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Abstract: Integer-order Rényi entropies are synthetic indices useful for the characterization of 1

probability distributions. In recent decades, numerous studies have been conducted to arrive at 2

valid estimates of these indices starting from experimental data, so to derive a suitable classification 3

method for the underlying processes. However, optimal solutions have not been reached yet. A 4

one-line formula limited to the estimation of collision entropy is presented here. The results of some 5

specific Monte Carlo experiments gave evidence of its validity even for the very low densities of 6

the data spread in high-dimensional sample spaces. The strengths of this method are unbiased 7

consistency, generality and minimum computational cost. 8

Keywords: Rényi entropies; collision entropy estimation; collision entropy rate estimation 9

1. Introduction 10

The information theory indices belonging to the parametric family of Rényi entropies 11

are able to express, each with a different weight, the information content of a discrete 12

probability distribution (DPD) [1]. Typical members of this family are, for example, Shannon 13

entropy, collision entropy and min-entropy. These indices can also be used to classify the 14

output of experimental processes studied in any branch of the applied sciences, provided their 15

reduction to pseudostationary discrete-state processes and then in the form of DPDs. Since 16

usually, during the experiments, only brief realizations can be obtained from the process 17

under investigation, and since the realizations give rise to relative frequency distributions 18

(RFDs) and not to DPDs, then these indices, being based on probabilities, have to be 19

estimated through the elaboration of the few available data. In this regard, the methods for 20

the estimation of Rényi entropies are of two kinds: 1) those that first aim to estimate 21

the probability distribution from the relative frequencies and then plug the estimated 22

probabilities into the formulas of the entropies and 2) those that circumvent the still-open 23

problem of the estimation of the probabilities and aim to estimate the entropy indices 24

through the application of other elaborations to the data. Despite the numerous studies 25

carried out in the last decades (e.g., [2], [3], [4], [5], [6], [7], [8],[9], [10], [11], [12],[13], [14], 26

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],[28], [29], [30], [31], [32], 27

[33], [34]), definitive and universally accepted results for these issues have not been found 28

yet. Moreover, this persistent lack of satisfactory solutions for the estimation of the indices 29

belonging to the Rényi family (and for the estimation of their more rapidly converging 30

derived quantities called Rényi entropy rates) has prompted, as a side effect, an anomalous 31

proliferation of other similar indices conceived in many different ways (e.g. [35], [36], [37]), 32

but all having the same purpose of classifying data with a nonparametric approach. An 33

overview of this peculiar situation, which, by the way, Shannon in 1956 [38] recommended 34

to avoid, can be found in [39], where Ribeiro et al. collected and described a "galaxy" 35

of at least thirty indices somehow functionally equivalent to those of the family initially 36

proposed by Rényi (and to their rates). Returning to the original question, Skorski ([40], 37

[41]) rightly pointed out that the estimation of those integer-order Rényi entropies that 38

have a parameter value greater than one reduces to the estimation of the moments of a 39

DPD. Our work just starts from this latter consideration and limits its investigation only to 40

the case of the estimation of the second raw moment, which, in turn, allows the collision 41

entropy to be estimated. 42
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2. Theoretical Methods 43

2.1. Transforming a Discrete-State Stochastic Process into a DPD 44

Consider a discrete-state stochastic process (DSPq) whose infinite values x−∞, . . . , 45

xi−1, xi, xi+1, . . . , x∞ belong to an alphabet Aq containing q ordered symbols. Let Ω(q, d) be 46

a d-dimensional discrete sample space resulting from the Cartesian product d times of Aq 47

Ω(q, d) = Aq × Aq × ... × Aq︸ ︷︷ ︸
d times

, (1)

and let n = qd be the cardinality of the sample space Ω(q, d). Each elementary event ek, 48

with k ∈ {1, 2, ..., n}, is uniquely identified by a vector with d coordinates (x1k, x2k, ..., xdk), 49

with x1k, x2k, ..., xdk ∈ Aq. Following the procedure indicated by Shannon in [42] at pages 50

5 and 6, the infinite sequence of samples constituting the DSPq can be transformed into 51

occurrences #(ek) of the elementary events of Ω(q, d) by progressively considering all the 52

d-grams taken from the samples as if they were the coordinates of the events and counting 53

the number of times that each coordinate appears in the sequence. Then, according to the 54

frequentist definition of probability, the final resulting DPD is expressible in set theory notation 55

as 56

p(Ω(q, d))DSPq =
{

p(ek)DSPq =
#(ek)DSPq

∑n
k=1 #(ek)DSPq

∣∣∣ ek ∈ Ω(q, d)
}

. (2)

In the following, in the absence of ambiguity, p(Ω(q, d))DSPq —that is, a DPD obtained by 57

elaborating the data of a DSPq— will be indicated with the bold symbol p and one of its 58

elements with pk. 59

2.2. Integer-Order Rényi α-Entropies as Synthetic Indices for the Characterization of DPDs 60

In general, a DPD can be characterized by some indices, each of which can quantify 61

the presence rate of a particular feature in the distribution. The parametric family of integer- 62

order Rényi α-entropies is composed of synthetic indices suitable for the characterization of 63

DPDs from the point of view of their informative content [1]. They are defined as 64

α = 1 H1(p) ≜ −
n

∑
k=1

pklog pk

α ∈ N+ α ̸= 1 Hα(p) ≜
1

1 − α
log
( n

∑
k=1

pα
k

)
0 ≤ Hα(p) ≤ log n

α −→ ∞ H∞(p) ≜ −log max{p}.

(3)

The corresponding specific integer-order Rényi α-entropies of the DPD p are then defined as 65

α = 1 η1(p) ≜
H1(p)
log n

= −
n

∑
k=1

pklogn pk

α ∈ N+ α ̸= 1 ηα(p) ≜
Hα(p)
log n

=
1

1 − α
logn

( n

∑
k=1

pα
k

)
0 ≤ ηα(p) ≤ 1

α −→ ∞ η∞(p) ≜
H∞(p)
log n

= −logn max{p}.

(4)

Once the value of a specific entropy is known, it is always possible to retrieve the value of the 66

corresponding plain entropy, expressed in a particular base b and for a particular cardinality 67

n, using the following conversion formula: 68

Hα(p, b, n) ≜ ηα(p) logb n. (5)
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Specific entropies are preferable to plain entropies because: 69

1. they are the result of a min-max normalization, that is obtained using the minimum and 70

the maximum possible values of plain entropies (respectively 0 and log n); 71

2. they are formally independent from the number of ordered symbols q chosen for the 72

quantization of the range of the output values of the process and independent from the 73

cardinality of the sample space n; for this reason, they allow comparable values to be 74

obtained, even for different distributions in different sample spaces; 75

3. they allow the doubt on the choice of the base for the logarithm present in the formula of 76

entropies (2 or e or 10) to be removed, thanks to the use of a variable base, depending 77

on the cardinality of the considered sample space (n); 78

2.3. Rényi Entropy Rates 79

Unlike Rényi entropies, whose utility is mainly related to the classification of DPDs, 80

Rényi entropy rates are important theoretical quantities useful for the characterization of 81

DSPqs [43], [44]; they are defined as 82

H′
α(DSPq) ≜ lim

d→∞

1
d

Hα(p(Ω(q, d))DSPq) 0 ≤ H′
α(DSPq) ≤ log q. (6)

Moreover, it is known that, for strongly stationary DSPq, any Rényi entropy rate converges 83

to the same limit of a sequence of Cesaro means of conditional entropies: 84

H′
α(DSPq) = lim

d→∞
Hα(p(Ad)|p(A1 × A2 × · · · × Ad−1)). (7)

and, as conditional Rényi entropies preserve the chain rule [45],[46], [47], they can also be 85

calculated as 86

H′
α(DSPq) = lim

d→∞

[
Hα(p(Ω(q, d))DSPq)− Hα(p(Ω(q, d − 1))DSPq)

]
. (8)

2.4. Specific Rényi Entropy Rate 87

Similarly to Formula (4), specific Rényi entropy rate is defined by the following min-max 88

normalization: 89

η′
α(DSPq) =

H′
α(DSPq)

log q
=

= lim
d→∞

[
Hα(p(Ω(q, d))DSPq)− Hα(p(Ω(q, d − 1))DSPq)

]
log q

=

= lim
d→∞

[
d ηα(p(Ω(q, d))DSPq)− (d − 1) ηα(p(Ω(q, d − 1))DSPq)

]
,

(9)

with 0 ≤ η′
α(DSPq) ≤ 1. 90

2.5. Relationship between Specific Rényi Entropy Rate and Specific Rényi Entropy 91

In summary, the following relationship subsists: 92

η′
α(DSPq) = lim

d→∞
ηα(p(Ω(q, d))DSPq) (10)

This means that, varying d, the specific Rényi entropy tends to the same value of the specific 93

Rényi entropy rate, with the important difference being that the rate of convergence of the 94

specific Rényi entropy rate is much faster than the rate of convergence of the specific Rényi 95

entropy. For this reason, when possible, using the specific Rényi entropy rate is preferable to 96

using the specific Rényi entropy. 97
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3. Empirical Methods 98

3.1. Transforming a Realization into a Distribution of Relative Frequencies 99

For the practical cases, the theoretical procedure described in § 2.1 can be adapted 100

according to the following procedure already presented with greater generality in [48] and 101

in [49]: consider the N samples x1, x2, . . . , xd, xd+1, . . . , xN of a realization rq extracted from 102

a DSPq. Each d-gram composed of d adjacent samples of rq is interpreted as the occurrence 103

of the elementary event of a d-dimensional sample space Ω(q, d) having just those values 104

as vector components. For example, the first two d-grams taken from rq, (x1, x2, ..., xd) 105

and (x2, x3, ..., xd+1) identify the first occurrences of two elementary events. The count 106

of the occurrences of the events is performed for all the d-grams progressively identified 107

in the sequence of the samples of rq. Finally, the absolute frequency of every elementary 108

event #(ek) is divided by the total number of occurrences (L = ∑n
k=1 #(ek)rq = N − d + 1), 109

yielding its relative frequency f (ek)rq . The final resulting RFD is expressible in set theory 110

notation as 111

f (Ω(q, d))rq =
{

f (ek)rq =
#(ek)rq

∑n
k=1 #(ek)rq

∣∣∣ ek ∈ Ω(q, d)
}

(11)

In the following, in the absence of ambiguity, an RFD f (Ω(q, d))rq resulting from the 112

insertion of the data of a realization in a sample space will be simply indicated with the 113

bold symbol f and fk indicates one of its elements. 114

3.2. Estimating the Second Raw Moment of a DPD 115

Preliminarily, the αth-raw moment of a DPD p and the αth-raw moment of a RFD f 116

are defined as 117

Mα(p) ≜
n

∑
k=1

pα
k , Mα( f ) ≜

n

∑
k=1

f α
k

1
nα−1 ≤ Mα(·) ≤ 1 (12)

Limited to the raw moments of Poissonian distributions, Grassberger in 1988 [2], Formula 118

(8), and subsequently Schürmann in 2004 [12], Formula (6), reported the theoretically 119

demonstrable, unique unbiased estimator, repeated in Formula (13): 120

M̂α(p)Poisson =
〈 n

∑
k=1

p̂α
k

〉
rq
=

n

∑
k=1

〈 1
Lα

#(ek)rq !
(#(ek)rq − α)!

〉
rq

p̂α
k := 0 for #(ek)rq < α,

(13)

where
〈
·
〉

rq
is the mean over the infinite number of realizations that can be taken from 121

the underlying process. For the specific case of the estimation of the second raw moment, 122

Formula (13) becomes: 123

M̂2(p)Poisson =
n

∑
k=1

〈 [#(ek)rq − 1]#(ek)rq

L2

〉
rq
=
〈 n

∑
k=1

f 2
k − 1

L

〉
rq
=
〈

M2( f )− 1
L
〉

rq
. (14)

As far as we know, the scientific literature does not indicate whether the result of Formula 124

(14) can also be valid for distributions different from Poissonians. So, from now on we 125

proceed assuming provisionally that this hypothesis is true, and we leave the decision concerning 126

its acceptance or rejection to the phase of the interpretation of the results of the Monte Carlo 127

experiments described in one of the following sections. The hypothesis can be resumed as: 128

∀ DSPq M̂2(p)DSPq
=
〈

max
{

M2( f )− 1
L

,
1
n

}〉
rq

, (15)

where the lower limit 1
n is necessary because, when the cardinality of the sample space 129

becomes high and the data density becomes too rarefied, the only possible estimate of the 130

probability distribution results in the uniform distribution. 131
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3.3. Estimating the Specific Collision Entropy of a DSPq 132

Collision entropy is the particularization of Formula (3) for α = 2, and it is defined as 133

H2(p) ≜ −log
( n

∑
k=1

p2
k

)
= −log M2(p) 0 ≤ H2(p) ≤ log n (16)

Inserting Formula (16) into Formula (4), the specific collision entropy is defined as 134

η2(p) ≜ −H2(p)
log n

= −logn M2(p) 0 ≤ η2(p) ≤ 1. (17)

In the steps of Formulas (13) and (14), the displacements of the symbol that indicates the 135

average over different realizations ⟨·⟩rq
from the outside to the inside of the symbol of 136

summation ∑ and vice versa are mathematically indisputable. But the application of the 137

logarithm to the second raw moment for arriving at the estimation of the collision entropy 138

does not allow these shifts anymore. In fact, although the two possible expressions for 139

the evaluation of the mean over the realizations give similar results in the presence of 140

RFDs (i.e. −
〈
logn M2( f )

〉
rq
≃ −logn⟨M2( f )⟩rq

), in general they differ remarkably when 141

the logarithm is applied to the estimate of the second raw moment: 142

−
〈

lognmax
{

M2( f )− 1
L

,
1
n

}〉
rq︸ ︷︷ ︸

Mean of Logs of Moment (MLM)

̸= −logn

〈
max

{
M2( f )− 1

L
,

1
n

}〉
rq︸ ︷︷ ︸

Log of Mean of Moments (LMM)

. (18)

Consequently, the estimation of the specific collision entropy is performed averaging the 143

previous two possible expressions: 144

η̂2(p)DSPq =
̂−logn M2(p) =

MLM + LMM
2

. (19)

This is also the main result of this paper. The estimation of plain collision entropy can be 145

obtained by inserting Formula (19) into Formula (5). 146

3.4. Estimating the Specific Collision Entropy Rate of a DSPq 147

Moreover, from Formula (9) and Formula (19), it can be inferred that 148

η̂′
2(p(Ω(q, d))DSPq) =

[
d η̂2(p(Ω(q, d))DSPq)− (d − 1) η̂2(p(Ω(q, d − 1))DSPq)

]
(20)

and 149

η̂′
2(DSPq) = min

{
η̂′

2(p(Ω(q, d))DSPq)
∣∣∣ 1 ≤ d < ∞

}
. (21)

3.5. Method of Validation of Entropy Estimators 150

Monte Carlo simulations are the most correct experiments for observing the average 151

effect of the application of an entropy estimator to every realization extracted from a process 152

under examination. The protocol for the validation of the estimators of entropy and entropy 153

rate consists of the following steps: 154

1. choice of a convenient DSPq, 155

2. choice of the number of realizations R, 156

3. choice of the length N of each realization, 157

4. transformation of the samples of any realization in a RFD according to § 3.1, 158

5. extraction of the estimated indices according to Formulas (19) and (20), 159

6. production of the diagrams, 160

7. and evaluation of the performances of the estimator. 161
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4. Materials: Choice of Convenient DSPqs Suitable for the Experiments 162

For the validation of the previous estimation formulas three completely different 163

types of processes were used: two types, located at the opposite extreme borders of the 164

entropy scale, are regular processes and independent, identically distributed (IID) processes 165

exhibiting maximum entropy; the third type, located in between, is composed of simple 166

processes with minimal memory, such as stationary, irreducible, and aperiodic Markov 167

processes. All these types of processes have the fundamental characteristic of having known 168

theoretical values of entropy; in this way the empirical values obtained by elaborating the 169

realizations can be compared with precise reference values. 170

1. Regular Processes. The first important sanity check for entropy estimators involves 171

the use of a completely regular process, that consists of an infinitely repeating brief 172

symbolic sequence. Once the initial sequence is known, no additional information 173

is brought by the following samples, and the evolution of the process becomes com- 174

pletely determined. So, for these processes we have 175

∀ d ≥ 2 η′
2(Regular) = 0. (22)

Then, even for short realizations of this kind of processes, any good estimator of the 176

specific Rényi entropy rate has to rapidly fall to zero during the progressive increment 177

of the dimension of the sample space. 178

2. Markov Processes. When the DSPq is a stationary, irreducible, and aperiodic Markov 179

process, it is possible to calculate the theoretical value of its specific Rényi entropy rate. 180

In fact, given the transition matrix pqq and the unique stationary distribution µ∗
q 181

obtained as the scaled (with rule ∑ µ∗
i = 1) right eigenvector associated to eigenvalue 182

λ = 1 of the equation 183∣∣∣∣∣∣∣∣
p11 p12 · p1q
p21 p22 · p2q
· · · ·

pq1 pq2 · pqq

∣∣∣∣∣∣∣∣
T ∣∣∣∣∣∣∣∣

µ1
·
·

µq

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
µ1
·
·

µq

∣∣∣∣∣∣∣∣
then 184

η′
2(Markov) ≜ lim

d→∞

1
d

H2(p(Ω(q, d))Markov)

log q
= −

q

∑
i=1

µ∗
i logq

(
q

∑
j=1

p2
ij

)
. (23)

3. Maximum Entropy IID Processes. A third sanity check for entropy estimators involves 185

the use of memoryless IID processes with maximum entropy, because: 186

• with these processes, the distance between the entropy of the relative frequencies 187

and the actual theoretical entropy of the process is the maximum possible (i.e., 188

using these processes, the estimator is tested in the most severe conditions, 189

obliging it to generate the greatest possible correction); 190

• the theoretical value for the specific entropy of the processes generated is a priori 191

known and results in being constant, regardless of the choice of the dimension of 192

the considered sample space because the outcome of each throw is independent 193

from the past history. 194

• having an L-shaped one-dimensional distribution, with one probability bigger 195

than the others, which remain equiprobable, the calculation of their theoretical 196

entropy is trivial; 197

• they are easily reproducible by, for example, simulating the rolls of a loaded die 198

on which a particular preeminence of the occurrence of a side is initially imposed; 199

the general formula is: 200

η′
2(MaxEnt) ≜ η2(p(q, d))MaxEnt

∣∣
∀ d = −logq

(
p2

main +
(1 − pmain)

2

q − 1

)∣∣∣
d=1

. (24)
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5. Results and Discussion 201

As part of this research, countless Monte Carlo experiments were conducted to val- 202

idate the novel specific collision entropy estimator η̂2(p) obtained in Formula (19) and, 203

consequently, to verify the plausibility of the hypothesis proposed for the estimation of the 204

second raw moment of any DSPq described by Formula (15). Here, only some of the most 205

significant results are reported. Each figure presented in this section contains two diagrams 206

that show, for an established number of realizations and for an established length of each 207

realization, the trend of the estimated specific collision entropy and the trend of the estimated 208

specific collision entropy rate, calculated as the dimension of the sample space varies. 209

5.1. Experiments with Realizations Coming from Completely Regular Processes 210

For the experiment whose results are reported in Figure 1 the input parameters are: 211

• DSPq = Regular process obtained repeating the ordered numerical sequence of the 212

values associated with the six faces of a die (q = 6). 213

• N = 250 and R = 1, because every realization is identical. 214

Figure 1. Trend of η2 (upper diagram) and trend of η′
2 (lower diagram) for a realization

composed of 250 samples taken from a regular process.
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The upper diagram of Figure 1 shows that, in general, the theoretical specific collision 215

entropy η2(p) decreases only asymptotically to zero and does not reach a minimum value 216

in the dimensional range 1 ≤ d ≤ 20. For this reason, this quantity is not indicated for 217

the procedure of process classification. Instead, the lower diagram shows that the specific 218

collision entropy rate η′
2(p) rapidly decreases to the minimum value of zero, overlapping 219

the theoretical trend for d > 2. This example shows that, as a first necessary prerequisite, any 220

entropy rate estimator has to exhibit this behavior when dealing with regular processes to 221

be able to be considered suitable for the classification of processes. 222

5.2. Experiments with Realizations Coming from Processes Presenting Some Sort of Regularity 223

Consider a Markov process with six possible states (alphabet Aq = {1, 2, 3, 4, 5, 6} and 224

q = 6); let the associated transition matrix p66 and stationary distribution µ∗
6 be 225

p66 =

∣∣∣∣∣∣∣∣∣∣∣∣

0.04 0.80 0.04 0.04 0.04 0.04
0.04 0.04 0.80 0.04 0.04 0.04
0.04 0.04 0.04 0.80 0.04 0.04
0.04 0.04 0.04 0.04 0.80 0.04
0.04 0.04 0.04 0.04 0.04 0.80
0.80 0.04 0.04 0.04 0.04 0.04

∣∣∣∣∣∣∣∣∣∣∣∣
µ∗

6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
6

1
6

1
6

1
6

1
6

1
6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For this process, the theoretical value of specific collision entropy rate η′
2(p) results: 226

∀d ≥ 2 η′
2(p) =

H′
2(p)

log q
= −1

6
6

log(0.82 + 5 · 0.042)

log 6
≃ 0.242 .

The upper diagram of Figure 2 shows that, in general, for processes whose samples have a 227

dependence from the past, the trend of the estimated specific collision entropy, calculated using 228

Formula (19), presents, at the beginning, a decrease, which depends on the progressive 229

reduction of the topological ambiguity encountered during the detection of recurrences 230

hidden in the data when the dimension of the sample space is increased. The curve 231

subsequently rises due to the reduction of the density of the occurrences in the sample 232

space. This corresponds to a reduction in the reliability of the information supplied by 233

the relative frequencies; as a consequence, the uncertainty contained in the probability 234

estimates grows, and the entropy increases accordingly. This ability to ramp up the curve 235

when the estimate is no longer reliable is the second necessary prerequisite for an estimator. 236

The observation of the diagrams of Figure 2 allows also to infer that RFDs cannot be used in 237

place of DPDs because they intrinsically lack this capability. In fact, the use of the RFDs in 238

the estimator gives poor results because their mean specific collision entropy seamlessly 239

decreases even when the density of the data is actually no longer sufficient for producing 240

any kind of estimation. In the middle of the curve, the minimum value of the specific 241

collision entropy represents the best possible compromise between the request to observe 242

in ever greater detail the regularities contained in the data and the limitations imposed 243

by the shortness of the data. From Figure 2 it is also possible to establish a third necessary 244

prerequisite that an entropy estimator must fulfill: in fact its output has always to be greater 245

or equal than the corresponding theoretical value, because otherwise the estimator would 246

erroneously signal the presence of an excessive amount of regularities in the process, thus 247

violating the fundamental precaution principle required by all those situations in which 248

statistical fluctuations are present. In a sentence: an estimator that expresses values of entropy 249

higher than the correct theoretical ones is preferable to an estimator that expresses lower values. 250

Moreover, when the trend of the estimated specific collision entropy is compared with the trend 251

of the estimated specific collision entropy rate, it becomes clear once again that this second 252

index produces an impressively more rapid convergence towards the theoretical value 253

(blue line) than the first one. 254
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Figure 2. Trends of η2 (upper diagram) and η′
2 (lower diagram) for 300 realizations,

each composed of 500 samples taken from the Markovian process previously described by the
transition matrix p66 and the stationary distribution µ∗

6 .

In the lower diagram of Figure 2 it is possible to see that the adherence of η̂′
2(p) to 255

η′
2(p) persists up to dimension d = 11, and in this case the data density results: 256

δmin(Markov, R = 300, N = 500) =
L
n
=

N − d + 1
qd =

490
611 = 1.35 · 10−6

5.3. Experiments with Realizations Coming from Maximum Entropy Memoryless IID Processes 257

For the experiment whose results are reported in Figure 3, the input parameters are: 258

• DSPq = process generated by tossing a loaded die with 50% of the outcomes equal to 259

“1” (q = 6); 260

• Upper diagram: R = 2000 and N = 250; 261

• Lower diagram: R = 500 and N = 1000. 262

From Formula (24) it results that 263

η′
2(MaxEnt50%) = η2(MaxEnt50%) = −log6(0.52 +

0.52

5
) = −log6 0.3 ≃ 0.672.
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Figure 3. Trends of η2 for the realizations of a process generated by tossing a loaded die with 50%
of the outcomes equal to “1”. Upper diagram: 2000 realizations, each 250 samples long;

lower diagram: 500 realizations, each 1000 samples long.

Both diagrams of Figure 3 show that: 264

• the proposed estimator satisfies the aforementioned third prerequisite of never falling 265

below the theoretical line, even in the heaviest test conditions, represented by the 266

elaboration of data coming from a maximum entropy IID process; 267

• when using RFDs to estimate specific collision entropy, there is only a slight difference 268

between the two possible ways of averaging the logarithm of the second raw moment 269

(dotted and dashed lines in orange); 270

• on the contrary, there is a remarkable difference between the two possible ways of 271

averaging the estimates of the logarithm of the second raw moment (dotted and 272

dashed lines in grey) as indicated in Formula (18); 273

• when the data density in the sample space becomes insufficient for a reliable estimate of 274

the entropy, its value rises toward the value corresponding to the uniform distribution. 275
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In the upper diagram of Figure 3 it is possible to see that considering 250 samples per 276

realization the adherence of η̂2(p) to η2(p) persists up to dimension 6; for this dimension 277

the data density in the sample space results: 278

δmin(MaxEnt 50%, R = 2000, N = 250) =
L
n
=

N − d + 1
qd =

245
66 = 5.25 · 10−3

and the statistical fluctuations are considerable because of the shortness of the realizations. 279

In the lower diagram of Figure 3 it is possible to see that considering 1000 samples per 280

realization the adherence of η̂2(p) to η2(p) persists up to dimension 9 (three dimensions 281

more than the other situation); for this dimension the data density in the sample space 282

results: 283

δmin(MaxEnt 50%, R = 500, N = 1000) =
L
n
=

N − d + 1
qd =

992
69 = 9.84 · 10−5

and the statistical fluctuations are reduced because of the greater number of samples of each 284

realization. From the comparison of the two diagrams, it can be seen that the increment in 285

the availability of the data improves all the performance indicators of the estimator, and 286

this fact proves its consistency even in the most severe test conditions. In general, to obtain 287

an adequate horizontal trend of η̂′
2 for at least two consecutive dimensions, it is necessary 288

to rely on a sufficiently large number of samples per realization N or, alternatively, on 289

a sufficiently high number of realizations R. The total number of aggregated samples 290

(i.e., R x N) necessary for a good result of the estimation depends on the effective degree 291

of irregularity of the signal. In fact, for completely regular processes with an alphabet 292

composed of few symbols, even only 5 q samples are sufficient for a correct estimate. In 293

contrast, for almost random processes, at least 1, 000, 000 aggregated samples seem to be 294

necessary. 295

Finally, concerning the hypothesis made at the beginning about the possibility of estimating 296

the second raw moment of the DPDs coming from any kind of DSPq using Formula (15), 297

the evidences that emerged from the results of the experiments made for the validation of 298

the estimator have not provided any counterexample that may exclude its validity. For this 299

reason, the following statistics postulate is proposed: 300

301

Postulate. Given a sample space Ω(q, d) with cardinality n = qd, and given a set of relative 302

frequency distributions { f (Ω(q, d))rq}DSPq , each composed of L occurrences, resulting from the 303

transformation of R short realizations rq taken from the underlying discrete stochastic process DSPq, 304

to which an unknown discrete probability distribution p(Ω(q, d)) is associated, then the unbiased 305

and consistent estimator of the second raw moment of p(Ω(q, d)) is inferred as 306

∀ DSPq M̂2(p)DSPq
=
〈

max
{

M2( f )− 1
L

,
1
n

}〉
rq

.

6. Conclusions 307

Figures 2 and 3 show that the proposed specific collision entropy rate estimator η̂′
2 allows 308

a very prolonged and consistent stay of its output, exactly at the values expected by the 309

theory. This highly desirable and very rare feature, the simplicity of its formula and its 310

complete usability with any discrete stationary process make this estimator a valid tool, 311

suitable for measuring the degree of irregularity in experimental data from the perspective 312

given by the collision entropy. Possible future research directions include: 313

• the evaluation of the admissibility of this estimator by comparing it to other similar 314

estimators and by using the same kind of processes for the tests; 315

• the characterization of the variability of the values returned by the estimator η̂′
2 as the 316

number of aggregated samples and the irregularity of the processes vary; 317

• further studies on the methods of estimation in presence of the logarithm operator. 318
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Abbreviations 321

The following abbreviations are used in this manuscript: 322

Aq alphabet composed of q ordered symbols
Ω(q, d) Sample space resulting from the Cartesian product d times of the alphabet Aq
n = qd cardinality of the sample space Ω(q, d)
DSPq Discrete-state stochastic process whose samples belong to an alphabet Aq
rq Realization of a DSPq
N Number of samples of rq
L = N − d + 1 Number of occurrences inserted in the events of Ω(q, d)
RFD Relative frequency distribution
DPD Discrete probability distribution
f (Ω(q, d))rq RFD obtained from a realization rq of a DSPq whose d-grams are inserted in Ω(q, d)
p(Ω(q, d))DSPq DPD obtained from a DSPq whose d-grams are inserted in Ω(q, d)
p̂(Ω(q, d))DSPq Estimate of the DPD obtainable from a DSPq whose d-grams are inserted in Ω(q, d)
M2( f ) Second raw moment of an RFD
M2(p) Second raw moment of a DPD
M̂2(p) Estimate of the second raw moment of a DPD
H2( f ) Collision entropy of an RFD
H2(p) Collision entropy of a DPD
Ĥ2(p) Estimated collision entropy of a DPD
η2( f ) Specific collision entropy of an RFD
η2(p) Specific collision entropy of a DPD
η̂2(p) Estimated specific collision entropy of a DPD
η′

2( f ) Specific collision entropy rate of an RFD
η′

2(p) Specific collision entropy rate of a DPD
η̂′

2(p) Estimated specific collision entropy rate of a DPD

323
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