Proof for Twin Prime Conjecture

Mesut Kavak[a]

The question about Twin Primes is pretty clear:
"Twin primes are prime numbers that differ by 2. Are there infinitely many twin primes?"
[a]kavakmesut@outlook.com.tr

I. Introduction

If any number group containing " n " consecu-tiveandoddnon-prime numbersis selected among the infinite number groups, this group must be between 2 prime numbers according to this condi-
tion. For $\mathrm{n}=4$, choose a group of numbers as follows, consisting of 4 consecutive oddnumbers, n_{1}, $\mathrm{n}_{2}, \mathrm{n}_{3}$ and n_{4}, which are between 2 prime numbers such as p_{1} and p_{2}.

$$
\begin{array}{llllll}
\mathbf{p}_{\mathbf{1}} & \mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3} & \mathrm{n}_{4} & \mathbf{p}_{\mathbf{2}}
\end{array}
$$

II. Solution

Theorem At least one of these non-prime consecutive odd numbers of " n " must be an odd multiple of 3; because the distribution of odd multiples of 3 in the set of odd numbers depends on the function $f(x)=6 x+3$, and therefore in the set of odd numbers there are always 2 consecutive odd numbers between every two consecutive odd multiples of 3 .

$$
\begin{array}{llllllllll}
\mathrm{n}_{0} & \mathrm{n}_{\mathrm{x}} & \mathbf{p}_{1} & \mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3} & \mathrm{n}_{4} & \mathbf{p}_{2} & \mathrm{n}_{\mathrm{y}} & \mathrm{n}_{5}
\end{array}
$$

- If the odd number n_{2} is considered an odd multiple of 3 , the prime number p_{2} must be the next consecutive odd multiple of 3 .
Since p_{2} is a prime number, this is only possible if it falls on a non-prime number in a group such as $\mathrm{n}=5$.
For $\mathrm{n}=4$, different groups must be formed.
- If the odd number n_{3} is considered an odd multiple of 3 , then the prime number p_{1} must be the previous consecutive odd multiple of 3 .
Since p_{1} is a prime number, this is only possible if it falls on a non-prime number in a group such as $\mathrm{n}=5$.
For $\mathrm{n}=4$, different groups must be formed.
- If the odd number n_{1} is considered an odd multiple of 3 , the odd number n_{4} must be the next consecutive odd multiple of 3 .
Also, the odd numbern ${ }_{5}$ must be the second consecutive odd multiple of 3 immediately after the odd number n_{4}, and the odd number n_{0} must be the previous odd multiple of 3 before the odd number n_{1}.
- If the odd number n_{4} is considered an odd multiple of 3 , the odd number n_{5} must be the next consecutive odd multiple of 3 .
Also, for this acceptance, the odd numbers n_{0} and n_{1} must be previous consecutive odd multiples of 3; so "The odd numbers n_{1} and n_{4} are the best choice to be odd multiples of 3."

III. Result

The odd number n_{5} can be followed by an in- " n " is unimportant; but the odd number n_{y} is alfinite number of consecutive odd numbers " n "; ways prime or not, which is important. With this therefore, for any value of " n " after the groupn $=4$, the number of elements of an odd set of numbers
information, the $\mathrm{n}_{\mathrm{y}}=\mathrm{n}_{5}-2=(6 \mathrm{x}+3)-2$ equation forms the (1) equation.

$$
\begin{equation*}
n_{y}=6 x+1 \tag{1}
\end{equation*}
$$

So it can be said for n_{y};
I. $\quad n_{y}$ out of (1) with the condition $x \in \mathbb{Z}^{+} \wedge x>0$ can never be just a prime or a non-prime number.
II. It is not prime over (1) for an "x" value that does this; but it is prime for odd numbers formed between two numbers n_{y} and n_{y+1} which are the result of two consecutive numbers x and $\mathrm{x}+1$.
III. After all, when $\mathrm{n}_{\mathrm{y}}=\mathrm{p}_{3}$ it is a group of twin primes between odd numbers n_{4} and n_{5}; therefore twin primes are "infinite" even for the groups which have the same number of elements and different numbers that these groups can be written even for only a single value " n ".

Result "Twin primes are prime numbers that differ by 2, and there are an infinite number of twin primes."
12.06.2023

IV. Appendix

Actually, I felt the need to make 2 additional proofs about the construction of this proof, although it was not necessary because it was easy to animate.
a. The first of these is about the existence of n groups. Topics related to these groups are as follows.

- Existence of an infinite set of numbers "containing n odd non-prime numbers between 2 prime numbers" for a positive and identical odd integer n.
- Whether there are infinite "groups of n" formed for varying n values.
b. The other is about the (1) equality. The issues related to this equality are as follows.
- Whether it returns a prime number only.
- Whether returns non-prime results only.

a. The Groups

I.

Forexample,forthe groupn $=5$, let's take consecutive multiples of $3,5,7,9$, and 11 , although any odd numbers can be used. Since a is an odd number, any multiple of odd numbers is $\mathrm{a}(2 \mathrm{x}+1)$ for the required x ; well

- $\left(6 x_{1}+3\right)+2=10 x_{2}+5$
it becomes $\mathrm{x}_{1}=5 \mathrm{x}$
- $\left(6 \mathrm{x}_{1}+3\right)+4=14 \mathrm{x}_{3}+7$
it becomes $\mathrm{x}_{1}=7 \mathrm{x}$
- $\left(6 x_{1}+3\right)+6=18 x_{4}+9$
it becomes $\mathrm{x}_{1}=9 \mathrm{x}$
- $\left(6 \mathrm{x}_{1}+3\right)+8=22 \mathrm{x}_{5}+11$
it becomes $\mathrm{x}_{1}=11 \mathrm{x}$
The results of $6 x_{1}+3$, which are odd multiples of 3 , become $30 x+3,42 x+3,54 x+3$ and $66 x+3$ for the specified values of x_{1}. If these are made equal to each other,

$$
(11 \cdot 9 \cdot 7 \cdot 5 \cdot x)=u
$$

and if the first number of the group is a multiple of 3 , the consecutive multiples of the group numbers are $6 u+3,6 u+5,6 u+7,6 u+9$ and $6 u+11$, respectively. For more distinct consecutive odd multiples, we can increase the number of numbers used in a group in the same way infinitely.

II.

A group as above does not always have to be between 2 primes; because the numbers that make up the group are also important. This also does not mean that groups between 2 primes are not infinite. Let's talk about the infinity of groups.

In fact, its proof requires no mathematical operations; because as long as the primes are not consecutive, there will be infinitely different groups for varying n values.

Since all odd non-prime numbers are $(2 \mathrm{x}+1)(2 \mathrm{y}+1)$ for every integer value of x and y numbers

$$
(2 x+1)(2 y+1)=1
$$

In an equation such as, x and y, which only take certain values, do not occur, like in a function with 1 unknown from the 1st degree. This is exactly a hyperbola; therefore, the distribution of prime and non-prime odd numbers does not depend on consecutive rules between any two consecutive primes.

b. The Function

If the function $f(x)=6 x+1$ returns only nonprime numbers and consecutive all odd numbers

$$
(2 x+1)(2 y+1)=6 z+1
$$

equality must be satisfied for each x and y value, respectively; because odd non-prime numbers are odd multiples of prime and odd non-prime numbers.

Having a z -value for every x and y -value means that odd non-prime numbers have something in common with all of them. Otherwise, it can sometimes give a prime. For this, with the equation $\mathrm{m}=(2 \mathrm{x}+1)(2 \mathrm{y}+1)$

$$
\frac{\mathrm{m}-1}{2}=3 \mathrm{n}
$$

equation is analyzed. Equality means that any number that is equal to $6 n+1$ must be divisible by 3 at the end of the operation; in that case

$$
2(6 a+3)+1=6 b+3
$$

equality must be achieved. If edited

$$
\mathrm{b}-2 \mathrm{a}=\frac{2}{3}
$$

This means that; when the even number $\mathrm{m}-1$ is divisibleby 2 , the odd numberformed mustbe a multiple of 3 , and the odd number before or after the even number $m-1$ can never be a number divisible by $3 . \mathrm{m}-1$ is always between two consecutive odd multiples of 3; then numbers that are multiples of 3 of all other odd numbers cannot be between two consecutive odd multiples of 3 , so there must be primes in between.

Result "The function $f(x)=6 x+1$ sequentially returns for each value of x not only a single non-prime number, consecutive or not."

