiously enough, this simple equation seems to have never been used for
this purposes, except by Gauss (1828). He needed the quantities s.cosα and s.sinα

for obtaining his well-known formulas for small geodesic triangles on an arbitrary
surface. Although Gauss’work belongs to general differential geometry, it may be
properly quoted in connection with geodesy since the problem of geodesic triangles
has important geodetic applications and since Gauss was inspired by his practical
experience with triangulation1

After Gauss, the partial differential equation for the geodesic distance, (3.3) or
(3.7), was neglected in geodesy as well as in differential geometry and its most im-
portant physical application, the General Theory of Relativity. This is the more sur-
prising as the Hamilton-Jacobi equation (Bergmann, 1949, sec. 2.4) and its equivalent
in optics, the "eiconal equation" (Bergmann, 1949, sec. 10.3), have had very success-
ful physical applications. Only recently Synge (1964) has made extensive use of the
distance equation (3.3) in General Relativity and has obtained important results in
this way.

After this digression, intended to point out related problems, we shall return to
atmospheric refraction. Here we have by (2.7):

ds̄2 = n2(dx2 + dy2 + dz2)

The comparison with (3.1) shows that: x1 = x, x2 = y, x3 = z and: a11 = a22 = a33 =

n2, a12 = a13 = a23 = 0; hence we have : a11 = a22 = a33 =
1

n2
, a12 = a13 = a23 = 0

because the matrix (aij) is the inverse to the (aij). Thus (3.3) becomes:(
∂s̄

∂x

)2

+

(
∂s̄

∂y

)2

+

(
∂s̄

∂z

)2

= n2 (3.8)

This is the eiconal equation already mentioned. It is a first-order partial differential
equation for the optical distance s̄. The following developments will be based on the
eiconal equation.

1The spirit of his work on differential geometry is shown by the concluding sentence of (Gauss,
1828) : "Si eadem formula triangulis in superficie curva non sphaerica applicatur, error generaliter lo-
quendo erit quinti ordinis, sed insensibilis in omnibus triangulis, qualia in superficie telluris dimetiri
licet."
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4 SOLUTION OF THE EICONAL EQUATION

We shall now solve the eiconal equation (3.8) by a suitable series expansion. Since
for the atmosphere the index of refraction, n, is very nearly 1 (it is approximately
1.0003) we may put:

n2 = 1 + ϵµ (4.1)

where ϵ is a small constant parameter (e.g., ϵ = 0.0006) and µ = µ(x, y, z) is a function
of position. Hence the measured optical length s (see section 2) will deviate little
from the ordinary straight distance s, so that we may expand s̄ as a power series
with respect to the small parameter ϵ:

s̄ = s+ ϵs′ + ϵ2s” + . . . (4.2)

Here:
s =

√
(x− x1)2 + (y − y1)2 + (z − z1)2 = s(x, y, z) (4.3)

is the straight distance of a variable point P (x, y, z) from a fixed point P1(x1, y1, z1)

as a function of the coordinates of P . The functions s′, s”, . . . will be obtained from
the eiconal equation (3.8); we may safely neglect terms of order ϵ3 and higher. We
keep in mind that (4.2) is the desired direct relation between measured optical length s̄

and straight distance s mentioned at the beginning.
The straight distance (4.3) satisfies the partial differential equation:(

∂s

∂x

)2

+

(
∂s

∂y

)2

+

(
∂s

∂z

)2

= 1 (4.4)

which is obtained from (3.8) by replacing s̄ by s and n by 1. This is readily verified
by substituting (4.3) into (4.4).

By introducing the vector:

grads̄ =

(
∂s̄

∂x
,
∂s̄

∂y
,
∂s̄

∂z

)
(4.5)

we may abbreviate the eiconal equation as:

(grads̄)2 = n2 (4.6)

We substitute (4.1) and (4.2) into this equation, obtaining:

(grads+ ϵgrads′ + ϵ2grads”)2 = 1 + ϵµ
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Working out the square and comparing the terms independent on ϵ, those multiplied
by ϵ, and those multiplied by ϵ2 we find:

(grads)2 = 1 (4.7)

2grads′.grads = µ (4.8)

2grads”.grads+ (grads′)2 = 0 (4.9)

With (4.7) we have recovered (4.4), whose solution (4.3) can be written as:

s =
√
(x− x1)2 + (y − y1)2 + (z − z1)2 = ||P1P ||, OP = (x, y, z) (4.10)

where ||P1P || is the norm of the vector P1P . For later application, we evaluate:

grads =

(
∂s

∂x
,
∂s

∂y
,
∂s

∂z

)
=

x − x1

s
= e (4.11)

where e denotes the unit vector of the direction P1P ; see Fig. 1.

In agreement with this figure, we introduce an additional rectangular coordi-
nate system XY Z with origin at P1, whose X-axis contains P and whose Y -axis is
parallel to the original xy-plane.

Now, we consider (4.8). In view of (4.11), it may be written as:

2e.grads′ = µ
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Here e.grads′ is the projection of grads′ onto the direction of e; it is therefore identical
with the derivative of s′ along the direction of X , ∂s′/∂X . Hence we obtain:

2
∂s′

∂X
= µ

s′ =
1

2

∫ s

0

µdX

(4.12)

This integral is extended over the straight line P1P .

To evaluate s” by (4.9), we need grads′. For this purpose we must express (4.12)
as an explicit function of the coordinates x, y, z) of P . This is simply achieved by
introducing a parameter:

t =
X

s
(4.13)

which runs from 0 to 1 as the current point of integration moves along the straight
line from P1 to P . Since the coordinates of this current point are given by:

x1 + t(x − x1)

we have along P1P explicitly:

µ = µ [x1 + t(x − x1)]

Substituting this into (4.12), taking (4.13) into account (dX = sdt), we find:

s′ =
s

2

∫ 1

0

µ [x1 + t(x − x1)] dt

Having thus obtained an explicit expression of s′ as a function of x, we may at once
perform the differentiation with respect to x, y, z to get:

grads′ =
1

2
grads.

∫ 1

0

µdt+
s

2

∫ 1

0

gradµtdt

Returning to X by (4.13) we have:

grads′ =
s′

s
e +

1

2s

∫ 1

0

gradµXdX =
s′

s
e +

1

2s
a (4.14)

as the desired result; we shall find the abbreviation:∫ 1

0

gradµXdX = a (4.15)
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quite useful.

Now we can attack (4.9). By (4.11) and (4.15), this equation becomes:

2e.grads” +
(
s′

s
e +

1

2s
a
)2

= 0

or:

2e.grads” +
(
s′

s

)2

+
s′

s2
a.e +

||a||2

4s2
(4.16)

This equation is considerably simplified by using the system XY Z. The components
of the vectors e and a in this system are denoted by capital letters. Thus:

e = (E1, E2, E3) = (1, 0, 0)

a = (A1, A2, A3)

in the system XY Z. Then we have:

a.e = A1, a2 = A2
1 + A2

2 + A2
3

For A we obtain the simple expression:

A1 =

∫ s

0

∂µ

∂X
XdX = µs′ −

∫ s

0

µdX = µs− 2s′ (4.17)

by partial integration; A2 and A3 are obviously given by:

A2 =

∫ s

0

∂µ

∂Y
XdX, A3 =

∫ s

0

∂µ

∂Z
XdX (4.18)

Thus (4.16) reduces to:

2
∂s”

∂X
+

µ2

4
+

A2
2 + A2

3

4s2
= 0 (4.19)

for the end point P. To integrate this equation we write it for a current point along
the straight line P1P by replacing s by X and (4.18) by:

A2 =

∫ X

0

∂µ

∂Y
ξdξ, A3 =

∫ X

0

∂µ

∂Z
ξdξ (4.20)

(we have now denoted the integration variable by ξ to avoid confusion with the
upper limit X). We thus obtain:

2
∂s”

∂X
+

µ2

4
+

A2
2 + A2

3

4X2
= 0 (4.21)
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with the solution:

s” = −1

8

∫ s

0

µ2dX − 1

8

∫ s

0

A− 22 + A2
3

X2
dX (4.22)

A2 and A3 being given by (4.20).

By (4.10), (4.12), and (4.22) we have expressed s = s + ϵs′ + ϵ2s” as a function of
the index of refraction and its partial derivatives in a practically exact way. If these
quantities have been determined by suitable measurements, we can evaluate:

∆s = s̄− s = ϵs′ + ϵ2s” (4.23)

using (4.12) and (4.22) and computing these integrals by numerical or graphical inte-
gration. It may be pointed out again that these integrals are taken along the straight
line P1P and not along the light path.

The quantity ∆s defined by (4.23) represents the desired reduction of the mea-
sured optical length for refraction. According to sec. 2, it corresponds to the distance
reduction in three dimensional conformal mapping. Estimates show that the first in-
tegral of (4.22) is of the order of 5 × 10−8s is consequently negligible. We may also
neglect A2, which is caused by lateral refraction, so that there remains as a practical
approximation:

∆s =
ϵ

2

∫ s

0

µdX − ϵ2

8

∫ s

0

A2
3

X2
dx (4.24)

The term with ϵ2 reaches the order of some 10 meters for s = 1000 km.

5 EFFECT ON HORIZONTAL AND VERTICAL ANGLES

This method also furnishes the effect of vertical and lateral refraction on measured
angles. The principle is as follows; see Fig. 2.

– 12 –



We consider the two unit vectors e and e⃗, the first directed along the chord P1P ,
the second tangent to the light path at P . It may be shown that this tangent has the
direction of grads̄ which is not, however, a unit vector. Hence:

e⃗ =
grads̄

||grads̄||
=

grads̄

n
=

grads̄√
1 + ϵµ

(5.1)

Here we have used (4.6) and (4.1). We again use an expansion with respect to :

e⃗ = e + ϵe’ + ϵ2e" + . . . (5.2)

with:

e = grads, e’ = −1

2
µe + grads′, e" = −3

8
µ2e − 1

2
µgrads′ + grads” (5.3)

Thus we know e⃗; it is obvious that all refractional changes of directions or angles
can be obtained through e. We shall outline the derivation. Consider the vector e⃗
according to Fig. 3. Its components in the system xyz (the z-axis being parallel to
the vertical of P ) are e1, e2, e3. By Fig.3 we have:

tgα1 =
e2
e1
, sinβ1 = e3

Here α1 and β1 are taken in the direction P1P , whereas our angles are measured
at P , thus referring to the opposite direction PP1. Hence the measured horizontal
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angle is ᾱ = α1 ± 180◦, and the vertical angle is β̄ = −β1, so that:

ᾱ = arctg

(
e2
e1

)
β̄ = −arcsine3

(5.4)

Inserting e1, e2, e3 from (5.2) and (5.3) and expanding with respect to ϵ we obtain
after some calculations:

ᾱ = α + ϵα′ + ϵ2α” + . . . , β̄ = β + ϵβ′ + ϵ2β” + . . . (5.5)

with:

α′ =
A2

2scosβ
=

1

2scosβ

∫ s

0

∂µ

∂Y
XdX

β′ = −A3

2s
= − 1

2s

∫ s

0

∂µ

∂Z
XdX

β” = −A2
2

8s2
tgβ +

µ

4s
A3 +

1

8s

∫ s

0

∂µ

∂Z
XdX+

+
1

4s

∫ s

X=0

A2

X2

∣∣∣∣∫ X

ξ=0

∂2µ

∂Y ∂Z
ξ2dξ

∣∣∣∣ dX +
1

4s

∫ s

X=0

A3

X2

∣∣∣∣∫ X

ξ=0

∂2µ

∂Z2
ξ2dξ

∣∣∣∣ dX

(5.6)

The notations are those of the preceding section. The angles α and β refer to the
straight line PP1. We have omitted α” because the effect of lateral refraction is small
as compared to the vertical effect.

Estimates indicate that ϵ2β” is usually only of the order of a few tenths of a
second of arc even for s = 50 km. Consequently it may often be neglected. In this
case we have with ϵµ=̇2(n− 1) simply:

∆α = ᾱ− α =
1

scosβ

∫ s

0

∂n

∂Y
XdX

∆β = β̄ − β = −1

s

∫ s

0

∂n

∂Z
XdX

(5.7)

These equations have been derived in an elementary geometric way in (Moritz,
1962), using the theory of conformal mapping. We remind the reader that ∆α and
∆β correspond to the angle corrections of three-dimensional conformal mapping;
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see sec. 2. As a matter of fact, a formula such as the second of (5.7) can also be used
for evaluating the angle correction in the conformal mapping of a surface such as
the ellipsoid onto a plane.

lnspecting our results such as (4.24) for ∆s and (5.6) or (5.7) for ∆α and ∆β we
see that these formulas require the index of refraction n and certain of its partial
derivatives to be known along the straight line P1P . These values may be obtained
by performing measurements in the neighborhood of this line. Formulas for practi-
cal computation and a numerical example will be found in (Jordan-Eggert-Kneissl,
1966, p. 527-531).
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