For calculating Nontrivial Zeros of Riemann Zeta function- ζ, the definition $\xi(s)=\frac{s}{2}(s-1) \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$ of Riemann Xi function $-\xi$ is not appropriate.

Author
Ashok Kumar (Kashyap)
ORCID Id: https://orcid.org/0000-0002-6345-7249
Formerly, Assistant Professor of Physics
Department of Applied Sciences and Humanities
DEC- Faridabad, INDIA-121004
E-mail- ak.research.ph@gmail.com
Contact: +91-7557498649

MSC-2020 Codes: 11M06, 11M26

Abstract

We show that for calculating nontrivial zeros of the Riemann Zeta function ζ, the form of the definition $\xi(\mathrm{s})=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s}), \mathrm{s} \in \mathbb{C}$ of the function ξ and the followed deduction that nontrivial zeros of functions $\zeta(\mathrm{s})$ and $\xi(\mathrm{s})$ are identical is not appropriate. The definition of function ξ in which both functions ξ and ζ are functions of same complex variable s and the assumption of identicalness of nontrivial zeros of ξ and ζ is ambiguous, so may be the deep reason, the Riemann hypothesis could not be resolved yet. However, the definition $\xi(\mathrm{t})=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta(\mathrm{s}), \mathrm{t}=\alpha+\mathrm{i} \beta$ and $\mathrm{s}=\underline{1 / 2}+\mathrm{it}$, introduced by B. Riemann (1859) leads the results: (i) when $\xi(\alpha+\mathrm{i} \beta)=0, \beta=0, \alpha \in \mathbb{R}$, corresponding nontrivial zero of the function $\zeta(\mathrm{s})$ are of the form $\mathrm{s}=\underline{1 / 2}+\mathrm{i} \alpha$ and (ii) when $\mathrm{t}=\alpha+\mathrm{i} \beta$ and $\xi(\alpha+i \beta)=0$, nontrivial zeros of the function $\zeta(\mathrm{s})$ are of the form $\mathrm{s}=(\underline{1 / 2}-\beta)+\mathrm{i} \alpha$ which lie on both sides of the line $\alpha=1 / 2$. Here, we sketch the zeros of the function $\zeta(\mathrm{s})$ those correspond to real zeros of the function $\xi(\mathrm{s})$ that shows the Riemann hypothesis is true only when nontrivial zeros of functions $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ lie on two perpendicular lines.

Keywords: Zeta function, Riemann's Xi Function, nontrivial zeros, critical strip, critical line.

1 INTRODUCTION

In 1859, B. Riemann [1] in his research report introduced a function $\zeta(\mathrm{s}) \mathrm{s}=\sigma+\mathrm{it}, \sigma, \mathrm{t} \in \mathbb{R}$ known as the Riemann's zeta function $\zeta(\mathrm{s})$ with the definition,

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1}
\end{equation*}
$$

Riemann further created another function known as the Riemann Xi-function $\xi(\mathrm{t}), \mathrm{t}=\alpha+\mathrm{i} \beta$ defined as:
$\xi(\mathrm{t})=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \zeta(\mathrm{~s}), \mathrm{s}=\underline{1 / 2}+\mathrm{it}$
The definition (2) is the original definition of the function ξ. But in Mathematics literature present day authors e.g. [2], [3], [4] and other use an alternative definition of function- ξ as
$\xi(\mathrm{s})=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \zeta(\mathrm{~s})$
With the definition (3) authors claim that nontrivial zeros of functions $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ are identical.

In this research article, we show that the use of the definition (3) of the function- ξ cannot be justified as it creates mathematical ambiguities. However, the original definition (2) of the function ξ corroborated with Riemann's statement: "it is clear that $\xi(\mathrm{t})$ can vanish only if the imaginary part of t lies between $\mathrm{i} / 2$ and- $\mathrm{i} / 2$." which indicates that t is a complex number produces the results : (i) Corresponding to each complex zero $t=\alpha+i \beta$ of the function $\xi(\mathrm{t})$, there exists a complex zero $\mathrm{s}=(1 / 2-\beta)+\mathrm{i} \alpha$ of the function $\zeta(\mathrm{s})$, i.e., zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ are a distance apart (not identical). (ii) Corresponding to each real zero $t=\alpha, \alpha \in \mathbb{R}$ of the function $\xi(\mathrm{t})$, there exists a complex zero $\mathrm{s}=\underline{1 / 2}+\mathrm{i} \alpha$ of the function $\zeta(\mathrm{s})$. Perceived zeros of results (i) and (ii), are shown in Fig. 1(a) and 1(b) on the last page.

2 RESULTS

Recall the definition (3) connecting functions ξ and ζ both of same complex variable s,
$\xi(\mathrm{s})=(\mathrm{s} / 2)(\mathrm{s}-1)\left(\pi^{-\mathrm{s} / 2}\right) \zeta(\mathrm{s}), \mathrm{s}=\mu+\mathrm{i} \lambda$
Clearly, $\xi(0)=0$ and $\xi(1)=0$, so $s=0, \mathrm{~s}=1$ are real zeros of $\xi(\mathrm{s})$. Suppose zeros functions $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ are identical, then $\mathrm{s}=0, \mathrm{~s}=1$ must also be zeros of $\zeta(\mathrm{s})$ but according to definition (1) of $\zeta(\mathrm{s}), \quad \zeta(0)=\infty$ and $\zeta(1)=\infty$, therefore, $\mathrm{s}=0, \mathrm{~s}=1$ are not zeros of $\zeta(\mathrm{s})$, so not of the function $\xi(\mathrm{s})$. That is ambiguity in definition (3). Actually, when s is a real number, all zeros of $\zeta(\mathrm{s})$ necessarily are zeros of the function $\xi(\mathrm{s})$ but when s is a complex number zeros of functions $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ may be different can be shown as:

Suppose $\xi=\mathrm{G}+\mathrm{iH},(\mathrm{s} / 2)(\mathrm{s}-1)\left(\pi^{-\mathrm{s} / 2}\right)=\mathrm{C}+\mathrm{iD}$ and $\zeta(\mathrm{s})=\mathrm{A}+\mathrm{iB}$, then from result (4), $\mathrm{G}+\mathrm{iH}=(\mathrm{CA}-\mathrm{DB})+\mathrm{i}(\mathrm{AD}+\mathrm{BC})$

Zeros of $\xi(\mathrm{s})$ can be obtained choosing $\mathrm{G}=0$ and $\mathrm{H}=0$ which means $\mathrm{CA}-\mathrm{DB}=0$ and $A D+B C=0$. This system of equations produces $A=0, B=0, A=i B, C=0, D=0$ and $\mathrm{C}=\mathrm{iD}$. Moreover, the function $\zeta(\mathrm{s})$ can be written as $\zeta(\mathrm{s})=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}(\cos \phi+\mathrm{isin} \phi)$ with $\phi=\tan ^{-1}\left(\frac{\mathrm{~B}}{\mathrm{~A}}\right)$. Now, if $\xi(\mathrm{s})=0,(\mathrm{~s} / 2)(\mathrm{s}-1)\left(\pi^{-\mathrm{s} / 2}\right) \neq 0$, then $\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}}(\cos \phi+\mathrm{i} \sin \phi)=0$ which implies the equation $\zeta(\mathrm{s})=0$ is unsolvable as when $\sin \phi=0 \Rightarrow \cos \phi \neq 0$.

Further, suppose that $s=a_{i}, a_{i} \in \mathbb{R}$ or $\mathbb{C}, i=1,2,3, \ldots, n$ are zeros of the function $\xi(s)$ and $s=b_{j}, b_{j} \in \mathbb{R}$ or $\mathbb{C}, j=1,2,3, \ldots, m$ zeros of the function $\zeta(s)$, i.e., $\xi(s)=\prod_{i=1}^{n}\left(s-a_{i}\right)$ and $\zeta(s)=\prod_{\mathrm{j}=1}^{\mathrm{m}}\left(\mathrm{s}-\mathrm{b}_{\mathrm{j}}\right)$. Therefore, the result (4) can be expressed as,

$$
\begin{equation*}
\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~s}-\mathrm{a}_{\mathrm{i}}\right)=(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-s / 2} \Gamma(\mathrm{~s} / 2) \prod_{\mathrm{j}=1}^{\mathrm{m}}\left(\mathrm{~s}-\mathrm{b}_{\mathrm{j}}\right) \tag{6}
\end{equation*}
$$

There are two cases:

Case I: At least one zero $\mathrm{s}=\mathrm{a}$ (say) is common to both functions ξ and ζ then,

$$
\begin{aligned}
& \xi(s)=(s-a) \prod_{i=1}^{n-1}\left(s-a_{i}\right) \text {, and } \zeta(s)=(s-a) \prod_{i=1}^{m-1}\left(s-b_{i}\right), \text { therefore, } \\
& (s-a) \prod_{i=1}^{n-1}\left(s-a_{i}\right)=(s / 2)(s-1) \pi^{-s / 2} \Gamma(s / 2)(s-a) \prod_{i=1}^{m-1}\left(s-b_{i}\right)
\end{aligned}
$$

Further, write $\prod_{i=1}^{n-1}\left(s-a_{i}\right)=\xi_{1}(s)$ and $\prod_{i=1}^{m-1}\left(s-b_{i}\right)=\zeta_{1}(s)$, then

$$
\left.\begin{array}{rl}
(\mathrm{s}-\mathrm{a})\left[\xi_{1}(\mathrm{~s})-(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta_{1}(\mathrm{~s})\right] & =0 \\
\xi_{1}(\mathrm{~s})-(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta_{1}(\mathrm{~s}) & \neq 0 \\
{\left[\xi_{1}(\mathrm{~s})-(\mathrm{s} / 2)(\mathrm{s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2) \zeta_{1}(\mathrm{~s})\right]_{\mathrm{s}=\mathrm{a}}} & =\{0 /(\mathrm{s}-\mathrm{a})\}_{\mathrm{s}=\mathrm{a}} \tag{7}\\
{\left[\xi_{1}(\mathrm{a})-(\mathrm{a} / 2)(\mathrm{a}-1) \pi^{-\alpha / 2} \Gamma(\mathrm{a} / 2) \zeta_{1}(\mathrm{a})\right]} & =0 / 0
\end{array}\right\}
$$

Thus there exists at least one case that fors $=a ;\left[\xi_{1}(a)-(a / 2)(a-1) \pi^{-\alpha / 2} \Gamma(a / 2) \zeta_{1}(a)\right]$ is not non-zero but indeterminate. But, in general $\left[\xi_{1}(a)-(a / 2)(a-1) \pi^{-\alpha / 2} \Gamma(a / 2) \zeta_{1}(a)\right]$ is considered a non-zero.

Case II: Functions $\xi(\mathrm{s})$ and $\zeta(\mathrm{s})$ have same number say p of identical zeros. Let γ be one of such zeros, then

$$
\begin{align*}
& \prod_{\gamma}(\mathrm{s}-\gamma)^{\mathrm{p}}\left[1-(1 / 2) \mathrm{s}(\mathrm{~s}-1) \pi^{-\mathrm{s} / 2} \Gamma(\mathrm{~s} / 2)\right]=0 \\
& \Rightarrow 1-(1 / 2) \gamma(\gamma-1) \pi^{-\gamma / 2} \Gamma(\gamma)=0 / 0 \tag{8}
\end{align*}
$$

If $1-(1 / 2) \gamma(\gamma-1) \pi^{-\gamma / 2} \Gamma(\gamma)$ is nonzero then from result (8), either $0=0$ or $1-(1 / 2) \gamma(\gamma-1) \pi^{-\gamma / 2} \Gamma(\gamma)$ is indeterminate. Also, if γ equals 1 , then $1=0 / 0$ and if $1-(1 / 2) \gamma(\gamma-1) \pi^{-\gamma / 2} \Gamma(\gamma)$ equals zero then $0=0 / 0$, i.e. 0 is itself indeterminate.

Whatever be the case I or II discussed above but even one common zero $s=\alpha$ (say) results $\left[\xi_{1}(\alpha)-(1 / 2) \alpha(\alpha-1) \pi^{-\alpha / 2} \Gamma(\alpha / 2) \zeta_{1}(\alpha)\right]=0 / 0$ which shows 0 is not a free number, its use is conditional. Thus, from the above discussion it can be concluded that (i) the definition (3) of the function ξ is not a proper definition for calculating nontrivial zeros of the function $\zeta(\mathrm{s})$ and (ii) to solve an equation like $f(x) \times g(x)=0, f(x)$ or $g(x) \in \mathbb{C}$, the definition of zero requires investigation because the conclusion from the equation $\mathrm{X}+\mathrm{iY}=0, \mathrm{X}, \mathrm{Y} \in \mathbb{R}$ implies $\mathrm{X}=0$ and $\mathrm{Y}=0$ is not always true. The consideration $\zeta(\mathrm{s})=\mathrm{X}+\mathrm{i} \mathrm{Y}=0$ implies $\mathrm{X}=0$ and $\mathrm{Y}=0$ is the foremost reason; the Riemann hypothesis could not have been resolved yet, also the claimed nontrivial zeros $14.134725142,21.022039639,25.010857580$ and so on may not be nontrivial zeros of the function $\zeta(\mathrm{s})$ but are of some other function. That we will show elsewhere.

Now, using the definition $\xi(\mathrm{t})=(\mathrm{s} / 2)(\mathrm{s}-1)\left(\pi^{-\mathrm{s} / 2}\right) \zeta(\mathrm{s})$, we establish a relation between nontrivial zeros of function $\xi(\mathrm{t})$ and $\zeta(\mathrm{s}), \mathrm{s}=\underline{1 / 2}+\mathrm{it}$.

Riemann states: "It is clear that $\xi(\mathrm{t})$ can vanish only if the imaginary part of t lies between $i / 2$ and - $\mathrm{i} / 2$." That suggests t is a complex variable. Suppose $\mathrm{t}=\mu+\mathrm{i} \lambda$ (say) and $\zeta(\mathrm{s}), \mathrm{s}=\underline{1 / 2}+\mathrm{it}$. Therefore, from the definition (3),
$\xi(\mu+\mathrm{i} \lambda)=(1 / 2)(\underline{1 / 2}-\lambda+\mu \mathrm{i})(\underline{1 / 2}-\lambda+\mu \mathrm{i}-1) \pi^{-(\underline{12}-\lambda+\mu) 2} \Gamma[(1 / 2)(\underline{1 / 2}-\lambda+\mu \mathrm{i})] \zeta(\underline{1 / 2-\lambda+\mu \mathrm{i})}$
Substitute, 0 for μ and $1 / 2$ for $\lambda($ or $t=i / 2)$
$\xi(\mathrm{i} / 2)=(1 / 2)(0)(-1+0 \mathrm{i}) \pi^{0} \Gamma[0] \zeta(0)=0$

Substitute, 0 for μ and $-1 / 2$ for λ (or $t=-\mathrm{i} / 2$)
$\xi(-\mathrm{i} / 2)=(1 / 2)(1)(0) \pi^{-1 / 2} \Gamma[(1 / 2)(1)] \zeta(1)=0$

That shows $t=-i / 2$ and $t=i / 2$ are nontrivial zeros of the function $\xi(t)$ but corresponding to $\xi(-\mathrm{i} / 2)$ and $\xi(\mathrm{i} / 2)$ the values $\zeta(0)$ and are $\zeta(1)$ undefined. To avoid this ambiguity Riemann states: " $\xi(\mathrm{t})$ can vanish only if the imaginary part of t lies between $\mathrm{i} / 2$ and $-\mathrm{i} / 2$ ". The results (9) and (10) show if nontrivial zeros of function $\xi(t)$ lie between $t=-i / 2$ to $\mathrm{t}=\mathrm{i} / 2$, then corresponding zeros of the function $\zeta(\mathrm{s})$ lie between $\mathrm{s}=1$ to $\mathrm{s}=0$.Thus, the range of nontrivial zeros of the function $\zeta(s)$ is $s \in[0,1]$ which is the critical strip for nontrivial zeros of function $\zeta(\mathrm{s})$.

The critical strip for nontrivial zeros of $\zeta(\mathrm{s})$ can also be determined as:

Suppose $t=\alpha \pm i \beta$ are zeros of the function $\xi(\mathrm{t})$, then according to Riemann's statement,

$$
\begin{aligned}
-\mathrm{i} / 2 & \leq \mathrm{t} \leq \mathrm{i} / 2 \\
& \Rightarrow \mathrm{i}^{2} 1 / 2 \leq-\mathrm{it} \leq-\mathrm{i}^{2} 1 / 2 \Rightarrow-1 / 2 \leq-\mathrm{i} \alpha \pm \mathrm{i} \beta \leq 1 / 2 \\
& \Rightarrow-1 / 2 \leq-\mathrm{i} \alpha \mp \beta \leq 1 / 2 \Rightarrow 1 / 2 \geq \mathrm{i} \alpha \pm \beta \geq-1 / 2 \\
& \Rightarrow 1 \geq 1 / 2 \pm \beta+\mathrm{i} \alpha \geq 0 \Rightarrow 0 \leq 1 / 2 \pm \beta+\mathrm{i} \alpha \leq 1
\end{aligned}
$$

But $1 / 2 \pm \beta+\mathrm{i} \alpha$ is variable of the function $\zeta(\mathrm{s})$ corresponding to $t=\alpha \pm i \beta$. Thus, if zeros of function $\xi(\mathrm{t})$ lie between $\mathrm{t}=-\mathrm{i} / 2$ to $\mathrm{t}=\mathrm{i} / 2$, then zeros of the function $\zeta(\mathrm{s})$ lie between $\mathrm{s}=0$ to $\mathrm{s}=1$.

Thus, nontrivial zeros of the function $\zeta(\mathrm{s})$ are of the form $\underline{1 / 2} \mp \beta+\mathrm{i} \alpha$ that lie in the region $0 \leq \underline{1 / 2} \mp \beta \leq 1$ that verbalize the Riemann hypothesis. Further, if β equals zero, i.e. all zeros of function $\xi(\mathrm{t}=\alpha \pm \mathrm{i} \beta)$ are real then zeros of $\zeta(\mathrm{s})$ are of the form $\underline{1 / 2}+\mathrm{i} \alpha$ that lie in the region $0 \leq 1 / 2 \leq 1$ on the line $\mathrm{a}=1 / 2$. Clearly, the functions $\xi(\mathrm{t}=\alpha \pm \mathrm{i} \beta)$ and $\zeta(\mathrm{s}=\underline{1 / 2}+\mathrm{it})$ have same number of zeros and there is one-to-one correspondence between real zeros of the function $\xi(\mathrm{t})$ and nontrivial complex zeros of the function $\zeta(\mathrm{s})$.

The perceived (not calculated) nontrivial zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when (i) $\mathrm{t} \in \mathbb{C}$ a complex number, and (ii), when t is real number are shown in Fig, 1(a) and Fig. 1(b) respectively. Note: Here, for to show the relative locations of zeros of the function $\zeta(s)$, zeros of the function $\xi(\mathrm{t})$ are perceived (not calculated).

Fig. 1(a): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a complex variable

Fig. 1(b): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a real variable

Thus, if $t=\alpha \pm i \beta$ is zero of the function $\xi(\mathrm{t})$, then corresponding zero of the function $\zeta(\mathrm{s})$ is $s=\left(\frac{1}{2} \mp \beta\right) \pm i \alpha$. That show zeros of functions ξ and ζ cannot have same form and same variable and in the context of the Riemann hypothesis the form of definition of function ξ $\xi(\mathrm{s})=(\mathrm{s} / 2)(\mathrm{s}-1)\left(\pi^{-\mathrm{s} / 2}\right) \zeta(\mathrm{s}), \mathrm{s}=\mu+\mathrm{i} \lambda$ is ambiguous.

Acknowledgement

The author is grateful to M. Srinivasan Ramanujan (Mathematician 1887-1920), Albert Einstein (Physicist 1879-1955) whose early life struggle and odds skilled him how to remain academically steady in odd livelihood conditions.

References

[1] Riemann, B. (1859), Über die Anzbahl der Primzahlen unter einer gegebenen Grösse Monatsberichte der Berliner Akademie, November 1859, pp. 671-680. English translation "on the number of Primes Less Than a Given Magnitude," in the Appendix of [3], pp. 299-305.
[2] Bombieri E (2000). The Riemann Hypothesis- official problem description, Clay Mathematics Institute.
[3] Titchmarsh, E.C. (1974). The Theory of the Riemann Zeta-Function. OUP.
[4] Edwards, Harold M. (2001), Riemann’s Zeta Function, Dover ed. (2001).
[5] Apostol T.M. Introduction to Analytical Number Theory, Springer, $5^{\text {th }}$ Printing 1998, Edition (1976).
[6] H. Davenport. Multiplicative Number Theory, Volume 74, Springer-Verlag, Second Edition (1980).

Declaration

The Author does not have any compelling interest writing this research article. The Author communicates this research article through this pre-print repository to share the knowledge to the interested audience.

Additional Information: Corresponding to non-trivial zero $\alpha+i \beta$ of the function ξ, nontrivial zero of the function ζ is $\left(\frac{1}{2}-\beta\right)+\mathrm{i} \alpha$.

Fig. 1(a): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a complex variable

Fig. 1(b): Zeros of functions $\xi(\mathrm{t})$ and $\zeta(\mathrm{s})$ when t is a real variable

