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Abstract

This document introduces the genesis and cardinal struc-
ture of existences, philosophically derived by the two con-
cepts of certainty and diversity. All existences constructed
by the x diversity maps is the base structure of The Re-
ality, on which sequential excitations of z diversity maps
found realities. Natural and other classes of existences in
The Reality are partially characterized.
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1 NR vertex

One tries to recognize the genesis of everything.

Suppose one has the concept of certainty, that finds an
existence. One names the existence first found. This ex-

istence can have arbitrary aliases such as the null-reality
(NR) vertex, or n0. Aliases or expressions attached to it
are only for the convenience to speak but irrelevant to it-
self. As illustrated in Fig. 1, one is only certain about the
existence of the NR vertex.

Figure 1: The NR vertex.

2 QR vertices

One wants to be certain about other existences. Based on
the concept of certainty, one can find existence. However,
any existence found is not a second existence unless one
tells that the found existence is different from the first one
i.e. the NR vertex n0. Suppose one has also the concept of
diversity, to name an existence diverse from existence(s)
one already named. A map of diversity

x0 :

{
R0 → C0

n0 7→ n1

(1)

demonstrates how the existence of n1 is named given that
the existence of n0. For x0, the known existence is n0.
The term R0 denotes all named existence(s), where for x0

it is n0. The term C0 denotes all possible existence(s) to-
be-named that is different from named existence(s) in R0.
The existence found by the concept of certainty and named
by x0 is labeled by n1, or any other aliases. As illustrated
in Fig. 2, the integrity of co-existing n0 and n1, as well as
other named existences called quantized-reality (QR) ver-
tices, is only originated from the map of diversity which
defines a certain existence only from named existences.

Figure 2: Two QR vertices and the map of diversity.

The incompleteness of the concept of diversity lies in
that the diversity map itself is a certain thing but not a
certain existence. A similar incompleteness in Axiomatic
Set Theory is that the set operation s : p 7→ {p} collecting
element(s) p itself is an object but not in constructed sets.

Here, any named existence is above the “surface” of con-
ceptual incompleteness. One choose not to have iterative
set operation (fictitious abstraction) like {{{n0}}} or else.
The only fact is the co-existence of QR vertices linked by
diversity maps, which restricts the term set in use here to
only the collection of existences named by diversity maps,
and the diversity maps from named existences. This allows
one to focus on the exact structure revealing The Reality.

3 CR set

One clarifies the map of diversity, generically

xs :

{
RS → CS

RS ⊇ {ns} 7→ nr /∈ RS

(2)

in which S is the label for a set RS of QR vertices, and
s is the label for elements ns in a subset of RS . At xs, a
new existence nr is named a.k.a. defined by the concept of
diversity from the QR vertices {ns} already named in RS .

One asks how large a realized set RS can exist. One
questions whether at last for some S, one cannot name any
existence in CS . One is indeed asking what is the structure
of all existences.

One first focus on the case of special x̄ maps of diversity
satisfying x̄s : |{ns}| = 1. Under this kind of maps only, one
finally reach a sequence of named existences: n0, n1, n2, · · · .

To see it clearly, one first define a natural relation <
from the maps of diversity between two named existences
nk and nl (k, l = 0, 1, 2, . . .) in a realized set R: the rela-
tion nl < nk holds iff nl maps to nk under some x̄ map(s),
otherwise nl ≮ nk. By definition of diversity maps one
knows that i) nk ≮ nk; ii) nk < nl ⇒ nl ≮ nk; iii)
nk < nl ∧ nl < nm ⇒ nk < nm. Hence < (or ≤) from the
x maps forms an order on arbitrary set RS . Samely RS is
endowed with the > order (or ≥), i.e. nk > nl iff nl maps
to nk under some x̄ map(s), otherwise nk ≯ nl.

One considers for any Rk = {n0, n1, . . . , nk} and any
nl < nk, x̄l : nl 7→ nr, one knows that both nr and the ex-
isting nl+1 ∈ Rk are defined only by the diversity from nl

hence nr is already named as nl+1. Since x̄l : |{nl}| = 1, nr

has no diversity map from nl+1. The only new map of such
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x̄ from Rk is x̄k : nk 7→ nr hence one derives the chain of
existences under only x̄ maps, as illustrated in Fig. 3. One
calls it a QR chain Q0. One may not know what are natu-
ral numbers yet but indeed this QR chain can be aliased by
(N, <) with the < usual order. The number of QR vertices
a.k.a. the cardinality of the QR chain is denoted by ℵ0 and

called countably infinite. The term “countably infinite” at
present is only originated from the x̄ maps s.t. ∀nk ∈ Q0,
∃|ℵ0: k < ℵ0, since the above property of x̄ maps holds
∃|Q0: n0 ∈ Q0 ∧ (∀nk ∈ Q0, ∃|nr ≡ nk+1: nr ∈ Q0).
If one has to axiomize the concept of diversity, then this
trivial property stands for the Axiom of Infinity.

Figure 3: The countable chain Q0 of QR vertices is derived under only x̄ maps.

On this realized QR chain, one then1 define an op-
eration − on nk > nl > n0 as − : (nk, nl) 7→ ns i.e.
nk − nl = ns where nl maps to nk under the same num-
ber of x̄ map(s) that n0 maps to ns. The named existence
ns ∈ R can be denoted as nk−l. For any three QR ver-
tices satisfying nk − nl = ns, rewriting nl + ns = nk one
defines + : (nl, ns) 7→ nk. Since i) nk − nl = ns ⇒ nk >
ns > n0 ⇒ nk − ns = nl, one knows if + : (nl, ns) 7→ nk

then + : (ns, nl) 7→ nk which is the commutative law for +;
ii) (nm − nk) − nl = ns ⇒ nm − nk = nu = ns + nl,
(nm − nl) − nk = nt ⇒ nm − nl = nv = nt + nk so
nm = nu + nk = nv + nl = (ns + nl) + nk = (nt + nk) + nl,
while ns = nu − nl, nt = nv − nk so nv > nk > n0,
nu > nl > n0 ⇒ nu = (nv − nk) + nl ⇒ (nu − nl) = (nv −
nk) ⇒ ns = nt, one knows (ns + nl) + nk = (ns + nk) + nl

which is the associative law for +. From the derivations
i) and ii) one knows that the + commutativity requires
only ∀nk > nl ⇒ nk − nl < nk, and the + associativ-
ity does not rely on the commutativity but requires just
∀nm > nk, nm > nl, nm − nk > nl ⇒ nm − nl > nk.
It is obvious that ≤ on the QR chain is a total order s.t.
nk ≤ nl ∨ nl ≤ nk, so the requirements are naturally met.

One then considers the general x̃ maps of diversity

x̃s :


RS → CS

RS ⊇ {ns} 7→ nr /∈ RS

|{ns}| > 1

(3)

where the cardinality of the predecessor set {ns} can be
finite from several QR vertices, or countably infinite from
the entire QR chain, or else.

Figure 4: The uncountable set P0 of QR vertices is derived under a x̃ map from the countable QR chain Q0.

In order to derive the possibly largest realized set RS ,
one calls it the constructed-reality (CR) set CR, and start-
ing from the NR vertex, one first has derived the QR chain
Q0 ⊂ CR from only the x̄ maps. At RS = Q0, due to
the uniqueness of Q0 one cannot name another QR vertex

using the x̄ map hence one has to use the x̃ maps starting
from Q0. Under a single x̃ map from Q0, one names the
existences diversified from QR vertices in Q0 subsets. As
illustrated in Fig. 4, one denotes all the QR vertices named
by the x̃ maps from Q0 as the set P0.

Figure 5: The set Q1 including uncountable numbers of QR chains is derived under x̄ maps from Q0 ∪ P0.

1The general form of operators − and + are defined by the crystal order nl ≻ nk or their z maps, see later the Section 5.
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For any QR vertices nr1 and nr2 in P0, their prede-
cessor sets {ns1} and {ns2} of the x̃s1 and x̃s2 maps, are
two different subsets of Q0. By definition of the x diver-
sity maps, nr1 and nr2 are indeed two different QR ver-
tices. This ensures P0 being unique. If axiomized, the
obvious property of x̃ maps ∀i (∀{nk} ⊆ Qi, ∀nr, ∀ns:
(x̃ : {nk} → nr ∧ x̃ : {nk} → ns) ⇒ nr = ns), ∀Qi,
∃{np} ⊆ Pi: ∀npl ∈ {np}, ∃|{nl} ⊆ Qi: x̃ : {nl} → npl

explains the Axiom of Replacement, and here i = 0.
One can see |P0| > |Q0| very straightforward by consid-

ering that if there is a bijective map b̄ : Q0 → P0 as some
directed edges selected from all the x̃ maps, then the QR
vertices {nl} ⊆ Q0 s.t. ∀nl ∈ {nl} (∄x̃ : {· · · , nl, · · · } 7→
b̄(nl)), ∀x̃({nl}) = nxl ∈ P0, ∃nb ∈ Q0: b̄(nb) = nxl how-

ever contradicts with nb ∈ {nl} ⇒ ∄x̃ : {· · · , nb, · · · } 7→
b̄(nb). One can thus denote the cardinality of P0 as ℵ1 > ℵ0

and call every cardinality greater than Q0 uncountable.
Starting from Q0 and P0, under only the x̄ maps one

derives uncountably infinite numbers of QR chains, each
begins with a QR vertex in P0. As illustrated in Fig. 5, one
denotes P0 and the QR vertices in the QR chains derived
in this step as set Q1, so P0 ⊂ Q1, and |Q1| = ℵ1.

At RS = Q0 ∪Q1, one cannot name another QR vertex
using the x̄ map hence one has to use the x̃ map starting
from Q0 ∪ Q1. Under a single x̃ map from Q0 ∪ Q1, one
names the existences diversified from elements in the power
set of Q0 ∪Q1. As illustrated in Fig. 6, one denotes all the
QR vertices named by the x̃ maps from Q0 ∪Q1 as set P1.

Figure 6: The uncountable set P1 of QR vertices is derived under a x̃ map from Q0 ∪Q1.

Following the above prove of ℵ1 > ℵ0, one can see from
the property of x̃maps that the cardinality of P1 is ℵ2 > ℵ1.
The sequence of diversity maps

x̄ . . . x̄︸ ︷︷ ︸
All, ℵ0

x̃ x̄ . . . x̄︸ ︷︷ ︸
All, ℵ0

x̃ x̄ . . . x̄︸ ︷︷ ︸
All, ℵ0

x̃ . . . . . .

︸ ︷︷ ︸
ℵ0

(4)

starting from the NR vertex, derives the CR set. The to-
tal number of each x̄ . . . x̄x̃ period must be countable, since
each period only relies on the realized set from its previ-
ous period that these periods, in the same way as exis-
tences named by x̄ diversity maps, form a QR chain which
is countable. The cardinality of Qi is ℵi for all i ∈ N. The
CR set can be expressed as

CR =
.⋃

i∈N
Qi (5)

To prove Eq. 5, one considers a QR vertex nr not named
at CR. The NR vertex n0 has a directed path to nr since
nr is a named existence and only diversity maps can name
it, starting from the NR vertex. If the directed path is
countable then the proof is trivial. If the directed path is
uncountable, the cardinality of such definition through x
maps to reach this QR vertex contradicts with the count-
ably infinite x̄ . . . x̄x̃ period i.e. Peano predecessor in Eq. 4.

The CR set is what one can get with only the two con-
cepts of certainty and diversity, starting from the NR ver-
tex. The Axiomatic Set Theory has derived similar struc-
ture by seeing the NR vertex as the empty set ∅, the x
maps as the set operation s, and the directed edges here
as the ∈ relation between sets. However the set operation
brings nonessential vagueness that may blind human from
seeing The Reality, since one cannot buy that the QR ver-
tices, i.e., those ordinal numbers in Axiomatic Set Theory,
already represented everything one observes in reality.

For any QR vertex in the CR set, i.e., countably reach-
able existence by maps of diversity, one can mark it with a

natural number m, indicating that it is the m-th QR ver-
tex in its QR chain. Then the starting point of the QR
chain nr1 is marked by a repeatable set of natural numbers
{mr1}r1 , indicating that each QR vertex in the predecessor
set of nr1 is the mr1-th QR vertex in its QR chain. By
marking all predecessor sequences down to the NR vertex,

{m,mr1 ,mr1r2 ,mr1r2r3 , · · · }r1,r2,r3,··· (6)

one locates the QR vertex in the CR set.

4 RR maps

From definition of x maps there is no directed loop in the
directed graph of the CR set. This is because the directed
edges are only the x maps. Referring to the concept of
diversity, known diverse existences can be confirmed by di-
versity maps too. One calls these maps post-CR diversity
maps, or represented-reality (RR) maps, or z maps.

Note that for any two QR vertices nk and nl, one and
only one must hold among i) nk < nl i.e. there exists a
directed path from nk to nl; ii) nl < nk i.e. there exists
a directed path from nl to nk; iii) nk ≮ nl and nl ≮ nk

under the order < of directed path. A z map from nk to nl

in the case ii) forms a finite directive loop in the QR path
where nk and nl exists. A z map from nk to nl in the case
i) or iii) indeed is an existing x map with {nk} ∪ P (nl) its
predecessor set, where P (nl) denotes the predecessor set
of nl. Therefore, an RR map must map between two QR
vertices connected by a directed path and form a directed
loop in the CR set.

The special case is for all the QR vertices in any path
from nl to nk, not including nl, its predecessor set only in-
cludes the QR vertices ns that nl ≤ ns. This special case is
denoted nl ≺ nk. One can mark the special RR map from
nk to nl, i.e., the relative location between nk ≻ nl by the
repeatable set

{m,mr1 ,mr1r2 ,mr1r2r3 , · · · }r1,r2,r3,··· (7)

tracing only the directed paths of x maps from nl to nk.
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This mark is the same as marking a QR vertex nr starting
from the NR vertex n0.

The general case is nl ⊀ nk, i.e., ∀nl < nk, ∃nc: nc ≺ nl,
nc ≺ nk. One can select the QR vertex nc0 closest to nl

and nk such that ∃|nc0 : nc0 ≺ nl, nc0 ≺ nk, ∀nc ̸= nc0 :
nc < nc0 . In this case, the general RR map can be marked
by two repeatable sets in Eq. 7. One is for nc0 ≺ nk which

is called the minuend set, and the other one is for nc0 ≺ nl

which is called the subtrahend set. The two sets keep the
complete information of the general RR map from nk to nl

where nl < nk but nl ⊀ nk.
The relation ≺ (or ⪯), as well as its dual ≻ (or ⪰),

forms a partial order on the CR set. For convenience one
says nl ≮ nk ⇒ nl ⊀ nk. One calls ≺ the crystal order.

Figure 7: An example of special RR map from nf to ni where ni ≺ nf .

For instance, one considers the example of special RR
map from nf to ni shown in Fig. 7. The repeatable set for
ni ≺ nf or equivalently this RR map can be written as:

m = 2;

m1 = 2, m2 = 2;

m11 = 1, m12 = 0, m13 = 2, m21 = 1, m22 = 3;

m111 = 0, m112 = 1, m121 = 0, m122 = 1, m123 = 2,

m131 = 0, m132 = 1, m133 = 2,

m211 = 0, m212 = 1, m213 = 2.

(8)

The mark is equivalent to the tree shown in Fig. 8, which
is called the tree representation of ni ≺ nf or the RR map.
In this tree, the root is m = 2. All nodes are numbers cor-
responding to the repeatable set. All leaves are QR vertices
on the QR chain where ni exists. Starting from this QR

chain and recursively, two nodes in the tree can be recog-
nized as on a same QR chain if and only if their branching
nodes are the same numbers that correspond to the same
recognized QR chains.

The tree representation is free from the lower indices
of m’s in the set representation. The permutation of lower
indices is redundant information, so that the tree represen-
tation is faithful to the crystal order and special RR maps.

On the CR set, one root, any natural numbers and
more-than-one branches for any branching nodes, and also
any layers are allowed for the representation tree of a possi-
ble RR map, as long as any nodes of the same number must
not exist on the same QR chain, due to the uniqueness of
QR vertices in the CR set. Starting from the leaves, this
condition can be implemented layer by layer.

Figure 8: The tree representation of the example RR map from nf to ni.

For general RR maps on nl < nk ∧ nl ⊀ nk from nk

to nl, the minuend set and the subtrahend set correspond
to the minuend tree and the subtrahend tree, respectively.

For fast comprehension, the CR set is the base space,
the vacuum, or the ground state upon all the named exis-
tences, while all the possible RR maps are its excitations.

5 Realistics

A reality or a physical world is a sequence of some RR
maps, with the sequence called time, endowed with a total
order that is derived from certain rules in a sense of mini-
mal diversity. A moment in the sequence of reality is some
RR maps excited on the base of The Reality i.e. the CR
set. In that sense of non-minimal diversity, the total order
of a reality can also be embedded into some partial ordered

lattices of realities containing the sequence of that reality.

RR maps are not unique thus allow replicas of the CR
set, and thus direct products on QR vertices or x/z maps.

The role of a reality in The Reality is as small as the
rate between ℵ0 (its RR excitations) and ℵℵ0 (the all pos-
sible RR excitations). Hence normally it is not an efficient
way to exhaust all possibilities of RR maps in The Reality
to solve realistic problems.

However one wants to take whatever imaginable tools
in The Reality into consideration when facing its reality.
These tools, recognized as mathematical structures, are se-
quences of x/z maps under certain constraints. Before ex-
poring the uncountable possibilities of RR maps and hid-
den rules of their sequences, one starts with the x maps of
diversity which in natural construct the CR base.
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5.1 Natural basis

Naturalness refers to the exact and unique structure of CR
set, the static base of The Reality. The x maps of diversity
in the CR set first define the natural conditions for if-then
branches. These conditions include:

• < / ≮. ∀nk, nl: nk < nl ∨̇ nk ≮ nl.

• > / ≯. ∀nk, nl: nk > nl ∨̇ nk ≯ nl.

• ≺ / ⊀. ∀nk, nl: nk ≺ nl ∨̇ nk ⊀ nl.

• ≻ / ⊁. ∀nk, nl: nk ≻ nl ∨̇ nk ⊁ nl.

• = / ̸=. ∀nk, nl: nk = nl ∨̇ nk ̸= nl.

For the simplest case ∀nk, nl in a QR chain, one and only
one of these three cases holds: nk < nl ⇔ nk ≺ nl, or
nk > nl ⇔ nk ≻ nl, or nk = nl.

The structure of diversity maps in the CR set defines the
natural operations to forall-exists statements. These
operations include:

• −. ∀nl ≺ nk, ∃|nm: nm − n0 = nk − nl i.e. the tree
representation of nl ≺ nk is the same tree represen-
tation of n0 ≺ nm.

For the simplest case ∀nk, nl, n0 in the QR chain Q0,
∀nl < nk, ∃|nm: nm − n0 = nk − nl ⇔ nm < nk ⇔
nl − n0 = nk − nm thus defining nl + nm = nm + nl = nk.
In this QR chain Q0 starts with the NR vertex n0, natural
operations of for-loop iterations are:

• ++ : Q0 → Q0. ∀nk, ∃|nk+1: nk++ = nk+1.

• + : Q0×N → Q0. ∀nk, h1, ∃|nk+h1
: nk+l = nk+h1 =

nk ++ . . .++︸ ︷︷ ︸
#h1

.

• × : Q0 × N × N → Q0. ∀nk, h1, h2, ∃|nk+h1×h2
:

nk+h1×h2
= nk + h1 × h2 = nk +h1 . . .+h1︸ ︷︷ ︸

#h2

.

• ×̇ : Q0 × N × N × N → Q0. ∀nk, h1, h2, h3,
∃|nk+h1×h2×̇h3

: nk+h1×h2×̇h3
= nk + h1 × h2×̇h3 =

nk + h1 ×h2 . . .×h2︸ ︷︷ ︸
#h3

.

• ×̈ : Q0 × N × N × N × N → Q0. ∀nk, h1, h2, h3, h4,
∃|nk+h1×h2×̇h3×̈h4

: nk+h1×h2×̇h3×̈h4
= nk + h1 ×

h2×̇h3×̈h4 = nk + h1 × h2 ×̇h3 . . . ×̇h3︸ ︷︷ ︸
#h4

= nk +

h1 ×

×h2 . . .×h2︸ ︷︷ ︸
#h3

 ×̇h3 . . . ×̇h3︸ ︷︷ ︸
#(h4−1)

= nk + h1 ×


×h2 . . .×h2︸ ︷︷ ︸

#h3

 . . .

×h2 . . .×h2︸ ︷︷ ︸
#h3


︸ ︷︷ ︸

#h3

 ×̇h3 . . . ×̇h3︸ ︷︷ ︸
#(h4−2)

=

· · · .

• ×(n) : Q0 ×N . . .×N︸ ︷︷ ︸
#n

→ Q0. ∀nk, h1, h2, h3, h4, . . . , hn,

∃|nk+h1×h2×̇h3×̈h4···×(n)hn
, n ∈ N.

Note that here ×(0) is ++, ×(1) is +, ×(2) is ×. The pro-
cedure to calculate formulas up to ×(n) are: i) High n ex-
pands prior to low n; ii) ×(n) expand in left associativity,
expanded bulks in square brackets hold until all ×(n)’s ex-
panded; iii) Square brackets are released by the # indices
after ×(n)’s expanded and before the ×(n−1)’s expansion.
Note that ×(n) has no meaning outside of ×(n).

The natural numbers hn as operation loop indices can
be elements in Q0 = N, hence ×(n) :

∏n+1
Q0 → Q0 holds.

By simply expanding and counting the x maps in chain Q0,
lower levels of ×(n) can extract the known properties:

1. + : Q0×Q0 → Q0, commutativity nk +nl = nl+nk,
associativity (nj + nk) + nl = nj + (nk + nl).

2. × : Q0×Q0 → Q0, commutativity nk ×nl = nl×nk,
associativity (nj ×nk)×nl = nj × (nk×nl), distribu-
tivity (nj + nk)× nl = nj × nl + nk × nl.

Any higher levels of operations can’t be directly extracted
to a binary algebraic operator of Q0 × Q0 → Q0 due to
the expansion procedure, e.g., ×̇’s expansion relies on h1.
However, one can simplify ×(3) by letting nk = n0, h1 = 1

to get the exponential operation Pow(1) : Q0 × Q0 → Q0,
(h2, h3) 7→ hh3

2 . Higher level of n can always be simplified to

get Pow(n−2) : Q0 ×Q0 → Q0, (h2, hn) 7→ h
(n−2)hn

2 in this
way: i) Let nk = n0, h1 = 1; ii) Let h2 = h3 = · · · = hn−1.
Obviously commutativity fails and only left associativity is
obeyed. Distributivity is only trivial from counting the #
numbers following the above procedure i)-iii).

For ++, it is not necessary to start from the NR vertex.
Standing at the middle of Q0, in a finite range, the natural
operations −−, −, ×, ×̇, ×̈, . . ., ×(n) holds for the finite Z.
One can induce two QR chains to construct the uncount-
ably infinite Z by artificial rules but then its <, >, and =
conditions are not natural (from the x maps of diversity).

The (n+1)-ary operations ×(n) (or ×(n)) are the only

natural operations inheriting the structure of x maps in a
QR chain. The algebra they form can be denoted by N1 ≡
(N, · · · ,×(n), · · · ,×,+,++, 0). The above simplifications

form N2 ≡ (N, · · · ,Pow(n), · · · ,Pow(1),×,+,++, 0) which
is not natural (only rely on counting x maps), since the
simplifications in fact bring restrictions on ×(n). Obvi-
ously that ∀nk ∈ Q0 (nk ̸= n0), ∀n ∈ N, ∃nl < nk,
∃h1, h2, · · · , hn ∈ N: nk = nl+h1×h2×̇h3×̈h4···×(n)hn

, how-
ever not all nk ∈ Q0 are reachable by operation(s) of
some restricted ×(n). For instance, ∀nk ∈ Q0 (nk > n1),
∀h1, h2 ∈ N (h1, h2 > 1): nk = nh1×h2

is not true, which
leads to the classes of prime and composite numbers. An-
other example is the radix ∀r ∈ N (r > 1), ∀nk ∈ Q0,
∃n ∈ N, ∃{hi}n≥i∈N∗ (r > hi ∈ N): nk = n∑

i hi×Pow(1)(r,i)

leads to the base-r representation of natural numbers.
Vitally, any restrictions on the operations on the direct

products
∏

Q0 is not only about naturally counting the x
maps in Q0, but imposing rules on replicas of Q0 which
induce classes i.e. properties of QR vertices in Q0 in its
sense. One has to distinguish other properties induced by
restricted ×(n) operations, from the natural = equivalence
defined only by the count of x maps in Q0.

For the general case where nl ≺ nk are QR vertices
in the CR set but not necessarily in the NR chain above,
one has nm − n0 = nk − nl defining the associative + :
CR × CR → CR, (nl, nm) 7→ nk, but not commutative
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since the CR set does not always hold nm ≺ nk. The gen-
eral + operation under ≺, as the inverse operation of − in
the CR set, is guaranteed to be associative.

However, subsets of the CR set may hold commutativ-
ity, associativity, and other identities for operation + de-
fined under the crystal order ≺. From now on, one refers
tree to that crystal tree faithfully representing the crystal
order between two QR vertices nl ≺ nk as in Fig. 8, and
paths to some directed paths that links nl ≺ nk in their
corresponding crystal tree. As shown in Fig. 9, the crystal
diagram starts with the NR vertex n0 and goes to na ≻ n0

by tree a, to nb ≻ n0 by tree b, and note that na and nb s.t.
na ⊀ nb ∧ nb ⊀ na are not necessarily the starting vertices
of their corresponding QR chains. In the CR set there
exists the QR vertex na+b that holds na+b ≻ na by tree
b, and na+b ≻ nb by tree a, thus holds the commutativity
na+nb = nb+na = na+b i.e. both a+b and b+a are paths in
na+b ≻ n0. The CR subset {nµa+νb}(µ,ν)∈N×N fullfills the
commutativity, associativity, and closure with respect to
the binary operator +, where n(µ+1)a+νb ≻ nµa+νb by tree
a and nµa+(ν+1)b ≻ nµa+νb by tree b hold simultaneously.
This CR subset generated by trees a and b forms a lattice.

Figure 9: The lattice simply generated by trees a and b under the crystal order.

More generally, a set of generator trees {ai}i∈I s.t.
∀i ̸= j ∈ I: nai

⊀ naj
∧ naj

⊀ nai
extracts the CR

subset L = {nµiai
}i∈I (Einstein auto sum) where ∀j ∈ I,

nµiai+aj
≻ nµiai

by tree aj , that forms a lattice in math-
ematics by defining ⋎ : L × L → L, nµiai

⋎ nνiai
=

nmax{µi,νi}ai
as well as ⋏ : L × L → L, nµiai

⋏ nνiai
=

nmin{µi,νi}ai
. It is direct to verify the commutative laws,

the associative laws, the idempotent laws, and the absorp-
tion laws of lattice (L,⋎,⋏).

It also preserves the commutativity, associativity, and
closure of the binary operator + when predecessing a
tree cλ1λ2···λi··· : ncλ1λ2···λi···

≻ n0 where ncλ1λ2···λi···
⊀

nµiai
∧ nµiai

⊀ ncλ1λ2···λi···
to the simply gen-

erated lattice L = {nµiai
}i∈I raising n(µi+λi)ai

≻
nµiai

by a tree including the paths of cλ1λ2···λi···
with any constants (λ1, λ2, · · · , λi, · · · ) ⊆

∏
i∈I N \

{(0, · · · , 0), (0, · · · , 0, 1, 0, · · · , 0)}. By predecessing count-
able trees of this kind, one gets a different subset of the
CR set under the crystal order, that is still a lattice,
which can be denoted as

∏
i ai +

∑
λ cλ with its dimension

dimL = |{ai}|.
For instance, the simply generated tree in Fig. 9 can

be accompanied by trees cρσ that raise n(µ+ρ)a+(ν+σ)b ≻
nµa+νb by the tree including the paths of cρσ, for any con-
stants (ρ, σ) ∈ N × N \ {(0, 0), (0, 1), (1, 0)}. As shown in
Fig. 10, one predecesses trees c11 and c21 to the simply
generated lattice. The resulting lattice contains the QR
vertices in the CR set, except for {nµa, nνb}, indeed differ-
ent from those in Fig. 9. The QR vertex n2a+b ≻ n0 by tree
r = (a+a+b)∪(a+c11)∪(a+b+a)∪c21∪(c11+a)∪(b+a+a).
Different paths of sums of embedded trees in the crys-
tal tree shows the identities of operation + in the lat-
tice, here for example n2a+b yields a + c11 ≈ c11 + a and
a+a+ b ≈ a+ b+a ≈ b+a+a. It is direct to see that the
relation ≈, called paths equivalence, is an equivalence re-
lation on paths, with equivalence classes separated by only
the different QR vertices. The lattice ensures that ∀a, b, c:
a + b ≈ b + a ∧ b + c ≈ c + b ∧ a + c ≈ c + a as well as
the associativity under ≈ inherited from the crystal order
≺ for every path in L, as L is a subset of the CR set.

Figure 10: The lattice generated by trees a and b accompanied by trees c11 and c21 under the crystal order.

Given some specific generator trees {ai}i∈I , a badly
specified lattice (L,⋎,⋏) without the constraint of ∀i ̸=
j ∈ I: nai ⊀ naj ∧ naj ⊀ nai can be reduced to (L′,⋎,⋏)
if some elements of L indeed refer to the same QR ver-
tex. Such a reduction due to bad definition of a lattice L
from abstract notations a, b, · · · of trees, has no complexity
other than the identical expressions with embedded trees

{ain}in∈In of a tree r s.t. ∀ik ∈ Ik: λ
ik < ℵ0 and

r =
∑
i1∈I1

λi1ai1 =
∑
i2∈I2

λi2ai2 = · · · =
∑
ik∈Ik

λikaik = · · ·

(9)
requiring that ∀k ̸= l: {aik} ∩ {ail} = ∅ since the lattice
has already the commutativity and the associativity for +
so that any tree aikl

∈ {aik} ∩ {ail} can be eliminated in
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r = λikaik = λilail in the sense of changing the starting
vertex of r from n0 to naikl

.

The expression Eq. 9 i.e. identification of lattice el-
ements is originated from the structure of a tree r that
includes the trees {ain}. Under the tree equivalence =
with respect to the crystal order (stricter than the equiv-
alence ≈ which is applied to paths), meaning that the
same QR vertex is described by the associative sums of
trees λikaik and λilail , ∃i, j ∈ Ik ∪ Il: all QR vertices
in tree ai : nai ≻ n0 is a subset of QR vertices in tree
aj : naj ≻ n0. More importantly, ∀L (λikaik = λilail),
∀ik ∈ Ik, ∃ tree eik : ∀il ∈ Il, ∃λik , λilk ∈ N∗, ∃eilk ∈ {eik}:
λik , λilk < ℵ0 ∧ aik = λikeik ∧ ail = λilkeilk . The proof
is obvious when one takes the tree eik as the greatest com-
mon divisor (gcd) tree of aik and all ailk that paired with
aik i.e. aik ≺ ailk ∨ aik ≻ ailk . Here the ≺ between
trees in short denotes the crystal order ≺ between the QR
vertices that the two trees goes from n0. The lattice s.t.
∀il ∈ Il, ∃ik ∈ Ik: λilail(no sum) +

∑
il′ ̸=il∈Il

λil′ail′ =

λikaik(no sum) +
∑

ik′ ̸=ik∈Ik
λik′aik′ and vice versa, thus

ensures that ∀ail is paired with an aik and be that ailk
(due to aik ⊀ ail ∧ ail ⊀ aik ⇒ r = aik + · · · = ail + · · ·
LHS and RHS are only paths of r but not the tree r). A
tree e′ik s.t. aik = λ′

ik
e′ik ∧ ailk = λ′

ilk
e′ik exists other-

wise ∄λik , λilk ∈ N∗: r = λikaik = λilkailk (the difference
− between ordered trees in r is still a tree in the minuend
tree, and by doing the difference iteratively one at least
reaches a gcd tree that is the divisor of original minuend
and subtrahend trees). The order ≺ is a total order in
{aik , ailk} since for any trees ailk and ail′k in the lattice,
∃e′ik hold the above identity with λ′

ilk
and λ′

il′k
for both

{aik , ailk} (the + is commutative, and by doing the dif-
ference between the their gcd trees one must get a finite
gcd tree since the QR vertices in the CR set are discrete),
hence ailk ≺ ail′k ∨ ailk ≻ ail′k . The finiteness of lease
common multiple lcm(λik , λilk) ensures the uniqueness of
gcd tree eik under the total order ≺ among aik and all ailk ,
such that ∀e′ik : e′ik ≺ eik , aik = λikeik , ailk = λilkeik , and
(proof omitted) λik , λilk ≤ lcm(λik , λilk).

In this case of λikaik = λilail , one calls L reducibly gen-
erated. Suppose |Ik| ≤ |Il|, one can induce the reduction
π : L → L′, nµiai

7→ nµ′ia′
i
such that

µ′ia′i =


µiai, ai /∈ {aik} ∪ {ail} i.e. i /∈ Ik ∪ Il

µiλi

gcd(λi,λilk )
ei, i = ik ∈ Ik

µiλilk

gcd(λik ,λilk )
eik , i = ilk ∈ Il

(10)

in which gcd(λik , λilk) or lcm(λik , λilk) includes all λilk for
ailk paired with aik inside the parenthesis. The dimension
lowers down by dimL − dimL′ = max {|Ik|, |Il|} = |Il|.
Starting from a reducibly generated L, by doing all reduc-
tion(s) one will finally get an irreducibly generated L by
generator trees {ai}i∈I s.t. ∄J,K ⊆ I, λj , λk ∈ N∗, tree r:
J ∩K = ∅ ∧ r =

∑
j∈J λjaj =

∑
k∈K λkak.

Clearly, by using generator trees {ai}i∈I s.t. ∀i, j ∈ I,
ai ⊀ aj ∧ aj ⊀ ai, one can avoid the specified lattice L to
be a reducibly generated one.

The generator trees of an irreducibly generated lattice
L is called principal trees in L, with their corresponding
QR vertices from n0 called principal vertices in L. For QR
vertices nk and nl generating a lattice L, nk ⊀ nl ∧ nl ⊀ nk

infers that nk and nl are coprincipal, but coprincipal ver-

tices nk and nl can hold nk ≺ nl ∨ nl ≺ nk as long as
they don’t have a common divisor vertex ne. In the case of
nl ≺ nk, L = al × ak is instead generated by al : nl ≻ n0

and ak−l : nk ≻ nl.
Principal QR vertices are those QR vertices that are

principal in all possible lattices L. There is no principal
QR vertices other than n1 in Q0. All QR vertices in Q1

is principal, but not all QR vertices in Qn (n > 1) is
principal. For instance, the QR vertex {m = 0;m1 =
0,m2 = 4;m11 = 0,m12 = 4,m21 = 0,m22 = 4} in
P1 ⊂ Q2 is not principal, but {m = 0;m1 = 1,m2 =
3;m11 = 0,m12 = 4,m21 = 0,m22 = 4} is principal, and
{m = 1;m1 = 0,m2 = 2;m11 = 0,m12 = 3} is principal.

In summary, the x maps hold the solid structure of all
QR vertices in the CR base. This structure is understood
to be of two main aspects:

1. Intra QR chains: Algebra N1 counting the specific
numbers of x̄ maps. The count leads to natural rela-
tions <, >, = and natural operations ×(n) that hold
their corresponding basic properties on QR vertices.

2. Inter QR chains: CR subsets forming lattices L under
the crystal order of xmaps. The structure of specified
CR subsets L leads to natural relations ≺, ≻, = (tree
equivalence), ≈ (paths equivalence) and natural op-
eration + (and its iterated operations) that hold their
corresponding basic properties including the algebra
of trees under ≈ with the commutative, associative +
and the principality of QR vertices.

5.2 Sequential space

On the CR base, all possible RR maps allow for sequential
excitations which are characterized by direct products on
replicas of CR set and the RR maps. Restrictions on maps
involving direct products of CR subsets and x/z maps lead
to properties or classes of QR vertices and x/z maps other
than the natural ones. As previously shown in N2, pos-
sible restrictions and their derived properties are severely
uncountable. It is extremely impossible to examine all of
them as they count for all realities of The Reality yet one is
in only its own reality. However, rules of one’s own reality is
not uncountable thus one has to comply to pragmatism on
mathematics, if one wants only to cover the characteristics
of its own physical world.

The methodology and its implementations for one to
fetch mathematical tools and examine its reality is diverse
and mostly out of the scope of current documentation. Be-
low one shows only some examples of constructions on the
CR set replicas with the RR maps.

In mathematics, an irreducibly generated lattice
(L,⋎,⋏) of a CR subset under ≺ is distributive (distribu-
tive i.e. ∀a, b, c ∈ L: a ⋏ (b ⋎ c) = (a ⋏ b) ⋎ (a ⋏ c) i.e.
a ⋎ (b ⋏ c) = (a ⋎ b) ⋏ (a ⋎ c)) hence modular (modular
i.e. ∀a, b, c ∈ L: a ⪯ b ⇒ a ⋎ (b ⋏ c) = b ⋏ (a ⋎ c)),
but neither a complete lattice (complete i.e. ∀A ⊆ L,
∃ supA, inf A: supA ∈ L ∧ inf A ∈ L) nor a compactly gen-
erated lattice (compactly generated i.e. ∀nl ∈ L, ∃G ⊂ L:
nl ∈ supG ∧ ∀ng ∈ G, ∀A ⊆ L (supA ⊆ L ∧ ng ⪯ supA),
∃B ⊆ A: |B| < ℵ0 ∧ ng ⪯ supB) hence not algebraic.
However, it is obvious that any finite sublattice of such
(L,⋎,⋏) is algebraic.

To fetch some algebraic lattices under the crystal order,
one induces a projection, which is a collection of RR maps,
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θλ1λ2···λi··· : L → L̄, nµiai
7→ nµ̄iai

where

µ̄i =

{
µi, ai /∈ {aik} ∪ {ail} i.e. i /∈ Ik ∪ Il

µi mod λi, i = ik ∈ Ik ∨ i = il ∈ Il
(11)

appeared the binary operator mod : N × N∗ → N of the
usual definition on natural numbers. The mod(µ, λ) oper-
ator is defined by fixing λ to be a constant in × : nµ =
nµ̄ + h1 × λ in N1 and inversing the order of variables in
the tuple, from (nµ̄, λ) 7→ nµ to (nµ, λ) 7→ nµ̄, which is the
same tuple inversion as in the definition of + from − on QR
vertices in the previous Sections. The image L̄ is a finite
thus algebraic lattice. One can define the unary operation

−1 : L̄ → L̄ by nµ̄iai
7→ n(λi−µ̄i)ai

and define the nullary op-
eration e as n0 so that (L̄, +̄,−1 , e) forms an Abelian group,
with +̄ compatibly induced in L̄ by θ from the natural +. It
is direct to see the structure of finite Abelian groups

∏
i Zi

corresponds to this lattice construction nµ̄iai
with any prin-

cipal trees ai (i ∈ N). As shown in Fig. 11, the quotient
lattice L̄ ∋ nµ̄a with λ = 4 presents the group Z4, and
the quotient lattice L̄ ∋ nµ̄1a1+µ̄2a2

(a1 = a, a2 = b) with
λ1 = 3 and λ2 = 2 presents the group Z3×Z2. Morphisms,
direct products, actions, classes, and other properties in
Group Theory can also be defined on replicas of L̄’s.

Figure 11: The quotient lattice L̄ presenting the Abelian groups Z4 and Z3 × Z2.

For presenting non-Abelian groups, the lattice L is no
longer commutative with respect to +, while it inherits
the associativity of + from the crystal order ≺. Given
n generators {ai}1≤i≤n∈N, the number of permutations
P (a1i + a2i + · · · + aki ) (k ∈ N∗) is nk. The above con-
gruent projection θλ1λ2···λi··· : L → L̄ no longer holds for
L because of the non-commutativity of tree sums. If one
finds another congruence θ that close the entire nk space
without deriving the commutativity then it appears a non-
Abelian finite group. This means that the subspace kiai
(ki ∈ N∗) must be closed by θ, hence in any non-Abelian
finite group (L̃, +̃,−1 , e) any generator ai obeys a relation

∀i ≤ n, ∃λi ∈ N: e ≃ n0 ≃ nλiai
or denoted as λiai ≃ e.

One has to estimate the reduction of permutation space nk

by this relation ≃ when k is sufficiently large, and that the
additional relations which (L̃, +̃,−1 , e) holds together with
the λi’s should eventually lead to a finite permutation space
when k is very large. For instance, one lets a1 ≡ r, a2 ≡ s,
λ1 = 3, λ2 = 2, θ1 : rr ≃ srs, θ2 : rs ≃ srr, θ3 : sr ≃ rrs,
θ4 : s ≃ rsr, then the quotient L̃ = L/{λ1, λ2, θ1, θ2, θ3, θ4}
is finitely closed, presenting the dihedral group of order 6
a.k.a. D3 as shown in Fig. 12, in which the dashed red lines
mark the congruence from λ, dashed blue lines from θ, and
dashed pink/cyan lines derived by the lattice associativity.

r

s

r2

e = r3

r2 = srs

rs = sr2sr = r2s

s = rsr

e = s2

s4

s3

r4

e

e = s2 = rsrs

e = r3 = srsr

Figure 12: The quotient lattice L̃ presenting the non-Abelian group D3.

Overall, the discovery of such θ congurences is out of the
scope of the current documentation. One should always be
aware of that understanding the structure of CR base does
not necessarily mean that one exhausts all the properties or
classes in mathematical structures derived from restricted
natural operations on replicas of the CR subsets and the
x/z maps. Even the finite rules founding one’s own reality

is far from one’s limited border of observations and knowl-
edge. For a quick guess, one may name the RR maps of
its reality as “quintessences” with mass at moment h/c2

[M · T] forming the space and mass assemblies of constant
numbers of RR maps per moment [T−1] ruled by physical
laws with their spins and charges. The RR maps provide
only the framework but not the direct results for physics.
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