The Reality真 实 意义

Version 1.04 ／2023．5．15

The Reality*

Zhengchen Liang ${ }^{\dagger}$
Department of Physics, Tsinghua University, Beijing 100084, P. R. China

May 15, 2023

Abstract

This document introduces the genesis and cardinal structure of existences, philosophically derived by the two concepts of certainty and diversity. All existences constructed by the x diversity maps is the base structure of The Reality, on which sequential excitations of z diversity maps found realities. Natural and other classes of existences in The Reality are partially characterized.

[^0]
Contents

1 NR vertex 2

2 QR vertices 2
3 CR set 2
4 RR maps 4
5 Realistics 5
5.1 Natural basis 6
5.2 Sequential space 8

1 NR vertex

One tries to recognize the genesis of everything.
Suppose one has the concept of certainty, that finds an existence. One names the existence first found. This ex-
istence can have arbitrary aliases such as the null-reality (NR) vertex, or n_{0}. Aliases or expressions attached to it are only for the convenience to speak but irrelevant to itself. As illustrated in Fig. 1, one is only certain about the existence of the NR vertex.

Figure 1: The NR vertex.

2 QR vertices

One wants to be certain about other existences. Based on the concept of certainty, one can find existence. However, any existence found is not a second existence unless one tells that the found existence is different from the first one i.e. the NR vertex n_{0}. Suppose one has also the concept of diversity, to name an existence diverse from existence(s) one already named. A map of diversity

$$
x_{0}:\left\{\begin{array}{l}
R_{0} \rightarrow C_{0} \tag{1}\\
n_{0} \mapsto n_{1}
\end{array}\right.
$$

demonstrates how the existence of n_{1} is named given that the existence of n_{0}. For x_{0}, the known existence is n_{0}. The term R_{0} denotes all named existence(s), where for x_{0} it is n_{0}. The term C_{0} denotes all possible existence(s) to-be-named that is different from named existence(s) in R_{0}. The existence found by the concept of certainty and named by x_{0} is labeled by n_{1}, or any other aliases. As illustrated in Fig. 22, the integrity of co-existing n_{0} and n_{1}, as well as other named existences called quantized-reality (QR) vertices, is only originated from the map of diversity which defines a certain existence only from named existences.

Figure 2: Two QR vertices and the map of diversity.

The incompleteness of the concept of diversity lies in that the diversity map itself is a certain thing but not a certain existence. A similar incompleteness in Axiomatic Set Theory is that the set operation $s: p \mapsto\{p\}$ collecting element(s) p itself is an object but not in constructed sets.

Here, any named existence is above the "surface" of conceptual incompleteness. One choose not to have iterative set operation (fictitious abstraction) like $\left\{\left\{\left\{n_{0}\right\}\right\}\right\}$ or else. The only fact is the co-existence of QR vertices linked by diversity maps, which restricts the term set in use here to only the collection of existences named by diversity maps, and the diversity maps from named existences. This allows one to focus on the exact structure revealing The Reality.

3 CR set

One clarifies the map of diversity, generically

$$
x_{s}:\left\{\begin{array}{l}
R_{S} \rightarrow C_{S} \tag{2}\\
R_{S} \supseteq\left\{n_{s}\right\} \mapsto n_{r} \notin R_{S}
\end{array}\right.
$$

in which S is the label for a set R_{S} of QR vertices, and s is the label for elements n_{s} in a subset of R_{S}. At x_{s}, a new existence n_{r} is named a.k.a. defined by the concept of diversity from the QR vertices $\left\{n_{s}\right\}$ already named in R_{S}.

One asks how large a realized set R_{S} can exist. One questions whether at last for some S, one cannot name any existence in C_{S}. One is indeed asking what is the structure of all existences.

One first focus on the case of special \bar{x} maps of diversity satisfying $\bar{x}_{s}:\left|\left\{n_{s}\right\}\right|=1$. Under this kind of maps only, one finally reach a sequence of named existences: $n_{0}, n_{1}, n_{2}, \cdots$.

To see it clearly, one first define a natural relation $<$ from the maps of diversity between two named existences n_{k} and $n_{l}(k, l=0,1,2, \ldots)$ in a realized set R : the relation $n_{l}<n_{k}$ holds iff n_{l} maps to n_{k} under some $\bar{x} \operatorname{map}(\mathrm{~s})$, otherwise $n_{l} \nless n_{k}$. By definition of diversity maps one knows that i) $n_{k} \nless n_{k}$; ii) $n_{k}<n_{l} \Rightarrow n_{l} \nless n_{k}$; iii) $n_{k}<n_{l} \wedge n_{l}<n_{m} \Rightarrow n_{k}<n_{m}$. Hence $<($ or \leq) from the x maps forms an order on arbitrary set R_{S}. Samely R_{S} is endowed with the $>$ order (or \geq), i.e. $n_{k}>n_{l}$ iff n_{l} maps to n_{k} under some $\bar{x} \operatorname{map}(\mathrm{~s})$, otherwise $n_{k} \ngtr n_{l}$.

One considers for any $R_{k}=\left\{n_{0}, n_{1}, \ldots, n_{k}\right\}$ and any $n_{l}<n_{k}, \bar{x}_{l}: n_{l} \mapsto n_{r}$, one knows that both n_{r} and the existing $n_{l+1} \in R_{k}$ are defined only by the diversity from n_{l} hence n_{r} is already named as n_{l+1}. Since $\bar{x}_{l}:\left|\left\{n_{l}\right\}\right|=1, n_{r}$ has no diversity map from n_{l+1}. The only new map of such
\bar{x} from R_{k} is $\bar{x}_{k}: n_{k} \mapsto n_{r}$ hence one derives the chain of existences under only \bar{x} maps, as illustrated in Fig. 3. One calls it a QR chain Q_{0}. One may not know what are natural numbers yet but indeed this QR chain can be aliased by ($\mathbb{N},<$) with the $<$ usual order. The number of QR vertices a.k.a. the cardinality of the QR chain is denoted by \aleph_{0} and
called countably infinite. The term "countably infinite" at present is only originated from the \bar{x} maps s.t. $\forall n_{k} \in Q_{0}$, $\exists \mid \aleph_{0}: k<\aleph_{0}$, since the above property of \bar{x} maps holds $\exists \mid Q_{0}: n_{0} \in Q_{0} \wedge\left(\forall n_{k} \in Q_{0}, \exists \mid n_{r} \equiv n_{k+1}: n_{r} \in Q_{0}\right)$. If one has to axiomize the concept of diversity, then this trivial property stands for the Axiom of Infinity.

Figure 3: The countable chain Q_{0} of QR vertices is derived under only \bar{x} maps.

On this realized QR chain, one then ${ }^{1}$ define an operation - on $n_{k}>n_{l}>n_{0}$ as $-:\left(n_{k}, n_{l}\right) \mapsto n_{s}$ i.e. $n_{k}-n_{l}=n_{s}$ where n_{l} maps to n_{k} under the same number of $\bar{x} \operatorname{map}(\mathrm{~s})$ that n_{0} maps to n_{s}. The named existence $n_{s} \in R$ can be denoted as n_{k-l}. For any three QR vertices satisfying $n_{k}-n_{l}=n_{s}$, rewriting $n_{l}+n_{s}=n_{k}$ one defines $+:\left(n_{l}, n_{s}\right) \mapsto n_{k}$. Since i) $n_{k}-n_{l}=n_{s} \Rightarrow n_{k}>$ $n_{s}>n_{0} \Rightarrow n_{k}-n_{s}=n_{l}$, one knows if $+:\left(n_{l}, n_{s}\right) \mapsto n_{k}$ then $+:\left(n_{s}, n_{l}\right) \mapsto n_{k}$ which is the commutative law for + ; ii) $\left(n_{m}-n_{k}\right)-n_{l}=n_{s} \Rightarrow n_{m}-n_{k}=n_{u}=n_{s}+n_{l}$, $\left(n_{m}-n_{l}\right)-n_{k}=n_{t} \Rightarrow n_{m}-n_{l}=n_{v}=n_{t}+n_{k}$ so $n_{m}=n_{u}+n_{k}=n_{v}+n_{l}=\left(n_{s}+n_{l}\right)+n_{k}=\left(n_{t}+n_{k}\right)+n_{l}$, while $n_{s}=n_{u}-n_{l}, n_{t}=n_{v}-n_{k}$ so $n_{v}>n_{k}>n_{0}$, $n_{u}>n_{l}>n_{0} \Rightarrow n_{u}=\left(n_{v}-n_{k}\right)+n_{l} \Rightarrow\left(n_{u}-n_{l}\right)=\left(n_{v}-\right.$ $\left.n_{k}\right) \Rightarrow n_{s}=n_{t}$, one knows $\left(n_{s}+n_{l}\right)+n_{k}=\left(n_{s}+n_{k}\right)+n_{l}$
which is the associative law for + . From the derivations i) and ii) one knows that the + commutativity requires only $\forall n_{k}>n_{l} \Rightarrow n_{k}-n_{l}<n_{k}$, and the + associativity does not rely on the commutativity but requires just $\forall n_{m}>n_{k}, n_{m}>n_{l}, n_{m}-n_{k}>n_{l} \Rightarrow n_{m}-n_{l}>n_{k}$. It is obvious that \leq on the QR chain is a total order s.t. $n_{k} \leq n_{l} \vee n_{l} \leq n_{k}$, so the requirements are naturally met.

One then considers the general \tilde{x} maps of diversity

$$
\tilde{x}_{s}:\left\{\begin{array}{l}
R_{S} \rightarrow C_{S} \tag{3}\\
R_{S} \supseteq\left\{n_{s}\right\} \mapsto n_{r} \notin R_{S} \\
\left|\left\{n_{s}\right\}\right|>1
\end{array}\right.
$$

where the cardinality of the predecessor set $\left\{n_{s}\right\}$ can be finite from several QR vertices, or countably infinite from the entire QR chain, or else.

Figure 4: The uncountable set P_{0} of QR vertices is derived under a \tilde{x} map from the countable QR chain Q_{0}.

In order to derive the possibly largest realized set R_{S}, one calls it the constructed-reality (CR) set $C R$, and starting from the NR vertex, one first has derived the QR chain $Q_{0} \subset C R$ from only the \bar{x} maps. At $R_{S}=Q_{0}$, due to the uniqueness of Q_{0} one cannot name another QR vertex
using the \bar{x} map hence one has to use the \tilde{x} maps starting from Q_{0}. Under a single \tilde{x} map from Q_{0}, one names the existences diversified from QR vertices in Q_{0} subsets. As illustrated in Fig. 4 one denotes all the QR vertices named by the \tilde{x} maps from Q_{0} as the set P_{0}.

Figure 5: The set Q_{1} including uncountable numbers of QR chains is derived under \bar{x} maps from $Q_{0} \cup P_{0}$.

[^1]For any QR vertices $n_{r_{1}}$ and $n_{r_{2}}$ in P_{0}, their predecessor sets $\left\{n_{s_{1}}\right\}$ and $\left\{n_{s_{2}}\right\}$ of the $\tilde{x}_{s_{1}}$ and $\tilde{x}_{s_{2}}$ maps, are two different subsets of Q_{0}. By definition of the x diversity maps, $n_{r_{1}}$ and $n_{r_{2}}$ are indeed two different QR vertices. This ensures P_{0} being unique. If axiomized, the obvious property of \tilde{x} maps $\forall i\left(\forall\left\{n_{k}\right\} \subseteq Q_{i}, \forall n_{r}, \forall n_{s}\right.$: $\left.\left(\tilde{x}:\left\{n_{k}\right\} \rightarrow n_{r} \wedge \tilde{x}:\left\{n_{k}\right\} \rightarrow n_{s}\right) \Rightarrow n_{r}=n_{s}\right), \forall Q_{i}$, $\exists\left\{n_{p}\right\} \subseteq P_{i}: \forall n_{p l} \in\left\{n_{p}\right\}, \exists \mid\left\{n_{l}\right\} \subseteq Q_{i}: \tilde{x}:\left\{n_{l}\right\} \rightarrow n_{p l}$ explains the Axiom of Replacement, and here $i=0$.

One can see $\left|P_{0}\right|>\left|Q_{0}\right|$ very straightforward by considering that if there is a bijective map $\bar{b}: Q_{0} \rightarrow P_{0}$ as some directed edges selected from all the \tilde{x} maps, then the QR vertices $\left\{n_{l}\right\} \subseteq Q_{0}$ s.t. $\forall n_{l} \in\left\{n_{l}\right\}\left(\nexists \tilde{x}:\left\{\cdots, n_{l}, \cdots\right\} \mapsto\right.$ $\left.\bar{b}\left(n_{l}\right)\right), \forall \tilde{x}\left(\left\{n_{l}\right\}\right)=n_{x l} \in P_{0}, \exists n_{b} \in Q_{0}: \bar{b}\left(n_{b}\right)=n_{x l}$ how-
ever contradicts with $n_{b} \in\left\{n_{l}\right\} \Rightarrow \nexists \tilde{x}:\left\{\cdots, n_{b}, \cdots\right\} \mapsto$ $\bar{b}\left(n_{b}\right)$. One can thus denote the cardinality of P_{0} as $\aleph_{1}>\aleph_{0}$ and call every cardinality greater than Q_{0} uncountable.

Starting from Q_{0} and P_{0}, under only the \bar{x} maps one derives uncountably infinite numbers of QR chains, each begins with a QR vertex in P_{0}. As illustrated in Fig. 5, one denotes P_{0} and the QR vertices in the QR chains derived in this step as set Q_{1}, so $P_{0} \subset Q_{1}$, and $\left|Q_{1}\right|=\aleph_{1}$.

At $R_{S}=Q_{0} \cup Q_{1}$, one cannot name another QR vertex using the \bar{x} map hence one has to use the \tilde{x} map starting from $Q_{0} \cup Q_{1}$. Under a single \tilde{x} map from $Q_{0} \cup Q_{1}$, one names the existences diversified from elements in the power set of $Q_{0} \cup Q_{1}$. As illustrated in Fig. 6, one denotes all the QR vertices named by the \tilde{x} maps from $Q_{0} \cup Q_{1}$ as set P_{1}.

Figure 6: The uncountable set P_{1} of QR vertices is derived under a \tilde{x} map from $Q_{0} \cup Q_{1}$.

Following the above prove of $\aleph_{1}>\aleph_{0}$, one can see from the property of \tilde{x} maps that the cardinality of P_{1} is $\aleph_{2}>\aleph_{1}$. The sequence of diversity maps

$$
\begin{equation*}
\underbrace{\underbrace{\bar{x} \ldots \bar{x}}_{\text {All, } \aleph_{0}} \tilde{x} \underbrace{\bar{x} \ldots \bar{x}}_{\text {All, } \aleph_{0}} \tilde{x} \underbrace{\bar{x} \ldots \bar{x}}_{\text {All, } \aleph_{0}} \tilde{x} \ldots \ldots .}_{\aleph_{0}} \tag{4}
\end{equation*}
$$

starting from the NR vertex, derives the CR set. The total number of each $\bar{x} \ldots \bar{x} \tilde{x}$ period must be countable, since each period only relies on the realized set from its previous period that these periods, in the same way as existences named by \bar{x} diversity maps, form a QR chain which is countable. The cardinality of Q_{i} is \aleph_{i} for all $i \in \mathbb{N}$. The CR set can be expressed as

$$
\begin{equation*}
C R=\bigcup_{i \in \mathbb{N}} Q_{i} \tag{5}
\end{equation*}
$$

To prove Eq. 5 , one considers a QR vertex n_{r} not named at $C R$. The NR vertex n_{0} has a directed path to n_{r} since n_{r} is a named existence and only diversity maps can name it, starting from the NR vertex. If the directed path is countable then the proof is trivial. If the directed path is uncountable, the cardinality of such definition through x maps to reach this QR vertex contradicts with the countably infinite $\bar{x} \ldots \bar{x} \tilde{x}$ period i.e. Peano predecessor in Eq. 4

The CR set is what one can get with only the two concepts of certainty and diversity, starting from the NR vertex. The Axiomatic Set Theory has derived similar structure by seeing the NR vertex as the empty set \emptyset, the x maps as the set operation s, and the directed edges here as the \in relation between sets. However the set operation brings nonessential vagueness that may blind human from seeing The Reality, since one cannot buy that the QR vertices, i.e., those ordinal numbers in Axiomatic Set Theory, already represented everything one observes in reality.

For any QR vertex in the CR set, i.e., countably reachable existence by maps of diversity, one can mark it with a
natural number m, indicating that it is the m-th QR vertex in its QR chain. Then the starting point of the QR chain $n_{r_{1}}$ is marked by a repeatable set of natural numbers $\left\{m_{r_{1}}\right\}_{r_{1}}$, indicating that each QR vertex in the predecessor set of $n_{r_{1}}$ is the $m_{r_{1}}$-th QR vertex in its QR chain. By marking all predecessor sequences down to the NR vertex,

$$
\begin{equation*}
\left\{m, m_{r_{1}}, m_{r_{1} r_{2}}, m_{r_{1} r_{2} r_{3}}, \cdots\right\}_{r_{1}, r_{2}, r_{3}, \cdots} \tag{6}
\end{equation*}
$$

one locates the QR vertex in the CR set.

4 RR maps

From definition of x maps there is no directed loop in the directed graph of the CR set. This is because the directed edges are only the x maps. Referring to the concept of diversity, known diverse existences can be confirmed by diversity maps too. One calls these maps post-CR diversity maps, or represented-reality (RR) maps, or z maps.

Note that for any two QR vertices n_{k} and n_{l}, one and only one must hold among i) $n_{k}<n_{l}$ i.e. there exists a directed path from n_{k} to n_{l}; ii) $n_{l}<n_{k}$ i.e. there exists a directed path from n_{l} to n_{k}; iii) $n_{k} \nless n_{l}$ and $n_{l} \nless n_{k}$ under the order $<$ of directed path. A z map from n_{k} to n_{l} in the case ii) forms a finite directive loop in the QR path where n_{k} and n_{l} exists. A z map from n_{k} to n_{l} in the case i) or iii) indeed is an existing x map with $\left\{n_{k}\right\} \cup P\left(n_{l}\right)$ its predecessor set, where $P\left(n_{l}\right)$ denotes the predecessor set of n_{l}. Therefore, an RR map must map between two QR vertices connected by a directed path and form a directed loop in the CR set.

The special case is for all the QR vertices in any path from n_{l} to n_{k}, not including n_{l}, its predecessor set only includes the QR vertices n_{s} that $n_{l} \leq n_{s}$. This special case is denoted $n_{l} \prec n_{k}$. One can mark the special RR map from n_{k} to n_{l}, i.e., the relative location between $n_{k} \succ n_{l}$ by the repeatable set

$$
\begin{equation*}
\left\{m, m_{r_{1}}, m_{r_{1} r_{2}}, m_{r_{1} r_{2} r_{3}}, \cdots\right\}_{r_{1}, r_{2}, r_{3}, \cdots} \tag{7}
\end{equation*}
$$

tracing only the directed paths of x maps from n_{l} to n_{k}.

This mark is the same as marking a QR vertex n_{r} starting from the NR vertex n_{0}.

The general case is $n_{l} \nprec n_{k}$, i.e., $\forall n_{l}<n_{k}, \exists n_{c}: n_{c} \prec n_{l}$, $n_{c} \prec n_{k}$. One can select the QR vertex $n_{c_{0}}$ closest to n_{l} and n_{k} such that $\exists \mid n_{c_{0}}: n_{c_{0}} \prec n_{l}, n_{c_{0}} \prec n_{k}, \forall n_{c} \neq n_{c_{0}}$: $n_{c}<n_{c_{0}}$. In this case, the general RR map can be marked by two repeatable sets in Eq. 7 . One is for $n_{c_{0}} \prec n_{k}$ which
is called the minuend set, and the other one is for $n_{c_{0}} \prec n_{l}$ which is called the subtrahend set. The two sets keep the complete information of the general RR map from n_{k} to n_{l} where $n_{l}<n_{k}$ but $n_{l} \nprec n_{k}$.

The relation \prec (or \preceq), as well as its dual $\succ($ or $\succeq)$, forms a partial order on the CR set. For convenience one says $n_{l} \nless n_{k} \Rightarrow n_{l} \nprec n_{k}$. One calls \prec the crystal order.

Figure 7: An example of special RR map from n_{f} to n_{i} where $n_{i} \prec n_{f}$.

For instance, one considers the example of special RR map from n_{f} to n_{i} shown in Fig. 7. The repeatable set for $n_{i} \prec n_{f}$ or equivalently this RR map can be written as:

$$
m=2
$$

$$
m_{1}=2, m_{2}=2
$$

$$
m_{11}=1, m_{12}=0, m_{13}=2, m_{21}=1, m_{22}=3
$$

$$
m_{111}=0, m_{112}=1, m_{121}=0, m_{122}=1, m_{123}=2
$$

$$
m_{131}=0, m_{132}=1, m_{133}=2
$$

$$
m_{211}=0, m_{212}=1, m_{213}=2
$$

The mark is equivalent to the tree shown in Fig. [8, which is called the tree representation of $n_{i} \prec n_{f}$ or the RR map. In this tree, the root is $m=2$. All nodes are numbers corresponding to the repeatable set. All leaves are QR vertices on the QR chain where n_{i} exists. Starting from this QR
chain and recursively, two nodes in the tree can be recognized as on a same QR chain if and only if their branching nodes are the same numbers that correspond to the same recognized QR chains.

The tree representation is free from the lower indices of m 's in the set representation. The permutation of lower indices is redundant information, so that the tree representation is faithful to the crystal order and special RR maps.

On the CR set, one root, any natural numbers and more-than-one branches for any branching nodes, and also any layers are allowed for the representation tree of a possible RR map, as long as any nodes of the same number must not exist on the same QR chain, due to the uniqueness of QR vertices in the CR set. Starting from the leaves, this condition can be implemented layer by layer.

Figure 8: The tree representation of the example RR map from n_{f} to n_{i}.

For general RR maps on $n_{l}<n_{k} \wedge n_{l} \nprec n_{k}$ from n_{k} to n_{l}, the minuend set and the subtrahend set correspond to the minuend tree and the subtrahend tree, respectively.

For fast comprehension, the CR set is the base space, the vacuum, or the ground state upon all the named existences, while all the possible RR maps are its excitations.

5 Realistics

A reality or a physical world is a sequence of some RR maps, with the sequence called time, endowed with a total order that is derived from certain rules in a sense of minimal diversity. A moment in the sequence of reality is some RR maps excited on the base of The Reality i.e. the CR set. In that sense of non-minimal diversity, the total order of a reality can also be embedded into some partial ordered
lattices of realities containing the sequence of that reality.
RR maps are not unique thus allow replicas of the CR set, and thus direct products on QR vertices or x / z maps.

The role of a reality in The Reality is as small as the rate between \aleph_{0} (its RR excitations) and $\aleph_{\aleph_{0}}$ (the all possible RR excitations). Hence normally it is not an efficient way to exhaust all possibilities of RR maps in The Reality to solve realistic problems.

However one wants to take whatever imaginable tools in The Reality into consideration when facing its reality. These tools, recognized as mathematical structures, are sequences of x / z maps under certain constraints. Before exporing the uncountable possibilities of RR maps and hidden rules of their sequences, one starts with the x maps of diversity which in natural construct the CR base.

5.1 Natural basis

Naturalness refers to the exact and unique structure of CR set, the static base of The Reality. The x maps of diversity in the CR set first define the natural conditions for if-then branches. These conditions include:

- </ $/ \forall n_{k}, n_{l}: n_{k}<n_{l} \dot{\vee} n_{k} \nless n_{l}$.
- $>/ \ngtr . \forall n_{k}, n_{l}: n_{k}>n_{l} \dot{\vee} n_{k} \ngtr n_{l}$.
- $\prec / \not / . \forall n_{k}, n_{l}: n_{k} \prec n_{l} \dot{\vee} n_{k} \nprec n_{l}$.
- $\succ / \nsucc . \forall n_{k}, n_{l}: n_{k} \succ n_{l} \dot{\vee} n_{k} \nsucc n_{l}$.
$\bullet=/ \neq . \forall n_{k}, n_{l}: n_{k}=n_{l} \dot{\vee} n_{k} \neq n_{l}$.
For the simplest case $\forall n_{k}, n_{l}$ in a QR chain, one and only one of these three cases holds: $n_{k}<n_{l} \Leftrightarrow n_{k} \prec n_{l}$, or $n_{k}>n_{l} \Leftrightarrow n_{k} \succ n_{l}$, or $n_{k}=n_{l}$.

The structure of diversity maps in the CR set defines the natural operations to forall-exists statements. These operations include:

- -. $\forall n_{l} \prec n_{k}, \exists \mid n_{m}: n_{m}-n_{0}=n_{k}-n_{l}$ i.e. the tree representation of $n_{l} \prec n_{k}$ is the same tree representation of $n_{0} \prec n_{m}$.

For the simplest case $\forall n_{k}, n_{l}, n_{0}$ in the QR chain Q_{0}, $\forall n_{l}<n_{k}, \exists \mid n_{m}: n_{m}-n_{0}=n_{k}-n_{l} \Leftrightarrow n_{m}<n_{k} \Leftrightarrow$ $n_{l}-n_{0}=n_{k}-n_{m}$ thus defining $n_{l}+n_{m}=n_{m}+n_{l}=n_{k}$. In this QR chain Q_{0} starts with the NR vertex n_{0}, natural operations of for-loop iterations are:

- $++: Q_{0} \rightarrow Q_{0} . \forall n_{k}, \exists \mid n_{k+1}: n_{k}++=n_{k+1}$.
- $+: Q_{0} \times \mathbb{N} \rightarrow Q_{0} . \forall n_{k}, h_{1}, \exists \mid n_{k+h_{1}}: n_{k+l}=n_{k}+h_{1}=$ $n_{k} \underbrace{++\ldots++}_{\# h_{1}}$.
- $\underline{\times}: Q_{0} \times \mathbb{N} \times \mathbb{N} \rightarrow Q_{0} . \forall n_{k}, h_{1}, h_{2}, \exists \mid n_{k+h_{1} \times h_{2}}:$ $n_{k+h_{1} \times h_{2}}=n_{k}+h_{1} \times h_{2}=n_{k} \underbrace{+h_{1} \ldots+h_{1}}_{\# h_{2}}$.
- $\dot{\underline{x}}: Q_{0} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow Q_{0} . \quad \forall n_{k}, h_{1}, h_{2}, h_{3}$, $\exists \mid n_{k+h_{1} \times h_{2} \dot{\times} h_{3}}: n_{k+h_{1} \times h_{2} \dot{\times} h_{3}}=n_{k}+h_{1} \times h_{2} \dot{\times} h_{3}=$ $n_{k}+h_{1} \underbrace{\times h_{2} \ldots \times h_{2}}_{\# h_{3}}$.
- $\ddot{X}: Q_{0} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow Q_{0} . \forall n_{k}, h_{1}, h_{2}, h_{3}, h_{4}$, $\bar{\exists} \mid n_{k+h_{1} \times h_{2} \dot{\times} h_{3} \ddot{\times} h_{4}}: \quad n_{k+h_{1} \times h_{2} \dot{\times} h_{3} \ddot{\times} h_{4}}=n_{k}+h_{1} \times$ $h_{2} \dot{\times} h_{3} \dot{\times} h_{4} \stackrel{n_{k}}{=} n_{k}+h_{1} \times h_{2} \underbrace{\dot{x} h_{3} \ldots \dot{\times} h_{3}}_{\# h_{4}}=n_{k}+$ $h_{1} \times[\underbrace{\times h_{2} \ldots \times h_{2}}_{\# h_{3}}] \underbrace{\dot{x} h_{3} \ldots \dot{\times} h_{3}}_{\#\left(h_{4}-1\right)}=n_{k}+h_{1} \times$ $[\underbrace{[\underbrace{\times h_{2} \ldots \times h_{2}}_{\# h_{3}}] \cdots[\underbrace{\times h_{2} \ldots \times h_{2}}_{\# h_{3}}]}_{\# h_{3}}] \underbrace{\dot{x} h_{3} \ldots \dot{x} h_{3}}_{\#\left(h_{4}-2\right)}=$
- $\times^{(n)}: Q_{0} \underbrace{\times \mathbb{N} \ldots \times \mathbb{N}}_{\# n} \rightarrow Q_{0} . \forall n_{k}, h_{1}, h_{2}, h_{3}, h_{4}, \ldots, h_{n}$, $\exists \mid n_{k+h_{1} \times h_{2} \dot{\times} h_{3} \ddot{\times} h_{4} \cdots \times{ }^{(n)} h_{n}}, n \in \mathbb{N}$.

Note that here $x^{(0)}$ is,$++ x^{(1)}$ is,$+ x^{(2)}$ is x. The procedure to calculate formulas up to $\times^{(n)}$ are: i) High n expands prior to low n; ii) $\times{ }^{(n)}$ expand in left associativity, expanded bulks in square brackets hold until all $\times{ }^{(n)}$'s expanded; iii) Square brackets are released by the \# indices after $\times^{(n)}$'s expanded and before the $\times^{(n-1)}$'s expansion. Note that $\times^{(n)}$ has no meaning outside of $\times^{(n)}$.

The natural numbers h_{n} as operation loop indices can be elements in $Q_{0}=\mathbb{N}$, hence $\underline{\times^{(n)}}: \prod^{n+1} Q_{0} \rightarrow Q_{0}$ holds. By simply expanding and counting the x maps in chain Q_{0}, lower levels of $\times^{(n)}$ can extract the known properties:

1. $+: Q_{0} \times Q_{0} \rightarrow Q_{0}$, commutativity $n_{k}+n_{l}=n_{l}+n_{k}$, associativity $\left(n_{j}+n_{k}\right)+n_{l}=n_{j}+\left(n_{k}+n_{l}\right)$.
$2 . \times: Q_{0} \times Q_{0} \rightarrow Q_{0}$, commutativity $n_{k} \times n_{l}=n_{l} \times n_{k}$, associativity $\left(n_{j} \times n_{k}\right) \times n_{l}=n_{j} \times\left(n_{k} \times n_{l}\right)$, distributivity $\left(n_{j}+n_{k}\right) \times n_{l}=n_{j} \times n_{l}+n_{k} \times n_{l}$.

Any higher levels of operations can't be directly extracted to a binary algebraic operator of $Q_{0} \times Q_{0} \rightarrow Q_{0}$ due to the expansion procedure, e.g., $\dot{\underline{x}}$'s expansion relies on h_{1}. However, one can simplify $\times^{(3)}$ by letting $n_{k}=n_{0}, h_{1}=1$ to get the exponential operation Pow ${ }^{(1)}: Q_{0} \times Q_{0} \rightarrow Q_{0}$, $\left(h_{2}, h_{3}\right) \mapsto h_{2}^{h_{3}}$. Higher level of n can always be simplified to get Pow ${ }^{(n-2)}: Q_{0} \times Q_{0} \rightarrow Q_{0},\left(h_{2}, h_{n}\right) \mapsto h_{2}^{(n-2) h_{n}}$ in this way: i) Let $n_{k}=n_{0}, h_{1}=1$; ii) Let $h_{2}=h_{3}=\cdots=h_{n-1}$. Obviously commutativity fails and only left associativity is obeyed. Distributivity is only trivial from counting the \# numbers following the above procedure i)-iii).

For ++ , it is not necessary to start from the NR vertex. Standing at the middle of Q_{0}, in a finite range, the natural operations $--,-, \underline{x}, \dot{\underline{x}}, \underline{\underline{x}}, \ldots, \times_{(n)}$ holds for the finite \mathbb{Z}. One can induce two QR chains $\overline{\text { to construct the uncount- }}$ ably infinite \mathbb{Z} by artificial rules but then its $<,>$, and $=$ conditions are not natural (from the x maps of diversity).

The $(n+1)$-ary operations $\times^{(n)}\left(\right.$ or $\left.\times_{(n)}\right)$ are the only natural operations inheriting the structure of x maps in a QR chain. The algebra they form can be denoted by $\mathcal{N}_{1} \equiv$ $\left(\mathbb{N}, \cdots, \underline{x^{(n)}}, \cdots, \underline{x},+,++, 0\right)$. The above simplifications form $\mathcal{N}_{2} \equiv\left(\mathbb{N}, \cdots, \operatorname{Pow}^{(n)}, \cdots, \operatorname{Pow}^{(1)}, \times,+,++, 0\right)$ which is not natural (only rely on counting x maps), since the simplifications in fact bring restrictions on $\times^{(n)}$. Obviously that $\forall n_{k} \in Q_{0}\left(n_{k} \neq n_{0}\right), \forall n \in \mathbb{N}, \exists n_{l}<n_{k}$, $\exists h_{1}, h_{2}, \cdots, h_{n} \in \mathbb{N}: n_{k}=n_{l+h_{1} \times h_{2} \dot{\times} h_{3} \ddot{\times} h_{4} \cdots \times{ }^{(n)} h_{n}}$, however not all $n_{k} \in Q_{0}$ are reachable by operation(s) of some restricted $\times^{(n)}$. For instance, $\forall n_{k} \in Q_{0}\left(n_{k}>n_{1}\right)$, $\forall h_{1}, h_{2} \in \mathbb{N}\left(h_{1}, h_{2}>1\right): n_{k}=n_{h_{1} \times h_{2}}$ is not true, which leads to the classes of prime and composite numbers. Another example is the radix $\forall r \in \mathbb{N}(r>1), \forall n_{k} \in Q_{0}$, $\exists n \in \mathbb{N}, \exists\left\{h_{i}\right\}_{n \geq i \in \mathbb{N}^{*}}\left(r>h_{i} \in \mathbb{N}\right): n_{k}=n_{\sum_{i} h_{i} \times \operatorname{Pow}^{(1)}(r, i)}$ leads to the base- r representation of natural numbers.

Vitally, any restrictions on the operations on the direct products $\prod Q_{0}$ is not only about naturally counting the x maps in Q_{0}, but imposing rules on replicas of Q_{0} which induce classes i.e. properties of QR vertices in Q_{0} in its sense. One has to distinguish other properties induced by restricted $\times^{(n)}$ operations, from the natural $=$ equivalence defined only by the count of x maps in Q_{0}.

For the general case where $n_{l} \prec n_{k}$ are QR vertices in the CR set but not necessarily in the NR chain above, one has $n_{m}-n_{0}=n_{k}-n_{l}$ defining the associative + : $C R \times C R \rightarrow C R,\left(n_{l}, n_{m}\right) \mapsto n_{k}$, but not commutative
since the CR set does not always hold $n_{m} \prec n_{k}$. The general + operation under \prec, as the inverse operation of - in the CR set, is guaranteed to be associative.

However, subsets of the CR set may hold commutativity, associativity, and other identities for operation + defined under the crystal order \prec. From now on, one refers tree to that crystal tree faithfully representing the crystal order between two QR vertices $n_{l} \prec n_{k}$ as in Fig. 8, and paths to some directed paths that links $n_{l} \prec n_{k}$ in their corresponding crystal tree. As shown in Fig. 9 , the crystal diagram starts with the NR vertex n_{0} and goes to $n_{a} \succ n_{0}$
by tree a, to $n_{b} \succ n_{0}$ by tree b, and note that n_{a} and n_{b} s.t. $n_{a} \nprec n_{b} \wedge n_{b} \nprec n_{a}$ are not necessarily the starting vertices of their corresponding QR chains. In the CR set there exists the QR vertex n_{a+b} that holds $n_{a+b} \succ n_{a}$ by tree b, and $n_{a+b} \succ n_{b}$ by tree a, thus holds the commutativity $n_{a}+n_{b}=n_{b}+n_{a}=n_{a+b}$ i.e. both $a+b$ and $b+a$ are paths in $n_{a+b} \succ n_{0}$. The CR subset $\left\{n_{\mu a+\nu b}\right\}_{(\mu, \nu) \in \mathbb{N} \times \mathbb{N}}$ fulliflls the commutativity, associativity, and closure with respect to the binary operator + , where $n_{(\mu+1) a+\nu b} \succ n_{\mu a+\nu b}$ by tree a and $n_{\mu a+(\nu+1) b} \succ n_{\mu a+\nu b}$ by tree b hold simultaneously. This CR subset generated by trees a and b forms a lattice.

Figure 9: The lattice simply generated by trees a and b under the crystal order.

More generally, a set of generator trees $\left\{a_{i}\right\}_{i \in I}$ s.t. $\forall i \neq j \in I: n_{a_{i}} \nprec n_{a_{j}} \wedge n_{a_{j}} \nprec n_{a_{i}}$ extracts the CR subset $L=\left\{n_{\mu^{i} a_{i}}\right\}_{i \in I}$ (Einstein auto sum) where $\forall j \in I$, $n_{\mu^{i} a_{i}+a_{j}} \succ n_{\mu^{i} a_{i}}$ by tree a_{j}, that forms a lattice in mathematics by defining $\curlyvee: L \times L \rightarrow L, n_{\mu^{i} a_{i}} \curlyvee n_{\nu^{i} a_{i}}=$ $n_{\max \left\{\mu^{i}, \nu^{i}\right\} a_{i}}$ as well as $\curlywedge: L \times L \rightarrow L, n_{\mu^{i} a_{i}} \curlywedge n_{\nu^{i} a_{i}}=$ $n_{\min \left\{\mu^{i}, \nu^{i}\right\} a_{i}}$. It is direct to verify the commutative laws, the associative laws, the idempotent laws, and the absorption laws of lattice $(L, \curlyvee, \curlywedge)$.

It also preserves the commutativity, associativity, and closure of the binary operator + when predecessing a tree $c_{\lambda^{1} \lambda^{2} \ldots \lambda^{i} \ldots}: n_{c_{\lambda^{1} \lambda^{2} \ldots \lambda^{i} \ldots}} \succ n_{0}$ where $n_{c_{\lambda^{1} \lambda^{2} \ldots \lambda^{i} \ldots}} \nprec$ $n_{\mu^{i} a_{i}} \wedge n_{\mu^{i} a_{i}} \nprec n_{c_{\lambda^{1} \lambda^{2} \ldots \lambda^{i} \ldots}}$ to the simply generated lattice $L=\left\{n_{\mu^{i} a_{i}}\right\}_{i \in I}$ raising $n_{\left(\mu^{i}+\lambda^{i}\right) a_{i}} \succ$ $n_{\mu^{i} a_{i}}$ by a tree including the paths of $c_{\lambda^{1} \lambda^{2} \cdots \lambda^{i} \ldots}$ with any constants $\left(\lambda^{1}, \lambda^{2}, \cdots, \lambda^{i}, \cdots\right) \subseteq \prod_{i \in I} \mathbb{N} \backslash$ $\{(0, \cdots, 0),(0, \cdots, 0,1,0, \cdots, 0)\}$. By predecessing countable trees of this kind, one gets a different subset of the CR set under the crystal order, that is still a lattice, which can be denoted as $\prod_{i} a_{i}+\sum_{\lambda} c_{\lambda}$ with its dimension
$\operatorname{dim} L=\left|\left\{a_{i}\right\}\right|$.
For instance, the simply generated tree in Fig. 9 can be accompanied by trees $c_{\rho \sigma}$ that raise $n_{(\mu+\rho) a+(\nu+\sigma) b} \succ$ $n_{\mu a+\nu b}$ by the tree including the paths of $c_{\rho \sigma}$, for any constants $(\rho, \sigma) \in \mathbb{N} \times \mathbb{N} \backslash\{(0,0),(0,1),(1,0)\}$. As shown in Fig. 10, one predecesses trees c_{11} and c_{21} to the simply generated lattice. The resulting lattice contains the QR vertices in the CR set, except for $\left\{n_{\mu a}, n_{\nu b}\right\}$, indeed different from those in Fig. 9. The QR vertex $n_{2 a+b} \succ n_{0}$ by tree $r=(a+a+b) \cup\left(a+c_{11}\right) \cup(a+b+a) \cup c_{21} \cup\left(c_{11}+a\right) \cup(b+a+a)$. Different paths of sums of embedded trees in the crystal tree shows the identities of operation + in the lattice, here for example $n_{2 a+b}$ yields $a+c_{11} \approx c_{11}+a$ and $a+a+b \approx a+b+a \approx b+a+a$. It is direct to see that the relation \approx, called paths equivalence, is an equivalence relation on paths, with equivalence classes separated by only the different QR vertices. The lattice ensures that $\forall a, b, c$: $a+b \approx b+a \wedge b+c \approx c+b \wedge a+c \approx c+a$ as well as the associativity under \approx inherited from the crystal order \prec for every path in L, as L is a subset of the CR set.

Figure 10: The lattice generated by trees a and b accompanied by trees c_{11} and c_{21} under the crystal order.

Given some specific generator trees $\left\{a_{i}\right\}_{i \in I}$, a badly specified lattice $(L, \curlyvee, \curlywedge)$ without the constraint of $\forall i \neq$ $j \in I: n_{a_{i}} \nprec n_{a_{j}} \wedge n_{a_{j}} \nprec n_{a_{i}}$ can be reduced to ($L^{\prime}, \curlyvee, \curlywedge$) if some elements of L indeed refer to the same QR vertex. Such a reduction due to bad definition of a lattice L from abstract notations a, b, \cdots of trees, has no complexity other than the identical expressions with embedded trees
$\left\{a_{i_{n}}\right\}_{i_{n} \in I_{n}}$ of a tree r s.t. $\forall i_{k} \in I_{k}: \lambda^{i_{k}}<\aleph_{0}$ and

$$
\begin{equation*}
r=\sum_{i_{1} \in I_{1}} \lambda^{i_{1}} a_{i_{1}}=\sum_{i_{2} \in I_{2}} \lambda^{i_{2}} a_{i_{2}}=\cdots=\sum_{i_{k} \in I_{k}} \lambda^{i_{k}} a_{i_{k}}=\cdots \tag{9}
\end{equation*}
$$

requiring that $\forall k \neq l:\left\{a_{i_{k}}\right\} \cap\left\{a_{i_{l}}\right\}=\emptyset$ since the lattice has already the commutativity and the associativity for + so that any tree $a_{i_{k l}} \in\left\{a_{i_{k}}\right\} \cap\left\{a_{i_{l}}\right\}$ can be eliminated in
$r=\lambda^{i_{k}} a_{i_{k}}=\lambda^{i_{l}} a_{i_{l}}$ in the sense of changing the starting vertex of r from n_{0} to $n_{a_{i_{k l}}}$.

The expression Eq. 9 i.e. identification of lattice elements is originated from the structure of a tree r that includes the trees $\left\{a_{i_{n}}\right\}$. Under the tree equivalence $=$ with respect to the crystal order (stricter than the equivalence \approx which is applied to paths), meaning that the same QR vertex is described by the associative sums of trees $\lambda^{i_{k}} a_{i_{k}}$ and $\lambda^{i_{l}} a_{i_{l}}, \exists i, j \in I_{k} \cup I_{l}$: all QR vertices in tree $a_{i}: n_{a_{i}} \succ n_{0}$ is a subset of QR vertices in tree $a_{j}: n_{a_{j}} \succ n_{0}$. More importantly, $\forall L\left(\lambda^{i_{k}} a_{i_{k}}=\lambda^{i_{l}} a_{i_{l}}\right)$, $\forall i_{k} \in I_{k}, \exists$ tree $e_{i_{k}}: \forall i_{l} \in I_{l}, \exists \lambda_{i_{k}}, \lambda_{i_{l k}} \in \mathbb{N}^{*}, \exists e_{i_{l k}} \in\left\{e_{i_{k}}\right\}:$ $\lambda_{i_{k}}, \lambda_{i_{l k}}<\aleph_{0} \wedge a_{i_{k}}=\lambda_{i_{k}} e_{i_{k}} \wedge a_{i_{l}}=\lambda_{i_{l k}} e_{i_{l k}}$. The proof is obvious when one takes the tree $e_{i_{k}}$ as the greatest common divisor (gcd) tree of $a_{i_{k}}$ and all $a_{i_{l k}}$ that paired with $a_{i_{k}}$ i.e. $a_{i_{k}} \prec a_{i_{l k}} \vee a_{i_{k}} \succ a_{i_{l k}}$. Here the \prec between trees in short denotes the crystal order \prec between the QR vertices that the two trees goes from n_{0}. The lattice s.t. $\forall i_{l} \in I_{l}, \exists i_{k} \in I_{k}: \lambda^{i_{l}} a_{i_{l}}($ no sum $)+\sum_{i_{l^{\prime}} \neq i_{l} \in I_{l}} \lambda^{i_{l^{\prime}}} a_{i_{l^{\prime}}}=$ $\lambda^{i_{k}} a_{i_{k}}$ (no sum) $+\sum_{i_{k^{\prime}} \neq i_{k} \in I_{k}} \lambda^{i_{k^{\prime}}} a_{i_{k^{\prime}}}$ and vice versa, thus ensures that $\forall a_{i_{l}}$ is paired with an $a_{i_{k}}$ and be that $a_{i_{l k}}$ (due to $a_{i_{k}} \nprec a_{i_{l}} \wedge a_{i_{l}} \nprec a_{i_{k}} \Rightarrow r=a_{i_{k}}+\cdots=a_{i_{l}}+\cdots$ LHS and RHS are only paths of r but not the tree r). A tree $e_{i_{k}}^{\prime}$ s.t. $a_{i_{k}}=\lambda_{i_{k}}^{\prime} e_{i_{k}}^{\prime} \wedge a_{i_{l k}}=\lambda_{i_{l k}}^{\prime} e_{i_{k}}^{\prime}$ exists otherwise $\nexists \lambda_{i_{k}}, \lambda_{i_{l k}} \in \mathbb{N}^{*}: r=\lambda_{i_{k}} a_{i_{k}}=\lambda_{i_{l k}} a_{i_{l k}}$ (the difference - between ordered trees in r is still a tree in the minuend tree, and by doing the difference iteratively one at least reaches a gcd tree that is the divisor of original minuend and subtrahend trees). The order \prec is a total order in $\left\{a_{i_{k}}, a_{i_{l k}}\right\}$ since for any trees $a_{i_{l k}}$ and $a_{i_{l^{\prime} k}}$ in the lattice, $\exists e_{i_{k}}^{\prime}$ hold the above identity with $\lambda_{i_{l k}}^{\prime}$ and $\lambda_{i_{l^{\prime} k}}^{\prime}$ for both $\left\{a_{i_{k}}, a_{i_{l k}}\right\}$ (the + is commutative, and by doing the difference between the their gcd trees one must get a finite gcd tree since the QR vertices in the CR set are discrete), hence $a_{i_{l k}} \prec a_{i_{l^{\prime} k}} \vee a_{i_{l k}} \succ a_{i_{l^{\prime} k}}$. The finiteness of lease common multiple $\operatorname{lcm}\left(\lambda^{i_{k}}, \lambda^{i_{l k}}\right)$ ensures the uniqueness of gcd tree $e_{i_{k}}$ under the total order \prec among $a_{i_{k}}$ and all $a_{i_{l k}}$, such that $\forall e_{i_{k}}^{\prime}: e_{i_{k}}^{\prime} \prec e_{i_{k}}, a_{i_{k}}=\lambda_{i_{k}} e_{i_{k}}, a_{i_{l k}}=\lambda_{i_{l k}} e_{i_{k}}$, and (proof omitted) $\lambda_{i_{k}}, \lambda_{i_{l k}} \leq \operatorname{lcm}\left(\lambda^{i_{k}}, \lambda^{i_{l k}}\right)$.

In this case of $\lambda^{i_{k}} a_{i_{k}}=\lambda^{i_{l}} a_{i_{l}}$, one calls L reducibly generated. Suppose $\left|I_{k}\right| \leq\left|I_{l}\right|$, one can induce the reduction $\pi: L \rightarrow L^{\prime}, n_{\mu^{i} a_{i}} \mapsto n_{\mu^{\prime i} a_{i}^{\prime}}$ such that

$$
\mu^{\prime i} a_{i}^{\prime}=\left\{\begin{array}{l}
\mu^{i} a_{i}, \quad a_{i} \notin\left\{a_{i_{k}}\right\} \cup\left\{a_{i_{l}}\right\} \text { i.e. } i \notin I_{k} \cup I_{l} \tag{10}\\
\frac{\mu^{i} \lambda^{i}}{\operatorname{gcd}\left(\lambda^{i} \lambda^{i} \lambda_{k}\right)} e_{i}, \quad i=i_{k} \in I_{k} \\
\frac{\mu^{i} \lambda^{i} l_{k}}{\operatorname{gcd}\left(\lambda^{i} k, \lambda^{i} l_{l k}\right)} e_{i_{k}}, \quad i=i_{l k} \in I_{l}
\end{array}\right.
$$

in which $\operatorname{gcd}\left(\lambda^{i_{k}}, \lambda^{i_{l k}}\right)$ or $\operatorname{lcm}\left(\lambda^{i_{k}}, \lambda^{i_{l k}}\right)$ includes all $\lambda^{i_{l k}}$ for $a_{i_{l k}}$ paired with $a_{i_{k}}$ inside the parenthesis. The dimension lowers down by $\operatorname{dim} L-\operatorname{dim} L^{\prime}=\max \left\{\left|I_{k}\right|,\left|I_{l}\right|\right\}=\left|I_{l}\right|$. Starting from a reducibly generated L, by doing all reduction(s) one will finally get an irreducibly generated L by generator trees $\left\{a_{i}\right\}_{i \in I}$ s.t. $\nexists J, K \subseteq I, \lambda^{j}, \lambda^{k} \in \mathbb{N}^{*}$, tree r : $J \cap K=\emptyset \wedge r=\sum_{j \in J} \lambda^{j} a_{j}=\sum_{k \in K} \lambda^{k} a_{k}$.

Clearly, by using generator trees $\left\{a_{i}\right\}_{i \in I}$ s.t. $\forall i, j \in I$, $a_{i} \nprec a_{j} \wedge a_{j} \nprec a_{i}$, one can avoid the specified lattice L to be a reducibly generated one.

The generator trees of an irreducibly generated lattice L is called principal trees in L, with their corresponding QR vertices from n_{0} called principal vertices in L. For QR vertices n_{k} and n_{l} generating a lattice $L, n_{k} \nprec n_{l} \wedge n_{l} \nprec n_{k}$ infers that n_{k} and n_{l} are coprincipal, but coprincipal ver-
tices n_{k} and n_{l} can hold $n_{k} \prec n_{l} \vee n_{l} \prec n_{k}$ as long as they don't have a common divisor vertex n_{e}. In the case of $n_{l} \prec n_{k}, L=a_{l} \times a_{k}$ is instead generated by $a_{l}: n_{l} \succ n_{0}$ and $a_{k-l}: n_{k} \succ n_{l}$.

Principal QR vertices are those QR vertices that are principal in all possible lattices L. There is no principal QR vertices other than n_{1} in Q_{0}. All QR vertices in Q_{1} is principal, but not all QR vertices in $Q_{n}(n>1)$ is principal. For instance, the QR vertex $\left\{m=0 ; m_{1}=\right.$ $\left.0, m_{2}=4 ; m_{11}=0, m_{12}=4, m_{21}=0, m_{22}=4\right\}$ in $P_{1} \subset Q_{2}$ is not principal, but $\left\{m=0 ; m_{1}=1, m_{2}=\right.$ $\left.3 ; m_{11}=0, m_{12}=4, m_{21}=0, m_{22}=4\right\}$ is principal, and $\left\{m=1 ; m_{1}=0, m_{2}=2 ; m_{11}=0, m_{12}=3\right\}$ is principal.

In summary, the x maps hold the solid structure of all QR vertices in the CR base. This structure is understood to be of two main aspects:

1. Intra QR chains: Algebra \mathcal{N}_{1} counting the specific numbers of \bar{x} maps. The count leads to natural relations $<,>,=$ and natural operations $\times^{(n)}$ that hold their corresponding basic properties on $\overline{\mathrm{QR}}$ vertices.
2. Inter QR chains: CR subsets forming lattices L under the crystal order of x maps. The structure of specified CR subsets L leads to natural relations \prec, \succ, $=$ (tree equivalence), \approx (paths equivalence) and natural operation + (and its iterated operations) that hold their corresponding basic properties including the algebra of trees under \approx with the commutative, associative + and the principality of QR vertices.

5.2 Sequential space

On the CR base, all possible RR maps allow for sequential excitations which are characterized by direct products on replicas of CR set and the RR maps. Restrictions on maps involving direct products of CR subsets and x / z maps lead to properties or classes of QR vertices and x / z maps other than the natural ones. As previously shown in \mathcal{N}_{2}, possible restrictions and their derived properties are severely uncountable. It is extremely impossible to examine all of them as they count for all realities of The Reality yet one is in only its own reality. However, rules of one's own reality is not uncountable thus one has to comply to pragmatism on mathematics, if one wants only to cover the characteristics of its own physical world.

The methodology and its implementations for one to fetch mathematical tools and examine its reality is diverse and mostly out of the scope of current documentation. Below one shows only some examples of constructions on the CR set replicas with the RR maps.

In mathematics, an irreducibly generated lattice $(L, \curlyvee, \curlywedge)$ of a CR subset under \prec is distributive (distributive i.e. $\forall a, b, c \in L: a \curlywedge(b \curlyvee c)=(a \curlywedge b) \curlyvee(a \curlywedge c)$ i.e. $a \curlyvee(b \curlywedge c)=(a \curlyvee b) \curlywedge(a \curlyvee c))$ hence modular (modular i.e. $\forall a, b, c \in L: a \preceq b \Rightarrow a \curlyvee(b \curlywedge c)=b \curlywedge(a \curlyvee c))$, but neither a complete lattice (complete i.e. $\forall A \subseteq L$, $\exists \sup A, \inf A: \sup A \in L \wedge \inf A \in L)$ nor a compactly generated lattice (compactly generated i.e. $\forall n_{l} \in L, \exists G \subset L$: $n_{l} \in \sup G \wedge \forall n_{g} \in G, \forall A \subseteq L\left(\sup A \subseteq L \wedge n_{g} \preceq \sup A\right)$, $\left.\exists B \subseteq A:|B|<\aleph_{0} \wedge n_{g} \preceq \sup B\right)$ hence not algebraic. However, it is obvious that any finite sublattice of such $(L, \curlyvee, \curlywedge)$ is algebraic.

To fetch some algebraic lattices under the crystal order, one induces a projection, which is a collection of RR maps,
$\theta_{\lambda^{1} \lambda^{2} \cdots \lambda^{i} \ldots .}: L \rightarrow \bar{L}, n_{\mu^{i} a_{i}} \mapsto n_{\bar{\mu}^{i} a_{i}}$ where

$$
\bar{\mu}^{i}=\left\{\begin{array}{l}
\mu^{i}, \quad a_{i} \notin\left\{a_{i_{k}}\right\} \cup\left\{a_{i_{l}}\right\} \text { i.e. } i \notin I_{k} \cup I_{l} \tag{11}\\
\mu^{i} \bmod \lambda^{i}, \quad i=i_{k} \in I_{k} \vee i=i_{l} \in I_{l}
\end{array}\right.
$$

appeared the binary operator $\bmod : \mathbb{N} \times \mathbb{N}^{*} \rightarrow \mathbb{N}$ of the usual definition on natural numbers. The $\bmod (\mu, \lambda)$ operator is defined by fixing λ to be a constant in $\underline{x}: n_{\mu}=$ $n_{\bar{\mu}}+h_{1} \times \lambda$ in \mathcal{N}_{1} and inversing the order of variables in the tuple, from $\left(n_{\bar{\mu}}, \lambda\right) \mapsto n_{\mu}$ to $\left(n_{\mu}, \lambda\right) \mapsto n_{\bar{\mu}}$, which is the same tuple inversion as in the definition of + from - on QR vertices in the previous Sections. The image \bar{L} is a finite thus algebraic lattice. One can define the unary operation
${ }^{-1}: \bar{L} \rightarrow \bar{L}$ by $n_{\bar{\mu}^{i} a_{i}} \mapsto n_{\left(\lambda_{-}^{i}-\bar{\mu}^{i}\right) a_{i}}$ and define the nullary operation e as n_{0} so that $\left(\bar{L}, \bar{\mp},{ }^{-1}, e\right)$ forms an Abelian group, with $\bar{\mp}$ compatibly induced in \bar{L} by θ from the natural + . It is direct to see the structure of finite Abelian groups $\prod_{i} Z_{i}$ corresponds to this lattice construction $n_{\bar{\mu}^{i} a_{i}}$ with any principal trees $a_{i}(i \in \mathbb{N})$. As shown in Fig. 11, the quotient lattice $\bar{L} \ni n_{\bar{\mu} a}$ with $\lambda=4$ presents the group Z_{4}, and the quotient lattice $\bar{L} \ni n_{\bar{\mu}^{1} a_{1}+\bar{\mu}^{2} a_{2}}\left(a_{1}=a, a_{2}=b\right)$ with $\lambda^{1}=3$ and $\lambda^{2}=2$ presents the group $Z_{3} \times Z_{2}$. Morphisms, direct products, actions, classes, and other properties in Group Theory can also be defined on replicas of \bar{L} 's.

Figure 11: The quotient lattice \bar{L} presenting the Abelian groups Z_{4} and $Z_{3} \times Z_{2}$.

For presenting non-Abelian groups, the lattice L is no longer commutative with respect to + , while it inherits the associativity of + from the crystal order \prec. Given n generators $\left\{a_{i}\right\}_{1 \leq i \leq n \in \mathbb{N}}$, the number of permutations $P\left(a_{i}^{1}+a_{i}^{2}+\cdots+a_{i}^{k}\right)\left(k \in \mathbb{N}^{*}\right)$ is n^{k}. The above congruent projection $\theta_{\lambda^{1} \lambda^{2} \ldots \lambda^{i} \ldots}: L \rightarrow \bar{L}$ no longer holds for L because of the non-commutativity of tree sums. If one finds another congruence θ that close the entire n^{k} space without deriving the commutativity then it appears a nonAbelian finite group. This means that the subspace $k^{i} a_{i}$ ($k^{i} \in \mathbb{N}^{*}$) must be closed by θ, hence in any non-Abelian finite group ($\tilde{L}, \tilde{+},{ }^{-1}, e$) any generator a_{i} obeys a relation
$\forall i \leq n, \exists \lambda^{i} \in \mathbb{N}: e \simeq n_{0} \simeq n_{\lambda^{i} a_{i}}$ or denoted as $\lambda^{i} a_{i} \simeq e$. One has to estimate the reduction of permutation space n^{k} by this relation \simeq when k is sufficiently large, and that the additional relations which ($\tilde{L}, \tilde{+},{ }^{-1}, e$) holds together with the λ^{i} 's should eventually lead to a finite permutation space when k is very large. For instance, one lets $a_{1} \equiv r, a_{2} \equiv s$, $\lambda^{1}=3, \lambda^{2}=2, \theta_{1}: r r \simeq s r s, \theta_{2}: r s \simeq s r r, \theta_{3}: s r \simeq r r s$, $\theta_{4}: s \simeq r s r$, then the quotient $\tilde{L}=L /\left\{\lambda^{1}, \lambda^{2}, \theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right\}$ is finitely closed, presenting the dihedral group of order 6 a.k.a. D_{3} as shown in Fig. 12 in which the dashed red lines mark the congruence from λ, dashed blue lines from θ, and dashed pink/cyan lines derived by the lattice associativity.

Figure 12: The quotient lattice \tilde{L} presenting the non-Abelian group D_{3}.

Overall, the discovery of such θ congurences is out of the scope of the current documentation. One should always be aware of that understanding the structure of CR base does not necessarily mean that one exhausts all the properties or classes in mathematical structures derived from restricted natural operations on replicas of the CR subsets and the x / z maps. Even the finite rules founding one's own reality
is far from one's limited border of observations and knowledge. For a quick guess, one may name the RR maps of its reality as "quintessences" with mass at moment h / c^{2} $[\mathrm{M} \cdot \mathrm{T}]$ forming the space and mass assemblies of constant numbers of RR maps per moment $\left[\mathrm{T}^{-1}\right]$ ruled by physical laws with their spins and charges. The RR maps provide only the framework but not the direct results for physics.

[^0]: *Applied license to this document: CC BY-NC-SA 4.0
 ${ }^{\dagger}$ This is not a paper for publishment nor a research for you, whatever chaebol you are. Also don't pretend as if you have somewhere in history the philosophy, definition, and structure of RR maps in your poorly applied but highly dominated set theories.

[^1]: ${ }^{1}$ The general form of operators - and + are defined by the crystal order $n_{l} \succ n_{k}$ or their z maps, see later the Section 5

