Algorithmic computation of multivector inverses and characteristic polynomials in non-degenerate Clifford algebras

Dimiter Prodanov^{1,2[0000-0001-8694-0535]}

¹ Neuroelectronics Research Flanders, IMEC, Leuven, Belgium

² ITSDP, IICT, Bulgarian Academy of Science, Sofia, Bulgaria; dimiter.prodanov@imec.be

Abstract. Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into the concept of non-commutative Clifford numbers. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev–LeVerrier–Souriau algorithm and is implemented in the opensource Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.

Keywords: multivector · Clifford algebra · computer algebra

1 Introduction

Clifford algebras provide the natural generalizations of complex, dual and splitcomplex (or hyperbolic) numbers into the concept of *Clifford numbers*. The development of Clifford algebras is based on the insights of Hamilton, Grassmann, and Clifford from the 19^{th} century. After a hiatus lasting many decades, the Clifford geometric algebra experienced a renaissance with the advent of contemporary computer algebra systems. Clifford algebras can be implemented in a variety of general-purpose computer languages and computational platforms. Recent years have seen renewed interest in Clifford algebra platforms: notably, for Maple, Matlab, Mathematica, Maxima, *Ganja.js* for JavaScript, *GaLua* for Lua, *Galgebra* for Python, *Grassmann* for Julia.

Computation of Clifford inverses has drawn attention in the literature [1, 4, 6]. The present contribution demonstrates an algorithm for Clifford number inversion, which involves only multiplications and subtractions and has a variable number of steps, depending on the maximal grade of the Clifford number. The algorithm is implemented using the Clifford Maxima package [5]. The algorithm is a direct translation of the Faddeev–LeVerrier–Souriau (FVS) algorithm for matrix inverse computation. The algorithm is in fact a proof certificate for the existence of an inverse. As a side product, the algorithm can compute the characteristic polynomial of the Clifford number and its determinant also without any resort to a matrix representation.

2 Notation and Preliminaries

 $C\ell_n$ will denote a Clifford algebra of order *n* but with unspecified signature. Clifford multiplication is denoted by simple juxtaposition of symbols. Algebra generators will be indexed by Latin letters. Multi-indices will be considered as index **lists** and not as sets and will be denoted with capital letters. The operation of taking k-grade part of an expression will be denoted by $\langle . \rangle_k$ and in particular the scalar part will be denoted by $\langle . \rangle_0$. Set difference is denoted by Δ . Matrices will be indicated with bold capital letters, while matrix entries will be indicated by lowercase letters. The *scalar product* of the blades will be denoted by *.

Definition 1. The generators of the Clifford algebra will be denoted by indexed symbol e. It will be assumed that there is an ordering relation \prec , such that for two natural numbers $i < j \implies e_i \prec e_j$. The **extended basis** set of the algebra will be defined as the ordered power set $\mathbf{B} := \{P(E), \prec\}$ of all generators $E = \{e_1, \ldots, e_n\}$ and their irreducible products.

Definition 2. Define the diagonal scalar product matrix as $\mathbf{G} := \{\sigma_{IJ} = e_I * e_J | e_I, e_J \in \mathbf{B}, I \prec J\}.$

A Clifford number will be written as $A = a_1 + \sum_{k=1}^r \langle A \rangle_k = a_1 + \sum_J a_J e_J$. The maximal grade of A will be denoted by gr[A].

3 Clifford algebra real matrix representation map

In the present article we will focus on non-degenerate Clifford algebras, therefore the non-zero elements of **G** are valued in $\{-1, 1\}$.

Definition 3 (Clifford coefficient map). Define the linear map acting elementwise $C_a : C\ell_n \mapsto \mathbb{R}$ by the action $C_a(ax + b) = x$ for $x \in \mathbb{R}, a, b \in \mathbf{B}$.

Define the Clifford **coefficient map** indexed by e_S as $C_S(\mathbf{M}) := \mathbf{A}_S$, where \mathbf{M} is the multiplication table of the extended basis $\mathbf{M} = \{\mathcal{R}(e_M e_N) \mid e_M, e_N \in \mathbf{B}\}.$

Definition 4 (Canonical matrix map). Define the map $\pi : \mathbf{B} \mapsto \mathbf{Mat}_{\mathbb{R}}(2^n \times 2^n)$, n = p + q + r as $\pi : e_S \mapsto \mathbf{E}_s := \mathbf{GA}_s$ where s is the ordinal of $e_S \in \mathbf{B}$ and \mathbf{A}_S is computed as in Def. 3.

Proposition 1. The π -map is linear.

The proposition follows from the linearity of the coefficient map and matrix multiplication with a scalar.

Theorem 1 (Semigroup property). Let e_s and e_t be generators of $C\ell_{p,q}$. Then the following statements hold

- 1. The map π is a homomorphism with regard to the Clifford product (i.e. π distributes over the Clifford products): $\pi(e_s e_t) = \pi(e_s)\pi(e_t)$.
- 2. The set of all matrices \mathbf{E}_s forms a multiplicative semigroup.

Proof. Let $\mathbf{E}_s = \pi(e_s)$, $\mathbf{E}_t = \pi(e_t)$, $\mathbf{E}_{st} = \pi(e_se_t)$. We specialize the result of Lemma 2 for $S = \{s\}$ and $T = \{t\}$ and observe that $m_{\lambda\lambda'} e_{st} = m_{\lambda\mu}\sigma_{\mu}m_{\mu\lambda'} e_{st}$ for $\lambda, \lambda', \mu \leq n$ and $\sigma_{\lambda}m_{\lambda\lambda'} = \sigma_{\lambda}m_{\lambda\mu}\sigma_{\mu}m_{\mu\lambda'}$. In summary, the map π acts on $C\ell_{p,q}$ according to the following diagram:

Therefore, $\mathbf{E}_{st} = \mathbf{E}_s \mathbf{E}_t$. Moreover, we observe that $\pi(e_s e_t) = \mathbf{E}_{st} = \mathbf{E}_s \mathbf{E}_t = \pi(e_s)\pi(e_t)$.

For the semi-group property observe that since π is linear it is invertible. Since π distributes over Clifford product its inverse π^{-1} distributes over matrix multiplication:

$$\pi^{-1}(\mathbf{E}_s \mathbf{E}_t) \equiv \pi^{-1}(\mathbf{E}_{st}) = e_{st} \equiv e_s e_t = \pi^{-1}(\mathbf{E}_s) \ \pi^{-1}(\mathbf{E}_t)$$

However, $C\ell_{p,q}$ is closed by construction, therefore, the set $\{\mathbf{E}\}_s$ is closed under matrix multiplication.

Proposition 2. Let $\mathbf{L} := \{l_i | l_i \in \mathbf{B}\}$ be a column vector and \mathbf{R}_s be the first row of \mathbf{E}_s . Then $\pi^{-1} : \mathbf{E}_s \mapsto \mathbf{R}_s \mathbf{L}$.

Proof. We observe that by the Prop. 4 the only non-zero element in the first row of \mathbf{E}_s is $\sigma_1 m_{1s} = 1$. Therefore, $\mathbf{R}_s \mathbf{L} = e_s$.

Theorem 2 (Complete Real Matrix Representation). Define the map $g : \mathbf{A} \mapsto \mathbf{G}\mathbf{A}$ as matrix multiplication with \mathbf{G} . Then for a fixed multiindex s $\pi = C_s \circ g = g \circ C_s$. Further, π is an isomorphism inducing a Clifford algebra representation in the real matrix algebra:

$$C\ell_{p,q}(\mathbb{R}) \xrightarrow{\pi} \operatorname{Mat}_{\mathbb{R}} (2^n \times 2^n)$$

Proof. The π -map is a linear isomorphism. The set $\{\mathbf{E}_s\}$ forms a multiplicative group, which is a subset of the matrix algebra $\mathbf{Mat}_{\mathbb{R}}(N \times N), N = 2^n$. Let $\pi(e_s) = \mathbf{E}_s$ and $\pi(e_t) = \mathbf{E}_t$. It is claimed that

- 1. $\mathbf{E}_s \mathbf{E}_t \neq \mathbf{0}$ by the Sparsity Lemma 1.
- 2. $\mathbf{E}_s \mathbf{E}_t = -\mathbf{E}_t \mathbf{E}_s$ by Prop. 5.
- 3. $\mathbf{E}_s \mathbf{E}_s = \sigma_s \mathbf{I}$ by Prop. 6.

Therefore, the set $\{\mathbf{E}_S\}_{S=\{1\}}^{P(n)}$ is an image of the extended basis **B**. Here P(n) denotes the power set of the indices of the algebra generators.

What is special about the above representation is the relationship

$$\operatorname{tr}\mathbf{A} = 2^n \left\langle A \right\rangle_0 \tag{1}$$

for the image $\pi(A) = \mathbf{A}$ of a general multivector element A and it will be used further in the proof of FVS algorithm.

Remark 1. The above construction works if instead of the entire algebra $C\ell_{p,q}$ we restrict a multivector to a sub-algebra of a smaller grade max $\operatorname{gr} A = r$. In this case, we form grade-restricted multiplication matrices \mathbf{G}_r and \mathbf{M}_r .

4 FVS multivector inversion algorithm

Multivector inverses can be computed using the matrix representation and the characteristic polynomial. The matrix inverse is $\mathbf{A}^{-1} = \hat{\mathbf{A}}/\det \mathbf{A}$, where `denotes the matrix adjunct operation and det \mathbf{A} is the matrix determinant. The formula is not practical, because it requires the computation of $n^2 + 1$ determinants. With the help of the Cayley-Hamilton Theorem, the inverse of \mathbf{A} can be expressed as a polynomial in \mathbf{A} . The inverse can be computed as the last step of the FVS algorithm [3]. The algorithm has a direct representation in terms of Clifford multiplications as follows:

Theorem 3. Suppose that $A \in C\ell_{p,q}$ is a multivector of maximal grade $r \leq p+q$. The Clifford inverse, if it exists, can be computed by the algorithm in $k = 2^{\lceil r/2 \rceil}$ steps as

$$\begin{array}{c} m_1 = A \\ m_2 = Am_2 - t_1 \\ \dots \\ m_k = Am_{k-1} - t_k \end{array} \begin{vmatrix} c_1 = -kA * 1 \\ c_2 = -\frac{k}{2}A * m_1 \\ \dots \\ c_k = -A * m_{k-1} \end{vmatrix}$$

until the step where $m_k = 0$ so that

$$A^{-1} = -\frac{m_{k-1}}{c_k}$$
(2)

The inverse does not exist if $c_k = -\det A = 0$.

The (reduced) characteristic polynomial of the multivector A of maximal grade r is

$$p_A(\lambda) = \lambda^k + c_1 \lambda^{k-1} + \dots + c_{k-1} \lambda + c_k$$
(3)

Proof. The proof follows from the homomorphism of the π map. We recall the statement of FVS algorithm:

$$p_A(\lambda) = \det(\lambda \mathbf{I}_n - \mathbf{A}) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_{n-1} \lambda + c_n, \quad n = \dim(\mathbf{A})$$

where

$$\mathbf{M}_1 = \mathbf{A} \\ \mathbf{M}_2 = \mathbf{A}\mathbf{M}_1 - t_1\mathbf{I}_n \\ \dots \\ \mathbf{M}_n = \mathbf{A}\mathbf{M}_{n-1} - t_n\mathbf{I}_n \\ \mathbf{I}_n = \frac{1}{n} \operatorname{tr}[\mathbf{A}\mathbf{M}_{n-1}] \quad c_1 = -t_1 \\ t_2 = \frac{1}{2}\operatorname{tr}[\mathbf{A}\mathbf{M}_1] \quad c_2 = -t_2 \\ \dots \\ t_n = \frac{1}{n}\operatorname{tr}[\mathbf{A}\mathbf{M}_{n-1}] \quad c_n = -t_n \\ \end{array}$$

The matrix inverse can be computed from the last step of the algorithm as $\mathbf{A}^{-1} = \mathbf{M}_{n-1}/t_n$ under the obvious restriction $t_n \neq 0$.

Therefore, the kth step of the algorithm is $\pi^{-1} : \mathbf{M}_k = \mathbf{A}\mathbf{M}_{k-1} - t_k\mathbf{I} \mapsto m_k = Am_{k-1} - t_k$. Furthermore, π commutes with the trace operator giving $\pi^{-1}(\operatorname{tr}[\mathbf{M}_k]) = n \langle m_k \rangle_0$; hence, $t_k = n \langle m_k \rangle_0$. Moreover, the FVS algorithm terminates with $\mathbf{M}_n = 0$, which corresponds to the limiting case $n = 2^{p+q}$ wherever A contains all grades.

On the other hand, [2] make the observation that according to the Bott periodicity the number of steps can be reduced to $2^{\lceil n/2 \rceil}$. This can be proven as follows. Consider the isomorphism $C\ell_{p,q} \supset C\ell_{p,q}^+ \cong C\ell_{q-1,p-1}$. Therefore, if a property holds for an algebra of dimension n it will hold also for the algebra of dimension n-2. Therefore, suppose that for n even the characteristic polynomial is square free: $p_A(v) \neq q(v)^2$ for some polynomial. We proceed by reduction. For n = 2 in $C\ell_{2,0}$ and $A = a_1 + e_1a_2 + e_2a_3 + e_3a_4$ we compute $p_A(v) = (a_1^2 - a_2^2 - a_3^2 + a_4^2 - 2a_1v + v^2)^2$ and a similar result holds also for the other signatures of $C\ell_2$. Therefore, we have a contradiction and the dimension can be reduced to k = n/2. In the same way, suppose that n is odd the characteristic polynomial is square free. However, for n = 3 in $C\ell_{3,0}$ and $A = a_1 + e_1a_2 + e_2a_3 + e_3a_4 + a_5e_{12} + a_6e_{13} + a_7e_{23} + a_8e_{123}$ it is established that $p_A(v) = q(v)^2$ for $q(v) = (a_1^2 - a_2^2 - a_3^2 - a_4^2 + a_5^2 + a_6^2 + a_7^2 - a_8^2 + 2i(-a_4a_5 + a_3a_6 - a_2a_7 + a_1a_8) - 2a_1v - 2ia_8v + v^2)(a_1^2 - a_2^2 - a_3^2 - a_4^2 + a_5^2 + a_6^2 + a_7^2 - a_8^2 + 2i(a_4a_5 - a_3a_6 + a_2a_7 - a_1a_8) - 2a_1v + 2ia_8v + v^2)$. Similar results hold also for the other signatures of $C\ell_3$. Therefore, we have a contradiction and the dimension can be reduced to k = (n + 1)/2. Therefore, overall, one can reduce the number of steps to $k = 2^{\lceil n/2 \rceil}$.

As a second case, suppose that gr[A] = r. Let E_r be the set of all blades of grade $\leq r$. We compute the restricted multiplication tables $\mathbf{M}(E_r)$ and respectively $\mathbf{G}(E_r)$ and form the restricted map π_r . Then

$$\pi_r(AA^{-1}) = \pi_r(A)\pi_r(A^{-1}) = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n, \quad n = 2^r$$

Therefore, the FVS algorithm terminates in $k = 2^r$ steps. Observe that π^{-1} : $\mathbf{AM}_k \mapsto Am_k$. Therefore, $\operatorname{tr}[\mathbf{AM}_k]$ will map to $nA * m_k$ by eq. 1. Now, suppose that $t_k \neq 0$; then for the last step of the algorithm we obtain:

$$Am_{k-1} - t_k = 0 \Rightarrow A\frac{m_{k-1}}{t_k} = 1 \Rightarrow A^{-1} = \frac{m_{k-1}}{t_k}$$

Furthermore, we can always embed the Clifford number A into higher dimensional algebra according to the above congruence, therefore the number of steps can be ultimately reduced to $k = 2^{\lceil r/2 \rceil}$.

5 Implementation

Computations are performed using the *Clifford* package in Maxima [5]. The function below returns the inverse (if it exists) and the characteristic polynomial $p_A(v)$ of the Clifford expression A.

Listing 1.1. FVS Maxima code for the Clifford package

```
1 fadlevicg2cp(A, v):=block([M:1,K,i:1,n,k:maxgrade(A),cq,c,ss],
       n:2^{(k/2)},
       \operatorname{array}(c, n+1), for r:0 thru n+1 do c[r]:1,
       A: rat(A), ss:c[1]*v^n,
       while i<n and K#0 do (
            K:dotsimpc(expand (A.M)),
6
            cq:-n/i*scalarpart(K),
            if _debug1=all then print ("t_{",i,"}=",cq," m_{",i,"}=
                ",K,"\\\\"),
            if K#0 then
                M: rat(K + cq),
            c\;[\;i+1]\!:\!cq\;,\;\;ss:ss\!+\!c\;[\;i\!+\!1]\!*v^{\hat{}}(n\!-\!i\;)\;,
11
            i:i+1
       ),
       K: dotsimpc(expand(A.M)),
       cq:-n/i*scalarpart(K),
       if _debug1=all then print ("t_{",i,"}=",cq," m_{",i,"}=",K,
16
           " \setminus \setminus \setminus "),
       ss:ss+cq,
       if cq=0 then cq:1, M: factor (-(M)/cq),
       [M, ss]
  );
```

6 Experiments

Example 1. Let us compute a rational example in $C\ell_{2,5}$. Let $A = 1 + 5e_1e_3e_4 - 2e_1e_5$. Then for the maximal representation we have $k = 2^3 = 8$ steps.

 $\begin{array}{ll} t_1 = -8 & m_1 = 1 + 5(e_1e_3e_4) - 2(e_1e_5) \\ t_2 = 112 & m_2 = -28 - 30(e_1e_3e_4) + 12(e_1e_5) \\ t_3 = -560 & m_3 = 210 + 390(e_1e_3e_4) - 156(e_1e_5) \\ t_4 = 3976 & m_4 = -1988 - 1360(e_1e_3e_4) + 544(e_1e_5) \\ t_5 = -12320 & m_5 = 7700 + 8580(e_1e_3e_4) - 3432(e_1e_5) \\ t_6 = 54208 & m_6 = -40656 - 14520(e_1e_3e_4) + 5808(e_1e_5) \\ t_7 = -85184 & m_7 = 74536 + 53240(e_1e_3e_4) - 21296(e_1e_5) \\ t_8 = 234256 & m_8 = 234256 \end{array}$

Therefore, $A^{-1} = \frac{1}{22} (1 - 5e_1e_3e_4 + 2e_1e_5)$ and $p_A(v) = 234256 - 85184v + 54208v^2 - 12320v^3 + 3976v^4 - 560v^5 + 112v^6 - 8v^7 + v^8$. On the other hand, for the reduced algorithm will run in $k = 2^{\lceil 3/2 \rceil} = 4$ steps.

$$t_1 = -4 \quad m_1 = 1 + 5(e_1e_3e_4) - 2(e_1e_5)$$

$$t_2 = 48 \quad m_2 = -24 - 10(e_1e_3e_4) + 4(e_1e_5)$$

$$t_3 = -88 \quad m_3 = 66 + 110(e_1e_3e_4) - 44((e_1e_5))$$

$$t_4 = 484 \quad m_4 = -484$$

and $p_A(v) = 484 - 88v + 48v^2 - 4v^3 + v^4$, which squared gives the above polynomial.

Example 2. Consider $C\ell_{5,2}$ and let $A = 1 - e_2 + e_1 e_2 e_3 e_4 e_5 e_6 e_7$. Then

$$A^{-1} = \frac{1}{5} - \frac{1}{5}e_2 - \frac{3}{5}(e_1e_2e_3e_4e_5e_6e_7) + \frac{2}{5}(e_1e_3e_4e_5e_6e_7)$$

A Supporting results

Definition 5 (Sparsity property). A matrix has the sparsity property if it has exactly one non-zero element per column and exactly one non-zero element per row. Such a matrix we call sparse.

Lemma 1 (Sparsity lemma). If the matrices \mathbf{A} and \mathbf{B} are sparse then so is $\mathbf{C} = \mathbf{AB}$. Moreover,

$$c_{ij} = \begin{cases} 0\\ a_{iq}b_{qj} \end{cases}$$

(no summation!) for some index q.

Proof. Consider two sparse square matrices **A** and **B** of dimension n. Let $c_{ij} = \sum_{\mu} a_{i\mu} b_{\mu j}$. Then as we vary the row index i then there is only one index $q \leq n$, such that $a_{iq} \neq 0$. As we vary the column index j then there is only one index $q \leq n$, such that $b_{qj} \neq 0$. Therefore, $c_{ij} = (0; a_{iq} b_{qj})$ for some q by the sparsity of **A** and **B**. As we vary the row index i then $c_{qj} = 0$ for $i \neq q$ for the column j by the sparsity of **A**. As we vary the column index j then $c_{iq} = 0$ for $j \neq q$ for the row i by the sparsity of **B**. Therefore, **AB** is sparse.

Lemma 2 (Multiplication Matrix Structure). For the multi-index disjoint sets $S \prec T$ the following implications hold for the elements of M:

$$\begin{array}{cccc} m_{\mu\lambda} e_S & \xrightarrow{\exists \lambda' > \lambda} & m_{\mu\lambda'} e_T \\ \exists & & \downarrow \\ m_{\lambda\mu} e_S & \xrightarrow{\exists} & m_{\lambda\mu} m_{\mu\lambda'} e_{S \bigtriangleup T} \end{array} \xrightarrow{\exists \lambda'' = \lambda'} m_{\lambda\lambda''} e_{S \bigtriangleup T}$$

so that $m_{\lambda\lambda'} = m_{\lambda\mu}\sigma_{\mu}m_{\mu\lambda'}$ for some index μ .

Proof. Suppose that the ordering of elements is given in the construction of $C\ell_{p,q,r}$. To simplify presentation, without loss of generality, suppose that e_s and e_t are some generators. By the properties of **M** there exists an index $\lambda' > \lambda$, such that $e_M e_{L'} = m_{\mu\lambda'} e_t$, $L' \setminus M = T$ for $L \prec L'$. Choose M, s.d. $L \prec M \prec L'$. Then for $L \prec M \prec L'$ and $S \prec T$

$$e_M e_L = m_{\mu\lambda} e_s, \quad L \triangle M = S \Leftrightarrow e_L e_M = m_{\lambda\mu} e_s$$

 $e_M e_{L'} = m_{\mu\lambda'} e_t, \quad L' \triangle M = T$

7

Suppose that $e_s e_t = e_{st}, st = S \cup T = S \triangle T$. Multiply together the diagonal nodes in the matrix

$$e_L \underbrace{e_M e_M}_{\sigma_\mu} e_{L'} = m_{\lambda\mu} m_{\mu\lambda'} e_{st}$$

Therefore, $s \in L$ and $t \in L'$. We observe that there is at least one element (the algebra unity) with the desired property $\sigma_{\mu} \neq 0$.

Further, we observe that there exists unique index λ'' such that $m_{\lambda\lambda''}e_{st}$. Since λ is fixed. This implies that $L'' = L' \Rightarrow \lambda'' = \lambda'$. Therefore,

$$e_L e_{L'} = m_{\lambda\lambda'} e_{st}, \quad L' \triangle L = \{s, t\}$$

which implies the identity $m_{\lambda\lambda'} e_{st} = m_{\lambda\mu} \sigma_{\mu} m_{\mu\lambda'} e_{st}$. For higher graded elements e_S and e_T we should write $e_{S \Delta T}$ instead of e_{st} .

Proposition 3. Consider the multiplication table **M**. All elements m_{kj} are different for a fixed row k. All elements m_{ig} are different for a fixed column q.

Proof. Fix k. Then for $e_K, e_J \in \mathbf{B}$ we have $e_K e_J = m_{kj} e_S$, $S = K \triangle J$. Suppose that we have equality for 2 indices j, j'. Then $K \triangle J' = K \triangle J = S$. Let $\delta = J \cap J'$; then

$$K \triangle \left(J \cup \delta \right) = K \triangle J = S \Rightarrow K \triangle \delta = S \Rightarrow \delta = \emptyset$$

Therefore, j = j'. By symmetry, the same reasoning applies to a fixed column q.

Proposition 4. For $e_s \in \mathbf{E}$ the matrix $\mathbf{A}_s = C_s(\mathbf{M})$ is sparse.

Proof. Fix an element $e_s \in \mathbf{E}$. Consider a row k. By Prop. 3 there is a j, such $e_{kj} = e_s$. Then $a_{kj} = m_{kj}$, while for $i \neq j$ $a_{ki} = 0$.

Consider a column *l* By Prop. 3 there is a *j*, such $e_{jl} = e_s$. Then $a_{jl} = m_{jl}$, while for $i \neq j$ $a_{il} = 0$. Therefore, \mathbf{A}_s has the sparsity property.

Proposition 5. For generator elements e_s and $e_t \mathbf{E}_s \mathbf{E}_t + \mathbf{E}_t \mathbf{E}_s = \mathbf{0}$.

Proof. Consider the basis elements e_s and e_t . By linearity and homomorphism of the π map (Th. 1): $\pi : e_s e_t + e_t e_s = 0 \mapsto \pi(e_s e_t) + \pi(e_t e_s) = \mathbf{0}$. Therefore, for two vector elements $\mathbf{E}_s \mathbf{E}_t + \mathbf{E}_t \mathbf{E}_s = \mathbf{0}$.

Proposition 6. $E_s E_s = \sigma_s I$

Proof. Consider the matrix $\mathbf{W} = \mathbf{G}\mathbf{A}_{\mathbf{s}}\mathbf{G}\mathbf{A}_{\mathbf{s}}$. Then $w_{\mu\nu} = \sum_{\lambda} \sigma_{\mu}\sigma_{\lambda}a_{\mu\lambda}a_{\lambda\nu}$ element-wise. By Lemma 1 **W** is sparse so that $w_{\mu\nu} = (0; \sigma_{\mu}\sigma_{q}a_{\mu q}a_{q\nu})$.

From the structure of **M** for the entries containing the element e_S we have the equivalence

$$\begin{cases} e_M e_Q = a^s_{\mu q} e_S, \quad S = M \triangle Q \\ e_Q e_M = a^s_{q \mu} e_S, \end{cases}$$

After multiplication of the equations we obtain $e_M e_Q e_Q e_M = a_{\mu q}^s e_S a_{q\mu}^s e_S$, which simplifies to the *First fundamental identity*:

$$\sigma_q \sigma_\mu = a^s_{\mu q} a^s_{q \mu} \sigma_s \tag{4}$$

We observe that if $\sigma_{\mu} = 0$ or $\sigma_q = 0$ the result follows trivially. In this case also $\sigma_s = 0$. Therefore, let's suppose that $\sigma_s \sigma_q \sigma_\mu \neq 0$. We multiply both sides by $\sigma_s \sigma_q \sigma_\mu$ to obtain $\sigma_s = \sigma_q \sigma_\mu a_{\mu q}^s a_{q \mu}^s$. However, the RHS is a diagonal element of **W**, therefore by the sparsity it is the only non-zero element for a given row/column so that $\mathbf{W} = \mathbf{E}_s^2 = \sigma_s \mathbf{I}$.

Acknowledgment

The present work is funded in part by the European Union's Horizon Europe program under grant agreement VIBraTE, grant agreement 101086815.

References

- 1. Acus, A., Dargys, A.: The inverse of a multivector: Beyond the threshold p + q = 5. Adv. Appl. Clifford Algebras **28**(3) (2018). https://doi.org/10.1007/s00006-018-0885-4
- Acus, A., Dargys, A.: The characteristic polynomial in calculation of exponential and elementary functions in Clifford algebras (2022). https://doi.org/10.22541/au.167101043.33855504/v1
- Faddeev, D.K., Sominskij, I.S.: Sbornik Zadatch po Vyshej Algebre. Nauka, Moscow–Leningrad (1949)
- Hitzer, E., Sangwine, S.J.: Construction of multivector inverse for Clifford algebras over 2m + 1 – dimensional vector spaces from multivector inverse for clifford algebras over 2m-dimensional vector spaces. Adv. Appl. Clifford Algebras 29(2) (2019). https://doi.org/10.1007/s00006-019-0942-7
- Prodanov, D., Toth, V.T.: Sparse representations of Clifford and tensor algebras in Maxima. Adv. Appl. Clifford Algebras pp. 1–23 (2016). https://doi.org/10.1007/s00006-016-0682-x
- 6. Shirokov, D.S.: On determinant, other characteristic polynomial coefficients, and inverses in Clifford algebras of arbitrary dimension (2020)