Algorithmic computation of multivector inverses and characteristic polynomials in non-degenerate Clifford algebras

Dimiter Prodanov ${ }^{1,2}$ [0000-0001-8694-0535]
${ }^{1}$ Neuroelectronics Research Flanders, IMEC, Leuven, Belgium
${ }^{2}$ ITSDP, IICT, Bulgarian Academy of Science, Sofia, Bulgaria;
dimiter.prodanov@imec.be

Abstract

Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into the concept of non-commutative Clifford numbers. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and is implemented in the opensource Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.

Keywords: multivector • Clifford algebra • computer algebra

1 Introduction

Clifford algebras provide the natural generalizations of complex, dual and splitcomplex (or hyperbolic) numbers into the concept of Clifford numbers. The development of Clifford algebras is based on the insights of Hamilton, Grassmann, and Clifford from the $19^{\text {th }}$ century. After a hiatus lasting many decades, the Clifford geometric algebra experienced a renaissance with the advent of contemporary computer algebra systems. Clifford algebras can be implemented in a variety of general-purpose computer languages and computational platforms. Recent years have seen renewed interest in Clifford algebra platforms: notably, for Maple, Matlab, Mathematica, Maxima, Ganja.js for JavaScript, GaLua for Lua, Galgebra for Python, Grassmann for Julia.

Computation of Clifford inverses has drawn attention in the literature [1, 4, 6]. The present contribution demonstrates an algorithm for Clifford number inversion, which involves only multiplications and subtractions and has a variable number of steps, depending on the maximal grade of the Clifford number. The algorithm is implemented using the Clifford Maxima package [5]. The algorithm is a direct translation of the Faddeev-LeVerrier-Souriau (FVS) algorithm for matrix inverse computation. The algorithm is in fact a proof certificate for the existence of an inverse. As a side product, the algorithm can compute the characteristic polynomial of the Clifford number and its determinant also without any resort to a matrix representation.

2 Notation and Preliminaries

$C \ell_{n}$ will denote a Clifford algebra of order n but with unspecified signature. Clifford multiplication is denoted by simple juxtaposition of symbols. Algebra generators will be indexed by Latin letters. Multi-indices will be considered as index lists and not as sets and will be denoted with capital letters. The operation of taking k-grade part of an expression will be denoted by $\langle.\rangle_{k}$ and in particular the scalar part will be denoted by $\langle.\rangle_{0}$. Set difference is denoted by \triangle. Matrices will be indicated with bold capital letters, while matrix entries will be indicated by lowercase letters. The scalar product of the blades will be denoted by $*$.

Definition 1. The generators of the Clifford algebra will be denoted by indexed symbol e. It will be assumed that there is an ordering relation \prec, such that for two natural numbers $i<j \Longrightarrow e_{i} \prec e_{j}$. The extended basis set of the algebra will be defined as the ordered power set $\mathbf{B}:=\{P(E), \prec\}$ of all generators $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and their irreducible products.

Definition 2. Define the diagonal scalar product matrix as $\mathbf{G}:=\left\{\sigma_{I J}=e_{I} *\right.$ $\left.e_{J} \mid e_{I}, e_{J} \in \mathbf{B}, I \prec J\right\}$.

A Clifford number will be written as $A=a_{1}+\sum_{k=1}^{r}\langle A\rangle_{k}=a_{1}+\sum_{J} a_{J} e_{J}$. The maximal grade of A will be denoted by $\operatorname{gr}[A]$.

3 Clifford algebra real matrix representation map

In the present article we will focus on non-degenerate Clifford algebras, therefore the non-zero elements of \mathbf{G} are valued in $\{-1,1\}$.

Definition 3 (Clifford coefficient map). Define the linear map acting elementwise $C_{a}: C \ell_{n} \mapsto \mathbb{R}$ by the action $C_{a}(a x+b)=x$ for $x \in \mathbb{R}, a, b \in \mathbf{B}$.

Define the Clifford coefficient map indexed by e_{S} as $C_{S}(\mathbf{M}):=\mathbf{A}_{S}$, where \mathbf{M} is the multiplication table of the extended basis $\mathbf{M}=\left\{\mathcal{R}\left(e_{M} e_{N}\right) \mid e_{M}, e_{N} \in \mathbf{B}\right\}$.

Definition 4 (Canonical matrix map). Define the map $\pi: \mathbf{B} \mapsto \mathbf{M a t}_{\mathbb{R}}\left(2^{n} \times\right.$ $\left.2^{n}\right), n=p+q+r$ as $\pi: e_{S} \mapsto \mathbf{E}_{s}:=\mathbf{G} \mathbf{A}_{s}$ where s is the ordinal of $e_{S} \in \mathbf{B}$ and \mathbf{A}_{S} is computed as in Def. 3.

Proposition 1. The π-map is linear.
The proposition follows from the linearity of the coefficient map and matrix multiplication with a scalar.

Theorem 1 (Semigroup property). Let e_{s} and e_{t} be generators of $C \ell_{p, q}$. Then the following statements hold

1. The map π is a homomorphism with regard to the Clifford product (i.e. π distributes over the Clifford products): $\pi\left(e_{s} e_{t}\right)=\pi\left(e_{s}\right) \pi\left(e_{t}\right)$.
2. The set of all matrices \mathbf{E}_{s} forms a multiplicative semigroup.

Proof. Let $\mathbf{E}_{s}=\pi\left(e_{s}\right), \mathbf{E}_{t}=\pi\left(e_{t}\right), \mathbf{E}_{s t}=\pi\left(e_{s} e_{t}\right)$. We specialize the result of Lemma 2 for $S=\{s\}$ and $T=\{t\}$ and observe that $m_{\lambda \lambda^{\prime}} e_{s t}=m_{\lambda \mu} \sigma_{\mu} m_{\mu \lambda^{\prime}} e_{s t}$ for $\lambda, \lambda^{\prime}, \mu \leq n$ and $\sigma_{\lambda} m_{\lambda \lambda^{\prime}}=\sigma_{\lambda} m_{\lambda \mu} \sigma_{\mu} m_{\mu \lambda^{\prime}}$. In summary, the map π acts on $C \ell_{p, q}$ according to the following diagram:

Therefore, $\mathbf{E}_{s t}=\mathbf{E}_{s} \mathbf{E}_{t}$. Moreover, we observe that $\pi\left(e_{s} e_{t}\right)=\mathbf{E}_{s t}=\mathbf{E}_{s} \mathbf{E}_{t}=$ $\pi\left(e_{s}\right) \pi\left(e_{t}\right)$.

For the semi-group property observe that since π is linear it is invertible. Since π distributes over Clifford product its inverse π^{-1} distributes over matrix multiplication:

$$
\pi^{-1}\left(\mathbf{E}_{s} \mathbf{E}_{t}\right) \equiv \pi^{-1}\left(\mathbf{E}_{s t}\right)=e_{s t} \equiv e_{s} e_{t}=\pi^{-1}\left(\mathbf{E}_{s}\right) \pi^{-1}\left(\mathbf{E}_{t}\right)
$$

However, $C \ell_{p, q}$ is closed by construction, therefore, the set $\{\mathbf{E}\}_{s}$ is closed under matrix multiplication.

Proposition 2. Let $\mathbf{L}:=\left\{l_{i} \mid l_{i} \in \mathbf{B}\right\}$ be a column vector and \mathbf{R}_{s} be the first row of \mathbf{E}_{s}. Then $\pi^{-1}: \mathbf{E}_{s} \mapsto \mathbf{R}_{s} \mathbf{L}$.

Proof. We observe that by the Prop. 4 the only non-zero element in the first row of \mathbf{E}_{s} is $\sigma_{1} m_{1 s}=1$. Therefore, $\mathbf{R}_{s} \mathbf{L}=e_{s}$.

Theorem 2 (Complete Real Matrix Representation). Define the map $g: \mathbf{A} \mapsto \mathbf{G A}$ as matrix multiplication with \mathbf{G}. Then for a fixed multiindex s $\pi=C_{s} \circ g=g \circ C_{s}$. Further, π is an isomorphism inducing a Clifford algebra representation in the real matrix algebra:

$$
C \ell_{p, q}(\mathbb{R}) \underset{\pi^{-1}}{\stackrel{\pi}{\rightleftarrows}} \operatorname{Mat}_{\mathbb{R}}\left(2^{n} \times 2^{n}\right)
$$

Proof. The π-map is a linear isomorphism. The set $\left\{\mathbf{E}_{s}\right\}$ forms a multiplicative group, which is a subset of the matrix algebra $\operatorname{Mat}_{\mathbb{R}}(N \times N), N=2^{n}$. Let $\pi\left(e_{s}\right)=\mathbf{E}_{s}$ and $\pi\left(e_{t}\right)=\mathbf{E}_{t}$. It is claimed that

1. $\mathbf{E}_{s} \mathbf{E}_{t} \neq \mathbf{0}$ by the Sparsity Lemma 1.
2. $\mathbf{E}_{s} \mathbf{E}_{t}=-\mathbf{E}_{t} \mathbf{E}_{s}$ by Prop. 5.
3. $\mathbf{E}_{s} \mathbf{E}_{s}=\sigma_{s} \mathbf{I}$ by Prop. 6.

Therefore, the set $\left\{\mathbf{E}_{S}\right\}_{S=\{1\}}^{P(n)}$ is an image of the extended basis B. Here $P(n)$ denotes the power set of the indices of the algebra generators.

What is special about the above representation is the relationship

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=2^{n}\langle A\rangle_{0} \tag{1}
\end{equation*}
$$

for the image $\pi(A)=\mathbf{A}$ of a general multivector element A and it will be used further in the proof of FVS algorithm.

Remark 1. The above construction works if instead of the entire algebra $C \ell_{p, q}$ we restrict a multivector to a sub-algebra of a smaller grade max $\operatorname{gr} A=r$. In this case, we form grade-restricted multiplication matrices \mathbf{G}_{r} and \mathbf{M}_{r}.

4 FVS multivector inversion algorithm

Multivector inverses can be computed using the matrix representation and the characteristic polynomial. The matrix inverse is $\mathbf{A}^{-1}=\hat{\mathbf{A}} / \operatorname{det} \mathbf{A}$, where ${ }^{\wedge}$ denotes the matrix adjunct operation and $\operatorname{det} \mathbf{A}$ is the matrix determinant. The formula is not practical, because it requires the computation of $n^{2}+1$ determinants. With the help of the Cayley-Hamilton Theorem, the inverse of \mathbf{A} can be expressed as a polynomial in \mathbf{A}. The inverse can be computed as the last step of the FVS algorithm [3]. The algorithm has a direct representation in terms of Clifford multiplications as follows:

Theorem 3. Suppose that $A \in C \ell_{p, q}$ is a multivector of maximal grade $r \leq$ $p+q$. The Clifford inverse, if it exists, can be computed by the algorithm in $k=2^{\lceil r / 2\rceil}$ steps as

$$
\begin{aligned}
& m_{1}=A \\
& m_{2}=A m_{2}-t_{1} \quad \left\lvert\, \begin{array}{l}
c_{1}=-k A * 1 \\
c_{2}=-\frac{k}{2} A * m_{1} \\
\cdots \\
m_{k}=A m_{k-1}-t_{k} \\
c_{k}=-A * m_{k-1}
\end{array} ~\right.
\end{aligned}
$$

until the step where $m_{k}=0$ so that

$$
\begin{equation*}
A^{-1}=-\frac{m_{k-1}}{c_{k}} \tag{2}
\end{equation*}
$$

The inverse does not exist if $c_{k}=-\operatorname{det} A=0$.
The (reduced) characteristic polynomial of the multivector A of maximal grade r is

$$
\begin{equation*}
p_{A}(\lambda)=\lambda^{k}+c_{1} \lambda^{k-1}+\ldots c_{k-1} \lambda+c_{k} \tag{3}
\end{equation*}
$$

Proof. The proof follows from the homomorphism of the π map. We recall the statement of FVS algorithm:

$$
p_{A}(\lambda)=\operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{A}\right)=\lambda^{n}+c_{1} \lambda^{n-1}+\ldots c_{n-1} \lambda+c_{n}, \quad n=\operatorname{dim}(\mathbf{A})
$$

where

$$
\begin{array}{l|lr}
\mathbf{M}_{1}=\mathbf{A} & t_{1}=\operatorname{tr}\left[\mathbf{M}_{1}\right] & c_{1}=-t_{1} \\
\mathbf{M}_{2}=\mathbf{A} \mathbf{M}_{1}-t_{1} \mathbf{I}_{n} \\
\ldots & t_{2}=\frac{1}{2} \operatorname{tr}\left[\mathbf{A} \mathbf{M}_{1}\right] & c_{2}=-t_{2} \\
\cdots & \ldots \\
\mathbf{M}_{n}=\mathbf{A} \mathbf{M}_{n-1}-t_{n} \mathbf{I}_{n} & t_{n}=\frac{1}{n} \operatorname{tr}\left[\mathbf{A} \mathbf{M}_{n-1}\right] c_{n}=-t_{n}
\end{array}
$$

The matrix inverse can be computed from the last step of the algorithm as $\mathbf{A}^{-1}=\mathbf{M}_{n-1} / t_{n}$ under the obvious restriction $t_{n} \neq 0$.

Therefore, the $\mathrm{k}^{\text {th }}$ step of the algorithm is $\pi^{-1}: \mathbf{M}_{k}=\mathbf{A} \mathbf{M}_{k-1}-t_{k} \mathbf{I} \mapsto$ $m_{k}=A m_{k-1}-t_{k}$. Furthermore, π commutes with the trace operator giving $\pi^{-1}\left(\operatorname{tr}\left[\mathbf{M}_{k}\right]\right)=n\left\langle m_{k}\right\rangle_{0}$; hence, $t_{k}=n\left\langle m_{k}\right\rangle_{0}$. Moreover, the FVS algorithm terminates with $\mathbf{M}_{n}=0$, which corresponds to the limiting case $n=2^{p+q}$ wherever A contains all grades.

On the other hand, [2] make the observation that according to the Bott periodicity the number of steps can be reduced to $2^{\lceil n / 2\rceil}$. This can be proven as follows. Consider the isomorphism $C \ell_{p, q} \supset C \ell_{p, q}^{+} \cong C \ell_{q-1, p-1}$. Therefore, if a property holds for an algebra of dimension n it will hold also for the algebra of dimension $n-2$. Therefore, suppose that for n even the characteristic polynomial is square free: $p_{A}(v) \neq q(v)^{2}$ for some polynomial. We proceed by reduction. For $n=2$ in $C \ell_{2,0}$ and $A=a_{1}+e_{1} a_{2}+e_{2} a_{3}+e_{3} a_{4}$ we compute $p_{A}(v)=$ $\left(a_{1}^{2}-a_{2}^{2}-a_{3}^{2}+a_{4}^{2}-2 a_{1} v+v^{2}\right)^{2}$ and a similar result holds also for the other signatures of $C \ell_{2}$. Therefore, we have a contradiction and the dimension can be reduced to $k=n / 2$. In the same way, suppose that n is odd the characteristic polynomial is square free. However, for $n=3$ in $C \ell_{3,0}$ and $A=a_{1}+e_{1} a_{2}+$ $e_{2} a_{3}+e_{3} a_{4}+a_{5} e_{12}+a_{6} e_{13}+a_{7} e_{23}+a_{8} e_{123}$ it is established that $p_{A}(v)=q(v)^{2}$ for $q(v)=\left(a_{1}^{2}-a_{2}^{2}-a_{3}^{2}-a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}-a_{8}^{2}+2 i\left(-a_{4} a_{5}+a_{3} a_{6}-a_{2} a_{7}+\right.\right.$ $\left.\left.a_{1} a_{8}\right)-2 a_{1} v-2 i a_{8} v+v^{2}\right)\left(a_{1}^{2}-a_{2}^{2}-a_{3}^{2}-a_{4}^{2}+a_{5}^{2}+a_{6}^{2}+a_{7}^{2}-a_{8}^{2}+2 i\left(a_{4} a_{5}-\right.\right.$ $\left.\left.a_{3} a_{6}+a_{2} a_{7}-a_{1} a_{8}\right)-2 a_{1} v+2 i a_{8} v+v^{2}\right)$. Similar results hold also for the other signatures of $C \ell_{3}$. Therefore, we have a contradiction and the dimension can be reduced to $k=(n+1) / 2$. Therefore, overall, one can reduce the number of steps to $k=2^{\lceil n / 2\rceil}$.

As a second case, suppose that $\operatorname{gr}[A]=r$. Let E_{r} be the set of all blades of grade $\leq r$. We compute the restricted multiplication tables $\mathbf{M}\left(E_{r}\right)$ and respectively $\mathbf{G}\left(E_{r}\right)$ and form the restricted map π_{r}. Then

$$
\pi_{r}\left(A A^{-1}\right)=\pi_{r}(A) \pi_{r}\left(A^{-1}\right)=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}_{n}, \quad n=2^{r}
$$

Therefore, the FVS algorithm terminates in $k=2^{r}$ steps. Observe that π^{-1} : $\mathbf{A} \mathbf{M}_{k} \mapsto A m_{k}$. Therefore, $\operatorname{tr}\left[\mathbf{A} \mathbf{M}_{k}\right]$ will map to $n A * m_{k}$ by eq. 1 . Now, suppose that $t_{k} \neq 0$; then for the last step of the algorithm we obtain:

$$
A m_{k-1}-t_{k}=0 \Rightarrow A \frac{m_{k-1}}{t_{k}}=1 \Rightarrow A^{-1}=\frac{m_{k-1}}{t_{k}}
$$

Furthermore, we can always embed the Clifford number A into higher dimensional algebra according to the above congruence, therefore the number of steps can be ultimately reduced to $k=2^{\lceil r / 2\rceil}$.

5 Implementation

Computations are performed using the Clifford package in Maxima [5]. The function below returns the inverse (if it exists) and the characteristic polynomial $p_{A}(v)$ of the Clifford expression A.

```
1 fadlevicg2cp(A, v):= block([M:1,K, i:1,n,k:maxgrade(A),cq,c,ss],
    n:2^(ceiling(k/2)),
    array(c,n+1), for r:0 thru n+1 do c[r]:1,
    A:rat(A), ss:c[1]*v^^n,
    while i<n and K#0 do (
6
1 c[i+1]:cq, ss:ss+c[i+1]*v^^(n-i),
            i : i+1
    ),
    K: dotsimpc(expand (A.M)),
    cq:-n/i*scalarpart (K),
    if _debug1=all then print("t_{",i,"}=",cq," m_{",i,"}=",K,
            "\\\\"),
    ss:ss+cq,
    if cq=0 then cq:1, M: factor(-(M)/cq),
    [M, ss ]
);
```


6 Experiments

Example 1. Let us compute a rational example in $C \ell_{2,5}$. Let $A=1+5 e_{1} e_{3} e_{4}-$ $2 e_{1} e_{5}$. Then for the maximal representation we have $k=2^{3}=8$ steps.

$$
\begin{array}{ll}
t_{1}=-8 & m_{1}=1+5\left(e_{1} e_{3} e_{4}\right)-2\left(e_{1} e_{5}\right) \\
t_{2}=112 & m_{2}=-28-30\left(e_{1} e_{3} e_{4}\right)+12\left(e_{1} e_{5}\right) \\
t_{3}=-560 & m_{3}=210+390\left(e_{1} e_{3} e_{4}\right)-156\left(e_{1} e_{5}\right) \\
t_{4}=3976 & m_{4}=-1988-1360\left(e_{1} e_{3} e_{4}\right)+544\left(e_{1} e_{5}\right) \\
t_{5}=-12320 & m_{5}=7700+8580\left(e_{1} e_{3} e_{4}\right)-3432\left(e_{1} e_{5}\right) \\
t_{6}=54208 & m_{6}=-40656-14520\left(e_{1} e_{3} e_{4}\right)+5808\left(e_{1} e_{5}\right) \\
t_{7}=-85184 & m_{7}=74536+53240\left(e_{1} e_{3} e_{4}\right)-21296\left(e_{1} e_{5}\right) \\
t_{8}=234256 & m_{8}=234256
\end{array}
$$

Therefore, $A^{-1}=\frac{1}{22}\left(1-5 e_{1} e_{3} e_{4}+2 e_{1} e_{5}\right)$ and $p_{A}(v)=234256-85184 v+$ $54208 v^{2}-12320 v^{3}+3976 v^{4}-560 v^{5}+112 v^{6}-8 v^{7}+v^{8}$. On the other hand, for the reduced algorithm will run in $k=2^{\lceil 3 / 2\rceil}=4$ steps.

$$
\begin{aligned}
& t_{1}=-4 \quad m_{1}=1+5\left(e_{1} e_{3} e_{4}\right)-2\left(e_{1} e_{5}\right) \\
& t_{2}=48 \quad m_{2}=-24-10\left(e_{1} e_{3} e_{4}\right)+4\left(e_{1} e_{5}\right) \\
& t_{3}=-88 m_{3}=66+110\left(e_{1} e_{3} e_{4}\right)-44\left(\left(e_{1} e_{5}\right)\right. \\
& t_{4}=484 m_{4}=-484
\end{aligned}
$$

and $p_{A}(v)=484-88 v+48 v^{2}-4 v^{3}+v^{4}$, which squared gives the above polynomial.

Example 2. Consider $C \ell_{5,2}$ and let $A=1-e_{2}+e_{1} e_{2} e_{3} e_{4} e_{5} e_{6} e_{7}$. Then

$$
A^{-1}=\frac{1}{5}-\frac{1}{5} e_{2}-\frac{3}{5}\left(e_{1} e_{2} e_{3} e_{4} e_{5} e_{6} e_{7}\right)+\frac{2}{5}\left(e_{1} e_{3} e_{4} e_{5} e_{6} e_{7}\right)
$$

A Supporting results

Definition 5 (Sparsity property). A matrix has the sparsity property if it has exactly one non-zero element per column and exactly one non-zero element per row. Such a matrix we call sparse.

Lemma 1 (Sparsity lemma). If the matrices \mathbf{A} and \mathbf{B} are sparse then so is $\mathbf{C}=\mathbf{A B}$. Moreover,

$$
c_{i j}=\left\{\begin{array}{l}
0 \\
a_{i q} b_{q j}
\end{array}\right.
$$

(no summation!) for some index q.
Proof. Consider two sparse square matrices \mathbf{A} and \mathbf{B} of dimension n. Let $c_{i j}=$ $\sum_{\mu} a_{i \mu} b_{\mu j}$. Then as we vary the row index i then there is only one index $q \leq n$, such that $a_{i q} \neq 0$. As we vary the column index j then there is only one index $q \leq n$, such that $b_{q j} \neq 0$. Therefore, $c_{i j}=\left(0 ; a_{i q} b_{q j}\right)$ for some q by the sparsity of \mathbf{A} and \mathbf{B}. As we vary the row index i then $c_{q j}=0$ for $i \neq q$ for the column j by the sparsity of \mathbf{A}. As we vary the column index j then $c_{i q}=0$ for $j \neq q$ for the row i by the sparsity of \mathbf{B}. Therefore, $\mathbf{A B}$ is sparse.

Lemma 2 (Multiplication Matrix Structure). For the multi-index disjoint sets $S \prec T$ the following implications hold for the elements of \mathbf{M} :

so that $m_{\lambda \lambda^{\prime}}=m_{\lambda \mu} \sigma_{\mu} m_{\mu \lambda^{\prime}}$ for some index μ.
Proof. Suppose that the ordering of elements is given in the construction of $C \ell_{p, q, r}$. To simplify presentation, without loss of generality, suppose that e_{s} and e_{t} are some generators. By the properties of \mathbf{M} there exists an index $\lambda^{\prime}>\lambda$, such that $e_{M} e_{L^{\prime}}=m_{\mu \lambda^{\prime}} e_{t}, L^{\prime} \backslash M=T$ for $L \prec L^{\prime}$. Choose M, s.d. $L \prec M \prec L^{\prime}$. Then for $L \prec M \prec L^{\prime}$ and $S \prec T$

$$
\begin{aligned}
e_{M} e_{L} & =m_{\mu \lambda} e_{s}, \quad L \triangle M=S \Leftrightarrow e_{L} e_{M}=m_{\lambda \mu} e_{s} \\
e_{M} e_{L^{\prime}} & =m_{\mu \lambda^{\prime}} e_{t}, \quad L^{\prime} \triangle M=T
\end{aligned}
$$

Suppose that $e_{s} e_{t}=e_{s t}, s t=S \cup T=S \triangle T$. Multiply together the diagonal nodes in the matrix

$$
e_{L} \underbrace{e_{M} e_{M}}_{\sigma_{\mu}} e_{L^{\prime}}=m_{\lambda \mu} m_{\mu \lambda^{\prime}} e_{s t}
$$

Therefore, $s \in L$ and $t \in L^{\prime}$. We observe that there is at least one element (the algebra unity) with the desired property $\sigma_{\mu} \neq 0$.

Further, we observe that there exists unique index $\lambda^{\prime \prime}$ such that $m_{\lambda \lambda^{\prime \prime}} e_{s t}$. Since λ is fixed. This implies that $L^{\prime \prime}=L^{\prime} \Rightarrow \lambda^{\prime \prime}=\lambda^{\prime}$. Therefore,

$$
e_{L} e_{L^{\prime}}=m_{\lambda \lambda^{\prime}} e_{s t}, \quad L^{\prime} \triangle L=\{s, t\}
$$

which implies the identity $m_{\lambda \lambda^{\prime}} e_{s t}=m_{\lambda \mu} \sigma_{\mu} m_{\mu \lambda^{\prime}} e_{s t}$. For higher graded elements e_{S} and e_{T} we should write $e_{S \triangle T}$ instead of $e_{s t}$.

Proposition 3. Consider the multiplication table M. All elements $m_{k j}$ are different for a fixed row k. All elements $m_{i q}$ are different for a fixed column q.

Proof. Fix k. Then for $e_{K}, e_{J} \in \mathbf{B}$ we have $e_{K} e_{J}=m_{k j} e_{S}, \quad S=K \triangle J$. Suppose that we have equality for 2 indices j, j^{\prime}. Then $K \triangle J^{\prime}=K \triangle J=S$. Let $\delta=J \cap J^{\prime}$; then

$$
K \triangle(J \cup \delta)=K \triangle J=S \Rightarrow K \triangle \delta=S \Rightarrow \delta=\emptyset
$$

Therefore, $j=j^{\prime}$. By symmetry, the same reasoning applies to a fixed column q.
Proposition 4. For $e_{s} \in \mathbf{E}$ the matrix $\mathbf{A}_{s}=C_{s}(\mathbf{M})$ is sparse.
Proof. Fix an element $e_{s} \in \mathbf{E}$. Consider a row k. By Prop. 3 there is a j, such $e_{k j}=e_{s}$. Then $a_{k j}=m_{k j}$, while for $i \neq j a_{k i}=0$.

Consider a column l By Prop. 3 there is a j, such $e_{j l}=e_{s}$. Then $a_{j l}=m_{j l}$, while for $i \neq j a_{i l}=0$. Therefore, \mathbf{A}_{s} has the sparsity property.

Proposition 5. For generator elements e_{s} and $e_{t} \mathbf{E}_{s} \mathbf{E}_{t}+\mathbf{E}_{t} \mathbf{E}_{s}=\mathbf{0}$.
Proof. Consider the basis elements e_{s} and e_{t}. By linearity and homomorphism of the $\pi \operatorname{map}$ (Th. 1): $\pi: e_{s} e_{t}+e_{t} e_{s}=0 \mapsto \pi\left(e_{s} e_{t}\right)+\pi\left(e_{t} e_{s}\right)=\mathbf{0}$. Therefore, for two vector elements $\mathbf{E}_{s} \mathbf{E}_{t}+\mathbf{E}_{t} \mathbf{E}_{s}=\mathbf{0}$.

Proposition 6. $\mathbf{E}_{\mathbf{s}} \mathbf{E}_{\mathbf{s}}=\sigma_{s} \mathbf{I}$
Proof. Consider the matrix $\mathbf{W}=\mathbf{G A}_{\mathbf{s}} \mathbf{G} \mathbf{A}_{\mathbf{s}}$. Then $w_{\mu \nu}=\sum_{\lambda} \sigma_{\mu} \sigma_{\lambda} a_{\mu \lambda} a_{\lambda \nu}$ element-wise. By Lemma $1 \mathbf{W}$ is sparse so that $w_{\mu \nu}=\left(0 ; \sigma_{\mu} \sigma_{q} a_{\mu q} a_{q \nu}\right)$.

From the structure of \mathbf{M} for the entries containing the element e_{S} we have the equivalence

$$
\left\{\begin{array}{l}
e_{M} e_{Q}=a_{\mu q}^{s} e_{S}, \quad S=M \triangle Q \\
e_{Q} e_{M}=a_{q \mu}^{s} e_{S}
\end{array}\right.
$$

After multiplication of the equations we obtain $e_{M} e_{Q} e_{Q} e_{M}=a_{\mu q}^{s} e_{S} a_{q \mu}^{s} e_{S}$, which simplifies to the First fundamental identity:

$$
\begin{equation*}
\sigma_{q} \sigma_{\mu}=a_{\mu q}^{s} a_{q \mu}^{s} \sigma_{s} \tag{4}
\end{equation*}
$$

We observe that if $\sigma_{\mu}=0$ or $\sigma_{q}=0$ the result follows trivially. In this case also $\sigma_{s}=0$. Therefore, let's suppose that $\sigma_{s} \sigma_{q} \sigma_{\mu} \neq 0$. We multiply both sides by $\sigma_{s} \sigma_{q} \sigma_{\mu}$ to obtain $\sigma_{s}=\sigma_{q} \sigma_{\mu} a_{\mu q}^{s} a_{q \mu}^{s}$. However, the RHS is a diagonal element of \mathbf{W}, therefore by the sparsity it is the only non-zero element for a given row/column so that $\mathbf{W}=\mathbf{E}_{\mathbf{s}}^{2}=\sigma_{s} \mathbf{I}$.

Acknowledgment

The present work is funded in part by the European Union's Horizon Europe program under grant agreement VIBraTE, grant agreement 101086815.

References

1. Acus, A., Dargys, A.: The inverse of a multivector: Beyond the threshold $p+q=$ 5. Adv. Appl. Clifford Algebras 28(3) (2018). https://doi.org/10.1007/s00006-018-0885-4
2. Acus, A., Dargys, A.: The characteristic polynomial in calculation of exponential and elementary functions in Clifford algebras (2022). https://doi.org/10.22541/au.167101043.33855504/v1
3. Faddeev, D.K., Sominskij, I.S.: Sbornik Zadatch po Vyshej Algebre. Nauka, Moscow-Leningrad (1949)
4. Hitzer, E., Sangwine, S.J.: Construction of multivector inverse for Clifford algebras over $2 m+1$ - dimensional vector spaces from multivector inverse for clifford algebras over 2m-dimensional vector spaces. Adv. Appl. Clifford Algebras 29(2) (2019). https://doi.org/10.1007/s00006-019-0942-7
5. Prodanov, D., Toth, V.T.: Sparse representations of Clifford and tensor algebras in Maxima. Adv. Appl. Clifford Algebras pp. 1-23 (2016). https://doi.org/10.1007/s00006-016-0682-x
6. Shirokov, D.S.: On determinant, other characteristic polynomial coefficients, and inverses in Clifford algebras of arbitrary dimension (2020)
