Considerations on the 3n+1 problem

V. Barbera

Abstract

This paper presents some considerations on the 3n+1 problem. In particular on the next odd elements in the sequence lower than the starting number.

3n + 1 problem (or conjecture)

In the $3 \cdot n + 1$ problem^[1] it is possible to define the function:

$$f(x) = \begin{cases} 3 \cdot x + 1 & \text{if } x \equiv 1 \pmod{2} \\ \frac{x}{2} & \text{if } x \equiv 0 \pmod{2} \end{cases}$$

The sequence obtained using the function is as follows:

$$n_i = \begin{cases} n & \text{for } i = 0\\ f(n_{i-1}) & \text{for } i > 0 \end{cases}$$

the sequence can be rewritten considering only the odd terms, then starting from an odd number n if x is an odd integer we have $f(x) = \frac{3 \cdot x + 1}{2^a}$ (Syracuse function^[1]) with

$$a \ge 1$$
 and $\frac{3 \cdot x + 1}{2^a}$ odd, therefore:

$$n_{1} = \frac{3 \cdot n + 1}{2^{a_{1}}}$$

$$n_{2} = \frac{3 \cdot n_{1} + 1}{2^{a_{2}}} = \frac{3 \cdot \frac{3 \cdot n + 1}{2^{a_{1}}} + 1}{2^{a_{2}}}$$

...

if k>1

$$n_{k} = \frac{3 \cdot n_{k-1} + 1}{2^{a_{k}}} = \frac{3^{k} \cdot n + 3^{k-1} + \sum_{j=0}^{k-2} 3^{j} \cdot 2^{\sum_{i=1}^{k-1-j} a_{i}}}{2^{\sum_{i=1}^{k} a_{i}}}$$

using this formula for n_k to find the next odd number lower than n it is possible to obtain a pattern given a certain classes of numbers modulo 2^c example for n=43 we have

$$43 \rightarrow 130 \rightarrow 65 \rightarrow 196 \rightarrow 98 \rightarrow 49 \rightarrow 148 \rightarrow 74 \rightarrow 37 \rightarrow \dots$$

then the next odd number in the sequence lower than 43 is $37 = \frac{27 \cdot 43 + 23}{32}$

and for n=107 the next odd number in the sequence less than 107 is $91=\frac{27\cdot107+23}{32}$,

we have that the next odd number in the sequence less than $n \equiv 43 \pmod{64}$ is $\frac{27 \cdot n + 23}{32}$.

As it is possible to analyze also in OEIS A177789^[2] the study based on the residue classes modulo 2^d with d obtained from the sequence OEIS A020914^[3] and if we also consider the corresponding 3^k result from the sequence OEIS A020914 we can obtain the following results:

for the numbers $n\equiv 1 \pmod{4}$ we have d=2 and k=1 then

$$n \rightarrow \frac{3 \cdot n + 1}{2^{2 \cdot x + 2}}$$
 if $n \equiv \frac{2^{2 \cdot x + 2} - 1}{3} \pmod{2^{2 \cdot x + 3}}$

$$n \rightarrow \frac{3 \cdot n + 1}{2^{2 \cdot x + 3}}$$
 if $n \equiv \frac{5 \cdot 2^{2 \cdot x + 3} - 1}{3} \pmod{2^{2 \cdot x + 4}}$

for the numbers $n\equiv 3 \pmod{16}$ we have d=4 and k=2 then

$$n \to \frac{9 \cdot n + 5}{2^{6 \cdot x + 4}}$$
 if $n = \frac{11 \cdot 2^{6 \cdot x + 4} - 5}{9} \pmod{2^{6 \cdot x + 5}}$

$$n \to \frac{9 \cdot n + 5}{2^{6 \cdot x + 5}}$$
 if $n = \frac{2^{6 \cdot x + 5} - 5}{9} \pmod{2^{6 \cdot x + 6}}$

$$n \to \frac{9 \cdot n + 5}{2^{6 \cdot x + 6}}$$
 if $n = \frac{5 \cdot 2^{6 \cdot x + 6} - 5}{9} \pmod{2^{6 \cdot x + 7}}$

$$n \rightarrow \frac{9 \cdot n + 5}{2^{6 \cdot x + 7}}$$
 if $n \equiv \frac{7 \cdot 2^{6 \cdot x + 7} - 5}{9} \pmod{2^{6 \cdot x + 8}}$

$$n \rightarrow \frac{9 \cdot n + 5}{2^{6 \cdot x + 8}}$$
 if $n \equiv \frac{17 \cdot 2^{6 \cdot x + 8} - 5}{9} \pmod{2^{6 \cdot x + 9}}$

$$n \rightarrow \frac{9 \cdot n + 5}{2^{6 \cdot x + 9}}$$
 if $n \equiv \frac{13 \cdot 2^{6 \cdot x + 9} - 5}{9} \pmod{2^{6 \cdot x + 10}}$

for the numbers $n \equiv 23 \pmod{32}$ we have d=5 and k=3 then

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 5}}$$
 if $n \equiv \frac{47 \cdot 2^{18 \cdot x + 5} - 19}{27} \pmod{2^{18 \cdot x + 6}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 6}} \text{ if } n \equiv \frac{37 \cdot 2^{18 \cdot x + 6} - 19}{27} \pmod{2^{18 \cdot x + 7}}$$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 7}} \quad \text{if} \quad n \equiv \frac{5 \cdot 2^{18 \cdot x + 7} - 19}{27} \pmod{2^{18 \cdot x + 8}}$$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 8}} \quad \text{if} \quad n \equiv \frac{43 \cdot 2^{18 \cdot x + 8} - 19}{27} \pmod{2^{18 \cdot x + 9}}$$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 9}}$$
 if $n \equiv \frac{35 \cdot 2^{18 \cdot x + 9} - 19}{27} \pmod{2^{18 \cdot x + 10}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 10}}$$
 if $n \equiv \frac{31 \cdot 2^{18 \cdot x + 10} - 19}{27} \pmod{2^{18 \cdot x + 11}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 11}}$$
 if $n \equiv \frac{29 \cdot 2^{18 \cdot x + 11} - 19}{27} \pmod{2^{18 \cdot x + 12}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 12}}$$
 if $n \equiv \frac{2^{18 \cdot x + 12} - 19}{27} \pmod{2^{18 \cdot x + 13}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 13}}$$
 if $n \equiv \frac{41 \cdot 2^{18 \cdot x + 13} - 19}{27} \pmod{2^{18 \cdot x + 14}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 14}}$$
 if $n \equiv \frac{7 \cdot 2^{18 \cdot x + 14} - 19}{27} \pmod{2^{18 \cdot x + 15}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 15}}$$
 if $n \equiv \frac{17 \cdot 2^{18 \cdot x + 15} - 19}{27} \pmod{2^{18 \cdot x + 16}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 16}}$$
 if $n \equiv \frac{49 \cdot 2^{18 \cdot x + 16} - 19}{27} \pmod{2^{18 \cdot x + 17}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 17}} \quad \text{if} \quad n \equiv \frac{11 \cdot 2^{18 \cdot x + 17} - 19}{27} \pmod{2^{18 \cdot x + 18}}$$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 18}}$$
 if $n \equiv \frac{19 \cdot 2^{18 \cdot x + 18} - 19}{27} \pmod{2^{18 \cdot x + 19}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 19}} \quad \text{if} \quad n \equiv \frac{23 \cdot 2^{18 \cdot x + 19} - 19}{27} \pmod{2^{18 \cdot x + 20}}$$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 20}}$$
 if $f n \equiv \frac{25 \cdot 2^{18 \cdot x + 20} - 19}{27} \pmod{2^{18 \cdot x + 21}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 21}}$$
 if $n \equiv \frac{53 \cdot 2^{18 \cdot x + 21} - 19}{27} \pmod{2^{18 \cdot x + 22}}$

$$n \rightarrow \frac{27 \cdot n + 19}{2^{18 \cdot x + 22}}$$
 if $n \equiv \frac{13 \cdot 2^{18 \cdot x + 22} - 19}{27} \pmod{2^{18 \cdot x + 23}}$

for the numbers $n \equiv 11 \pmod{32}$ we have d=5 and k=3 then

$$n \rightarrow \frac{27 \cdot n + 23}{2^{18 \cdot x + 5}}$$
 if $n \equiv \frac{37 \cdot 2^{18 \cdot x + 5} - 23}{27} \pmod{2^{18 \cdot x + 6}}$

$$n \rightarrow \frac{27 \cdot n + 23}{2^{18 \cdot x + 6}} \text{ if } n \equiv \frac{5 \cdot 2^{18 \cdot x + 6} - 23}{27} \pmod{2^{18 \cdot x + 7}}$$

. . .

for the numbers $n \equiv 15 \pmod{128}$ we have d=7 and k=4 then

$$n \rightarrow \frac{81 \cdot n + 65}{2^{54 \cdot x + 7}}$$
 if $n \equiv \frac{91 \cdot 2^{54 \cdot x + 7} - 65}{81} \pmod{2^{54 \cdot x + 8}}$

$$n \rightarrow \frac{81 \cdot n + 65}{2^{54 \cdot x + 8}}$$
 if $n \equiv \frac{5 \cdot 2^{54 \cdot x + 8} - 65}{81} \pmod{2^{54 \cdot x + 9}}$

. . .

We can conjecture that for any value of k>1 integer we can find $n_k < n$

$$n_{k} = \frac{3^{k} \cdot n + 3^{k-1} + \sum_{j=0}^{k-2} 3^{j} \cdot 2^{\sum_{i=1}^{k-1-j} a_{i}}}{2^{\sum_{i=1}^{k} a_{i}}} = \frac{3^{k} \cdot n + s}{2^{e}}$$

with s odd integer not divisible by 3 and $s \ge 3^k - 2^k$.

It should be noted that we are interested in the first odd number n_k in the sequence with $n_k < n$ therefore we assume that there is a value $k_1 < k$ for which $n_{k_1} < n$ then

$$n_{k_1} = \frac{3^{k_1} \cdot n + s_{k_1}}{2^{e_{k_1}}} \quad \text{and} \quad n_k = n_{k_2} = \frac{3^{k_2} \cdot n_{k_1} + s_{k_2}}{2^{e_{k_2}}} = \frac{3^{k_2} \cdot \frac{3^{k_1} \cdot n + s_{k_1}}{2^{e_{k_1}}} + s_{k_2}}{2^{e_{k_2}}} = \frac{3^{k_1 + k_2} \cdot n + 3^{k_2} \cdot s_{k_1} + 2^{e_{k_1}} \cdot s_{k_2}}{2^{e_{k_1} + e_{k_2}}}$$

with $k = k_1 + k_2$, $e = e_{k_1} + e_{k_2}$ and $s = 3^{k_2} \cdot s_{k_1} + 2^{e_{k_1}} \cdot s_{k_2}$

therefore if we want that k to be the smallest value for which $n_k < n$ then it must be $s \ne 3^{k_2} \cdot s_{k_1} + 2^{e_{k_1}} \cdot s_{k_2}$ for s_{k_1} and e_{k_1} values already associated with residue classes obtained with $k_1 < k$.

In conclusion we have:

$$n \rightarrow \frac{3^k \cdot n + s}{2^{m \cdot b + d + r}} \quad \text{if} \quad n \equiv \frac{t \cdot 2^{m \cdot b + d + r} - s}{3^k} \pmod{2^{m \cdot b + d + r + 1}}$$

with $b \ge 0$ integer, t every odd integer not divisible by 3 and $0 < t < 2 \cdot 3^k$, $m = 2 \cdot 3^{k-1}$, $0 \le r < m$ integer and d number of digits in the base-2 representation of 3^k .

Fixed k and then fixed $d = \lfloor 1 + k \cdot \log_2(3) \rfloor$ for find the residue class $n \equiv h \pmod{2^d}$ for $s = 3^k - 2^k$, which is obtained when $a_i = 1$ for $1 \le i < k$, chosen b = 0 and r = 0 we need to find the possible values of t odd integer not divisible by 3 and $0 < t < 2 \cdot 3^k$ such that $(t \cdot 2^d - 3^k + 2^k)$ it is divisible by 3^k from which $h = \left(\frac{t \cdot 2^d + 2^k}{3^k} - 1\right) \mod 2^d$ is obtained.

To find the other values of s relative to the others residue classes $n \equiv h_i \pmod{2^d}$, obtained as described in OEIS A177789, chosen t=1 and b=0 for some value of $0 \le r < m$ we need to find the possible values of s odd integer not divisible by s=1 and s

Stopping time

In the $3 \cdot n + 1$ problem it is possible to define the concept of stopping time^[1]:

$$f(n) = \begin{cases} 3 \cdot n + 1 & \text{if } n \equiv 1 \pmod{2} \\ \frac{n}{2} & \text{if } n \equiv 0 \pmod{2} \end{cases}$$

the sequence obtained using the function f(n) is as follows:

$$a_i = \begin{cases} n & \text{for } i = 0\\ f(a_{i-1}) & \text{for } i > 0 \end{cases}$$

the smallest i such that $a_i < a_0$ is called the stopping time of n.

If n is even $n \equiv 0 \pmod{2}$ then the stopping time i=1 and $a_1 = \frac{n}{2}$.

If $n\equiv 1 \pmod{2^2}$ then the stopping time i=3 and $a_3=\frac{3\cdot n+1}{2^2}$.

Fixed an integer o with o>1 if n odd and $n \equiv r \pmod{2^{k-o}}$ then for some classes with r>1 it is possible to observe that

$$a_i = \frac{3^o \cdot n + b}{2^{k-o}}$$

with $b \ge 3^{o} - 2^{o}$ and $b = 3^{o-1} + \sum_{j=0}^{o-2} 3^{j} \cdot 2^{\sum_{i=1}^{o-1-j} c_i}$

therefore from the definition of stopping time we have $a_i < n$ i.e if $n = r + q \cdot 2^{k-o}$

$$\frac{3^{\circ} \cdot n + b}{2^{k-o}} = \frac{3^{\circ} \cdot r + b}{2^{k-o}} + q \cdot 3^{\circ} < r + q \cdot 2^{k-o} \quad \text{for any integer} \quad q \quad \text{with} \quad q \ge 0$$

obviously it has to be $3^{\circ} < 2^{k-o}$ and if q=0 then $b < r \cdot (2^{k-o} - 3^{\circ})$

but from the definition of stopping time it also must be $a_{k-1}=2\cdot a_k>n$ then

$$2 \cdot (\frac{3^o \cdot r + b}{2^{k-o}} + q \cdot 3^o) > r + q \cdot 2^{k-o}$$

and if q=r

$$3^{\circ} \cdot r + b + r \cdot 3^{\circ} \cdot 2^{k-o} > r \cdot 2^{k-o-1} + q \cdot 2^{k-o} \cdot 2^{k-o-1}$$

but $b < r \cdot (2^{k-o} - 3^o)$ then

$$3^{o} \cdot r + r \cdot (2^{k-o} - 3^{o}) + r \cdot 3^{o} \cdot 2^{k-o} > r \cdot 2^{k-o-1} + r \cdot 2^{k-o} \cdot 2^{k-o-1}$$

$$2^{k-o} + 3^{o} \cdot 2^{k-o} > 2^{k-o-1} + 2^{k-o} \cdot 2^{k-o-1}$$

$$1+3^{\circ}>2^{-1}+2^{k-o-1}$$

from which the condition $2^{k-o-1} < 3^o < 2^{k-o}$ is found.

We can create two flowcharts (shown on the following pages) where the different residue classes are shown for each row of the graph.

References

- [1] https://en.wikipedia.org/wiki/Collatz_conjecture
- [2] https://oeis.org/A177789
- [3] https://oeis.org/A020914