Proof of the Riemann Hypothesis
 Marcello Colozzo

Abstract

We prove the Riemann Hypothesis by studying the behavior of a holomorphic function $\hat{f}(s)$ which has the same non-trivial zeros as the Riemann zeta function $\zeta(s)$. This function is given by $g(s) \equiv \hat{f}(x+i y)=\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{t t}+1} e^{i y t} d t$ and is for an assigned $x>0$, the Fourier transform of $f(x, t)=\frac{e^{x t}}{e^{e^{t}}+1}$.

1 The Riemann zeta function $\zeta(s)$

1.1 Dirichlet series

As is well known, the Riemann zeta function is defined by:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{+\infty} \frac{1}{n^{s}}, \quad s=x+i y \tag{1}
\end{equation*}
$$

The Dirichlet series (1) is convergent for $\operatorname{Re} s>1$, and uniformly convergent in any finite region in which $\operatorname{Re} s \geq 1+\delta, \delta>0$. It therefore definis an holomorphic function $\zeta(s)$ for $\operatorname{Re} s>1$ [1].

1.2 The functional equation and the non-trivial zeros

Riemann found the analytic extension (or holomorphic extension) of the sum of the Dirichlet series (1) over all \mathbb{C} except the point $z=1$, which turns out to be a simple pole with residue 1.

The aforesaid analytical extension is represented by the following functional equation [1]:

$$
\begin{equation*}
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{\frac{s-1}{2}} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s) \tag{2}
\end{equation*}
$$

where $\Gamma(s)$ is the Eulerian gamma function. The non-trivial zeros of $\zeta(s)$ fall in the critical strip [1]-[2] of the complex plane defined by

$$
\begin{equation*}
A=\{s \in \mathbb{C} \mid 0 \leq \operatorname{Re} s \leq 1, \quad-\infty<\operatorname{Im} s<+\infty\} \tag{3}
\end{equation*}
$$

More precisely, there are no zeros for $\operatorname{Re} s=0, \operatorname{Re} s=1$ so we should refer to the open strip:

$$
\begin{equation*}
\{s \in \mathbb{C} \mid 0<\operatorname{Re} s<1,-\infty<\operatorname{Im} s<+\infty\} \tag{4}
\end{equation*}
$$

In the following, we will denote the geometric locus (4) by A.
The Eulerian gamma function has no zeros [3], so

$$
\begin{equation*}
s_{0} \in A \mid \zeta\left(s_{0}\right)=0 \Longleftrightarrow \zeta\left(1-s_{0}\right)=0 \tag{5}
\end{equation*}
$$

1.3 Symmetries

1.3.1 Complex conjugation

Let $f(s)$ be a complex function defined in a field $T \subseteq \mathbb{C}$. Denoting with s^{*} the complex conjugate of $s=x+i y$ i.e. $s^{*}=x-i y$, we plan to study the behavior of $f(s)$ with respect to the complex conjugation $s \rightarrow s^{*}$. To do this, we separate the real and imaginary parts of $f(s)$:

$$
f(s)=u(x, y)+i v(x, y)
$$

The following special cases are of interest:

1. $u(x, y) \equiv u(x,-y), v(x, y) \equiv v(x,-y)$, i.e. u and v are even functions with respect to the variable y. It follows

$$
f\left(s^{*}\right)=u(x,-y)+i v(x,-y) \equiv u(x, y)+i v(x, y) \Longrightarrow f\left(s^{*}\right) \equiv f(s)
$$

so $f(s)$ is invariant under the transformation $s \rightarrow s^{*}$.
2. $u(x, y) \equiv u(x,-y), v(x, y) \equiv-v(x,-y)$, i.e. u is an even function while v is odd with respect to the variable y. It follows

$$
f\left(s^{*}\right)=u(x,-y)+i v(x,-y) \equiv u(x, y)-i v(x, y) \Longrightarrow f\left(s^{*}\right) \equiv f(s)^{*}
$$

Example 1 Let's consider the function $f(s)=e^{s}=e^{x}(\cos y+i \sin y)$, for which

$$
u(x, y)=e^{x} \cos y, v(x, y)=e^{x} \sin y
$$

So we are in case 2: $e^{s^{*}}=\left(e^{s}\right)^{*}$.
For the function $\zeta(s)$ the following property holds:

Proposition 2 (Property of complex conjugation)

$$
\begin{equation*}
\zeta\left(s^{*}\right)=\zeta(s)^{*}, \quad \forall s \in \mathbb{C} \backslash\{1\} \tag{6}
\end{equation*}
$$

Proof. It is sufficient to prove the (6) for $\operatorname{Re} s>1$, using the representation through the Dirichlet series (1) since the property is conserved in the holomorphic extension.

$$
\zeta(s)=\sum_{n=1}^{+\infty} n^{-x} n^{-i y}=\sum_{n=1}^{+\infty} n^{-x} e^{-i y \ln n}=\sum_{n=1}^{+\infty} n^{-x}[\cos (y \ln n)-i \sin (y \ln n)]
$$

Separating the real part from the imaginary part:

$$
\begin{aligned}
\zeta(s) & =\sum_{n=1}^{+\infty} n^{-x} \cos (y \ln n)-i \sum_{n=1}^{+\infty} \sin (y \ln n) \\
& \Longrightarrow \zeta\left(s^{*}\right)=\sum_{n=1}^{+\infty} n^{-x} \cos (y \ln n)+i \sum_{n=1}^{+\infty} \sin (y \ln n)
\end{aligned}
$$

from which

$$
\begin{equation*}
\zeta\left(s^{*}\right)=\zeta(s)^{*} \tag{7}
\end{equation*}
$$

Figure 1: Trend of $\operatorname{Re} \zeta\left(\frac{1}{4}+i y\right), \operatorname{Im} \zeta\left(\frac{1}{4}+i y\right)$.

From this it follows that $\operatorname{Re} \zeta(x+i y)$ is an even function with respect to the variable y, while $\operatorname{Im} \zeta(x+i y)$ is an odd function. is an odd function. This is evident in the graph of fig. 1.

The proposition 2 implies that the non-trivial zeros are symmetric about the real axis (fig. 2). In fact, if s_{0} is a non-trivial zero, it must still occur

$$
\begin{equation*}
\zeta\left(s_{0}^{*}\right)=\zeta\left(s_{0}\right)^{*} \tag{8}
\end{equation*}
$$

But $\zeta\left(s_{0}\right)=0 \Longrightarrow \zeta\left(s_{0}\right)^{*}=0 \Longrightarrow \zeta\left(s_{0}^{*}\right)=0$. Stated another way, the nontrivial zeros are distributed for complex conjugate pairs.

Figure 2: Symmetry of the distribution of zeros with respect to the real axis.

1.3.2 Symmetry about the point $\left(\frac{1}{2}, 0\right)$

The (5) has an immediate geometric interpretation illustrated in fig. 3 from which we see that the zeros s_{0} and $1-s_{0}$ are symmetrical with respect to the point $\left(\frac{1}{2}, 0\right)$.

Figure 3: Symmetry of the distribution of zeros with respect to point $\left(\frac{1}{2}, 0\right)$.

The symmetries just examined imply that the non-trivial zeros are symmetric about the line $\operatorname{Re} s=1 / 2$ and the real axis (fig.(4)).

Figure 4: Symmetry of the distribution of non trivial zeros.

2 A remarkable integral representation

In Quantum Statistical Mechanics [5] the following generalized integrals which are not elementary expressible often appear

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t} \pm 1} \tag{9}
\end{equation*}
$$

From known results:

$$
\begin{align*}
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t}+1} & =\left(1-2^{1-x}\right) \Gamma(x) \zeta(x), \quad \forall x \in(0,+\infty) \tag{10}\\
\int_{0}^{+\infty} \frac{t^{x-1} d t}{e^{t}-1} & =\Gamma(x) \zeta(x), \quad \forall x \in(1,+\infty)
\end{align*}
$$

where $\zeta(x)$ is the Riemann zeta function $\zeta(s)$ evaluated for $\operatorname{Im} s=0$. We rewrite the first of (10) for $\operatorname{Im} s \neq 0$:

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{t^{s-1} d t}{e^{t}+1}=\left(1-2^{1-s}\right) \Gamma(s) \zeta(s), \quad \operatorname{Re} s>0 \tag{11}
\end{equation*}
$$

In the integral we perform the change of variable $t=e^{t^{\prime}}$, so

$$
\int_{0}^{+\infty} \frac{t^{s-1} d t}{e^{t}+1}=\int_{0}^{+\infty} \frac{t^{x-1} t^{i y t} d t}{e^{t}+1}=\int_{-\infty}^{+\infty} \frac{e^{x t^{\prime}} e^{-t^{\prime}} e^{i y t^{\prime}} e^{t^{\prime}}}{e^{e^{\prime}}+1} d t^{\prime}=\int_{-\infty}^{+\infty} \frac{e^{x t^{\prime}}}{e^{e^{t^{\prime}}}+1} e^{i y t^{\prime}} d t^{\prime}
$$

Redefining the variable $t^{\prime} \equiv t$:

$$
\int_{0}^{+\infty} \frac{t^{s-1} d t}{e^{t}+1}=\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t
$$

so (11) becomes

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t=\left(1-2^{1-s}\right) \Gamma(s) \zeta(s), \quad \operatorname{Re} s>0 \tag{12}
\end{equation*}
$$

We define

$$
f(x, t)=\frac{e^{x t}}{e^{e^{t}}+1}, \quad\left\{\begin{array}{l}
x \in(0,1) \text { parameter } \tag{13}\\
t \in(-\infty,+\infty) \text { independent variable }
\end{array}\right.
$$

It follows (from (12)):

$$
\begin{equation*}
\hat{f}(s) \equiv \hat{f}(x+i y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t=\left(1-2^{1-s}\right) \Gamma(s) \zeta(s), \quad \operatorname{Re} s>0 \tag{14}
\end{equation*}
$$

Notation 3 The correct notation is

$$
\hat{f}(x, y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t, \quad g(s)=\hat{f}(x+i y), \quad g: A \rightarrow \mathbb{C}
$$

However to avoid a proliferation of symbols, we use the notation (14). So the symbols $\hat{f}(x, y), \hat{f}(x+i y), \hat{f}(s)$ denote the same function.
Proposition 4 The function $\hat{f}(s)$ is holomorphic in the region

$$
A=\{s \in \mathbb{C} \mid 0<\operatorname{Re} s<1,-\infty<\operatorname{Im} s<+\infty\}
$$

Proof. It immediately follows from the holomorphy of $\left(1-2^{1-s}\right) \Gamma(s)$ in the region A.

Lemma 5

$$
\begin{equation*}
\left|\left(1-2^{1-s}\right) \Gamma(s)\right|>0, \quad \forall s \in A \tag{15}
\end{equation*}
$$

Proof. The inequality (15) derives from the fact that the gamma function has no zeros [3], while $1-2^{1-s}$ is manifestly zero-free in A.
Theorem $6 \hat{f}(s)$ and $\zeta(s)$ have the same (non-trivial) zeros.
Proof. It follows from the lemma 5.
The line $\operatorname{Re} s=1 / 2$ is called critical line. G. H. Hardy [4] proved that infinitely many zeros fall on this line.

3 Riemann Hypothesis. Fourier Transform

From (14) we see that for a given $\bar{x} \in(0,1)$ the function $\hat{f}(y) \equiv(\bar{x}+i y)$ is the Fourier transform of (13). By a known property [6] $\hat{f}(y)$ is uniformly continuous in $(-\infty,+\infty)$. Also, by the inversion formula [7]:

$$
\begin{equation*}
\frac{e^{\bar{x} t}}{e^{e^{t}}+1}=\frac{1}{2 \pi} \lim _{\delta \rightarrow+\infty} \int_{-\delta}^{\delta}\left(1-\frac{|y|}{\delta}\right) \hat{f}(y) e^{-i y t} d y \tag{16}
\end{equation*}
$$

Conjecture 7 (Riemann Hypothesis - RH)

The non-trivial zeros of the Riemann zeta-function have real part $x=1 / 2$.
From proposition 5 follows that the non-trivial zeros of the function

$$
\begin{equation*}
\hat{f}(x+i y)=\int_{-\infty}^{+\infty} f(x, t) e^{i y t} d t, \quad \text { with } \quad f(x, t)=\frac{e^{x t}}{e^{t^{t}}+1} \tag{17}
\end{equation*}
$$

have real part $x=1 / 2$.
Let us first study the behavior of the function

$$
\begin{equation*}
f(x, t)=\frac{e^{x t}}{e^{e^{t}}+1} \tag{18}
\end{equation*}
$$

which for each value of the parameter $x \in(0,1)$ is defined in $(-\infty,+\infty)$.
Sign and intersections with the axes
It turns out $f(x, t)>0, \forall t \in(-\infty,+\infty)$ for which the graph of f lies in the semi-plane of the positive ordinates. It does not intersect the abscissa axis, while it does intersect the ordinate axis at $\left(0,(e+1)^{-1}\right)$.

Behavior at extremes
After calculations:

$$
\lim _{t \rightarrow+\infty} f(x, t)=0^{+}, \quad \forall x \in(0,1)
$$

The order of infinitesimal:

$$
\begin{gather*}
\lim _{t \rightarrow+\infty} t^{\alpha} f(x, t)=0^{+}, \quad \forall \alpha>0 \quad \text { (infinitesimal of infinitely large order) } \tag{19}\\
\lim _{t \rightarrow-\infty} f(x, t)= \begin{cases}\frac{1}{2}^{-}, & \text {if } x=0 \\
0^{+}, & \text {if } x>0\end{cases} \tag{20}
\end{gather*}
$$

Precisely:

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} t^{\alpha} f(x>0, t)=0^{+}, \quad \forall \alpha>0 \tag{21}
\end{equation*}
$$

Conclusion: for $|t| \rightarrow+\infty$ the function $f(x>0, t)$ is an infinitesimal of order infinitely large, provided that it is $x>0$.

First derivative

$$
f^{\prime}(x, t) \equiv \frac{\partial}{\partial t} f(x, t)=\frac{e^{x t}\left[x\left(e^{e^{t}}+1\right)-e^{t+e^{t}}\right]}{\left(e^{e^{t}}+1\right)^{2}}
$$

For $x=0$

$$
f^{\prime}(0, t)=-\frac{e^{t+e^{t}}}{\left(e^{e^{t}}+1\right)^{2}}<0, \quad \forall t \in(-\infty,+\infty)
$$

so the function is strictly decreasing.
For $x>0$

$$
\begin{equation*}
f^{\prime}(x, t)=0 \Longleftrightarrow x\left(e^{e^{t}}+1\right)-e^{t+e^{t}}=0 \tag{22}
\end{equation*}
$$

The roots of the transcendental equation (22) depend parametrically on x, so let's denote them by $t_{*}(x)$. For $x=1$:

$$
t_{*}(1) \simeq 0.246
$$

From (20):

$$
\lim _{x \rightarrow 0^{+}} t_{*}(x)=-\infty
$$

so that

$$
\begin{equation*}
0<x<1 \Longrightarrow-\infty<t_{*}(x) \lesssim 0.246 \tag{23}
\end{equation*}
$$

$t_{*}(x)$ is a continuous function, so by the theorem of zeros:

$$
\exists \xi \in(0,1) \mid t_{*}(\xi)=0
$$

Numerically: $\xi \simeq 0.731$. Some values for assigned $x \in(0,1)$:

$$
\begin{aligned}
& t_{*}\left(\frac{1}{5}\right) \simeq-1.07 \\
& t_{*}\left(\frac{1}{4}\right) \simeq-0.88 \\
& t_{*}\left(\frac{1}{2}\right) \simeq-0.30 \\
& t_{*}\left(\frac{2}{3}\right) \simeq-0.07 \\
& t_{*}\left(\frac{3}{4}\right) \simeq 0.02
\end{aligned}
$$

The sign is

$$
\begin{aligned}
-\infty & <t<t_{*}(x) \Longrightarrow f^{\prime}(x, t)>0 \\
t_{*}(x) & <t<+\infty \Longrightarrow f^{\prime}(x, t)<0
\end{aligned}
$$

Hence the function is strictly increasing in $\left(-\infty, t_{*}(x)\right)$ and it is strictly decreasing in $\left(t_{*}(x),+\infty\right)$. So $t_{*}(x)$ is a point of relative maximum for the function.

Second derivative

$$
\begin{equation*}
f^{\prime \prime}(x, t)=\frac{e^{x t}\left[e^{2\left(e^{t}+t\right)}-e^{e^{t}+2 t}+x^{2}\left(1+e^{e^{t}}\right)^{2}-(2 x+1)\left(e^{t+e^{t}}+e^{2 e^{t}+t}\right)\right]}{\left(1+e^{e^{t}}\right)^{3}} \tag{24}
\end{equation*}
$$

For $x=0$

$$
f^{\prime \prime}(0, t)=\frac{e^{2\left(e^{t}+t\right)}-e^{e^{t}+2 t}-\left(e^{t+e^{t}}+e^{2 e^{t}+t}\right)}{\left(1+e^{e^{t}}\right)^{3}}
$$

which has a zero in $t_{*}^{\prime}(x=0) \simeq 0.43$. The sign is

$$
\begin{aligned}
&-\infty<t<t_{*}^{\prime}(x=0) \Longrightarrow f^{\prime \prime}(0, t)<0 \\
& t_{*}^{\prime}(x=0)<t<+\infty \Longrightarrow f^{\prime \prime}(0, t)>0
\end{aligned}
$$

Figure 5: Trend of $f(0, t)$.

It follows that the graph of $f(0, t)$ is convex in $\left(-\infty, t_{*}^{\prime}(x=0)\right)$ and concave in $\left(t_{*}^{\prime}(x=0),+\infty\right)$. So $(0.43,0.18)$ is an inflection point with an oblique tangent. In fig. 5 we report the graph of $f(0, t)$.

For $x>0$ we perform a qualitative analysis. The parameter x decisively controls the slope of the graph of $f(t)$ in $(-\infty, 0)$ since

$$
\frac{\partial}{\partial t} e^{x t}=x e^{x t}
$$

For $t \in(0,+\infty)$ the slope is controlled by $e^{e^{t}}$ in denominator. This implies that the effects of the parameter x are felt for $t \in(-\infty, 0)$, while in $(0,+\infty)$ the trend is practically independent of this parameter. Fig. 6 plots $f(x, t)$ for increasing values of the parameter x starting from $x=0$.

By a known property of the Fourier transform [6], for a given value of x, the real function $|\hat{f}(x, y)|$ is limited. In fact, from (17):

$$
|\hat{f}(x, y)| \leq \int_{-\infty}^{+\infty}\left|\frac{e^{x t}}{e^{e^{t}}+1}\right| d t=\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t \stackrel{\text { def }}{=} F(x)
$$

It follows

$$
F(x)=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t+\underbrace{\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t}_{\text {converges } \forall x \in \mathbb{R}}
$$

For $x=0$

$$
f(0, t)=\frac{1}{e^{e^{t}}+1} \underset{t \rightarrow-\infty}{\longrightarrow} \frac{1}{2} \Longrightarrow \int_{-\infty}^{0} \frac{d t}{e^{e^{t}}+1}=+\infty \Longrightarrow \lim _{x \rightarrow 0^{+}} F(x)=+\infty
$$

For $x>0$ the trend in $t \in(-\infty, 0)$ is dominated by $e^{x t}$

$$
\frac{e^{x t}}{e^{e^{t}}+1} \underset{t \rightarrow-\infty}{\longrightarrow} e^{x t}
$$

so the integral converges. As x increases in $(0,1)$ the slope increases, and this favors the convergence of the integral ${ }^{1}$, simultaneously decreases the area of the rectangleoid and therefore the value of $F(x)$. This shows that $F(x)$ is strictly decreasing, as confirmed by the graph fig. 7.

Figure 6: Trend of $f(x, t)$ for different values of x. Curve in green: $x=0$. The flattest curve towards the ordinate axis is for $x=1$.

Figure 7: Geometric interpretation of $F(x)$ for $x=\frac{1}{4}, \frac{1}{2}$. Note the decreasing trend.
A more quantitative analysis can be performed by numerically calculating the integral $F(x)=\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e t}+1} d t$ for an array of x values, or using the Mathematica built-in function Zeta $[\mathrm{x}+\mathrm{iy}]$ for $y=0$ and taking into account the (12) for $y=\operatorname{Im} s=0$:

$$
F(x)=\left(1-2^{1-x}\right) \Gamma(x) \zeta(x)
$$

In other words, we graph with Mathematica the second member of (12). The result is in fig. 8.

[^0]

Figure 8: Trend of $F(x)$.

4 Zeros of the Fourier Transform

4.1 Introduction

The integral (17) can be seen as:

- complex function of the real variables (x, y) i.e. $\hat{f}(x, y)$;
- complex function of the complex variable $x+i y$;

Due to the symmetry property established in the number 1.2 , we can limit the search for zeros in the region:

$$
\begin{equation*}
A=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,-\infty<y<+\infty\right\} \tag{25}
\end{equation*}
$$

Search for zeros:

$$
\begin{equation*}
\hat{f}(x, y)=0 \Longleftrightarrow \underbrace{\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t}_{I_{-}(x, y)}+\underbrace{\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t}_{I_{+}(x, y)}=0 \tag{26}
\end{equation*}
$$

As established in § 3

$$
\begin{align*}
& I_{-}(x, y)=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t \quad \text { converges if and only if } x>0 \tag{27}\\
& I_{+}(x, y)=\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t \quad \text { converges for each } x \in \mathbb{R}
\end{align*}
$$

We express the complex quantities $I_{ \pm}(x, y)$ in polar representation:

$$
\begin{align*}
& I_{ \pm}(x, y)=F_{ \pm}(x, y) e^{i \varphi_{ \pm}(x, y)} \tag{28}\\
& F_{ \pm}(x, y)=\left|I_{ \pm}(x, y)\right| ; \quad \varphi_{ \pm}(x, y)=\arg I_{ \pm}(x, y) \quad\left(0 \leq \varphi_{ \pm}(x, y)<2 \pi\right)
\end{align*}
$$

From (26):

$$
\begin{equation*}
\hat{f}(x, y)=0 \Longleftrightarrow I_{-}(x, y)=-I_{+}(x, y) \tag{29}
\end{equation*}
$$

Taking into account the (28):

$$
\left\{\begin{array}{l}
F_{-}(x, y)=F_{+}(x, y) \tag{30}\\
\varphi_{-}(x, y)=\pi+\varphi_{+}(x, y)
\end{array}\right.
$$

So if $s_{0}=x_{0}+i y_{0}$ is a zero of $\zeta(s)$, the ordered pair $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ solves the system (30). It follows that the equality of the modules

$$
\begin{equation*}
F_{-}\left(x_{0}, y_{0}\right)=F_{+}\left(x_{0}, y_{0}\right) \tag{31}
\end{equation*}
$$

expresses a necessary (but not sufficient) condition for $s_{0}=x_{0}+i y_{0}$ to be a zero of $\zeta(s)$.

4.2 Remarkable properties of $F_{ \pm}(x, y)$

Promemoria:

$$
\begin{equation*}
F_{-}(x, y)=\left|\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right|, \quad F_{+}(x, y)=\left|\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right| \tag{32}
\end{equation*}
$$

Proposition 8 The functions (32) are even with respect to the variable y.
Proof. It follows immediately by expressing the exponential $e^{i y t}$ with Euler's formula.
Notation 9 Parity $(+1)$ is a general property of the modulus of a Fourier transform:

$$
\hat{f}(y)=\int_{-\infty}^{+\infty} f(t) e^{i y t} d t \Longrightarrow|\hat{f}(-y)| \equiv|\hat{f}(y)|
$$

Proposition 10

$$
\begin{equation*}
\lim _{y \rightarrow \pm \infty} F_{ \pm}(x, y)=0 \tag{33}
\end{equation*}
$$

Proof. It follows from a well-known property of Fourier transforms [6]:

$$
\begin{equation*}
\lim _{y \rightarrow \pm \infty}|\hat{f}(x, y)|=0 \tag{34}
\end{equation*}
$$

Alternatively: for an assigned $x_{0} \in(0,1)$

$$
\begin{aligned}
\left|\int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} e^{i y t} d t\right| & =\left|\int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} \cos (y t) d t+i \int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} \sin (y t) d t\right| \\
& =\left|\tilde{g}_{1}(y)+\tilde{g}_{2}(y)\right|
\end{aligned}
$$

where

$$
\begin{align*}
& \tilde{g}_{1}(y)=\int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} \cos (y t) d t \tag{35}\\
& \tilde{g}_{2}(y)=\int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} \sin (y t) d t
\end{align*}
$$

It suffices to prove $\lim _{y \rightarrow \pm \infty} \tilde{g}_{1}(y)=\lim _{y \rightarrow \pm \infty} \tilde{g}_{2}(y)=0$. Furthermore, taking into account the proposition 8 , it suffices to refer to the case $y \rightarrow+\infty$. For this purpose we arbitrarily take $\varepsilon>0$, then we impose

$$
\tilde{g}_{1}(y)=\varepsilon
$$

which determines $\delta_{\varepsilon}>0$

$$
\tilde{g}_{1}\left(\delta_{\varepsilon}\right)=\varepsilon \Longleftrightarrow \int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} \cos \left(\delta_{\varepsilon} t\right) d t=\varepsilon
$$

We have to show that

$$
y>\delta_{\varepsilon} \Longrightarrow \tilde{g}_{1}(y)=\left|\int_{-\infty}^{0} \frac{e^{x_{0} t}}{e^{e^{t}}+1} \cos (y t) d t\right|<\varepsilon
$$

For this purpose we consider the integrand function

$$
\begin{equation*}
\psi(y, t)=\frac{e^{x_{0} t}}{e^{e^{t}}+1} \cos (y t) d t \tag{36}
\end{equation*}
$$

which for a given y is a cosine oscillation between the curves of equation $\eta= \pm \frac{e^{x_{0} t}}{e^{\epsilon t}+1}$ as can be seen in fig. 9. As y increases, the «density> of the number of oscillations increases as we can see from the graph in fig. 10.

Figure 9: Trend of $\psi(y, t)=\frac{e^{x_{0} t}}{e^{t}+1} \cos (y t) d t$ for $x_{0}=\frac{1}{4}, y=2$.
It follows a reduction of the area of the rectangleoid and therefore of $\tilde{g}_{1}(y)$. For $y \rightarrow+\infty$ the predicted density diverges positively and the area of the rectangleoid tends to zero. So:

$$
\forall \varepsilon>0, \exists \delta_{\varepsilon}>0 \mid y>\delta_{\varepsilon} \Longrightarrow \tilde{g}_{1}(y)<\varepsilon
$$

i.e.

$$
\lim _{y \rightarrow+\infty} \tilde{g}_{1}(y)=0
$$

In a similar way we arrive at $\lim _{y \rightarrow+\infty} \tilde{g}_{2}(y)=0$.
Proposition 11 The functions $F_{ \pm}(x, y)$ are analytic in A.

Figure 10: Trend of $\psi(y, t)=\frac{e^{x_{0} t}}{e^{t}+1} \cos (y t) d t$ for $x_{0}=\frac{1}{4}, y=14$.

Proof. From the holomorphy of the function

$$
\hat{f}(x+i y)=\int_{-\infty}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t
$$

follows the analyticity of real functions $u(x, y)=\operatorname{Re} \hat{f}, v(x, y)=\operatorname{Im} \hat{f} \quad$ [9]. Dalla (26):

$$
|\hat{f}(x+i y)|^{2}=\left|I_{-}(x, y)^{2}+I_{+}(x, y)\right|^{2}
$$

After some algebra:

$$
\begin{equation*}
u(x, y)^{2}+v(x, y)^{2}=F_{-}(x, y)^{2}+F_{+}(x, y)^{2}+2 J(x, y) \tag{37}
\end{equation*}
$$

where

$$
J(x, y)=\left[\operatorname{Re} I_{-}(x, y)\right]\left[\operatorname{Re} I_{+}(x, y)\right]+\left[\operatorname{Im} I_{-}(x, y)\right]\left[\operatorname{Im} I_{+}(x, y)\right]
$$

For the above, the first member function of (37) is analytic, hence the analyticity of the sum $F_{-}(x, y)^{2}+F_{+}(x, y)^{2}+2 J(x, y)$ and therefore, some $F_{ \pm}(x, y)$.

Proposition 12 For a given $y \in \mathbb{R}$, the function $F_{-}(x, y)$ is monotonically decreasing in $(0,1)$.

Proof. Given arbitrarily $y_{0} \in \mathbb{R}$, let's say:

$$
\begin{equation*}
f_{-}(x)=F_{-}\left(x, y_{0}\right)=\left|\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y_{0} t} d t\right| \tag{38}
\end{equation*}
$$

If $y_{0}=0$

$$
f_{-}(x)=\left|\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t\right|=\int_{-\infty}^{0} \frac{e^{x t}}{e^{t^{t}}+1} d t
$$

Derivating with respect to x and taking into account the uniform convergence of the integral:

$$
f_{-}^{\prime}(x)=\int_{-\infty}^{0} \frac{t e^{x t}}{e^{t^{t}}+1} d t<0, \quad \forall x \in(0,1)
$$

so $F_{-}(x, 0)$ is monotonically decreasing in $(0,1)$.
For $y_{0} \neq 0$, expanding the imaginary exponential we have::

$$
f_{-}(x)=\left|g_{1}(x)+i g_{2}(x)\right|
$$

where

$$
\begin{align*}
& g_{1}(x)=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} \cos \left(y_{0} t\right) d t \tag{39}\\
& g_{2}(x)=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} \sin \left(y_{0} t\right) d t
\end{align*}
$$

So

$$
f_{-}(x)=+\sqrt{g_{1}(x)^{2}+g_{2}(x)^{2}}
$$

It suffices to show that $g_{1}(x)$ and $g_{2}(x)$ are monotonically decreasing in $(0,1)$. Precisely, for an assigned $t<0$, however we take $x^{\prime}, x^{\prime \prime} \in(0,1)$ with $x^{\prime \prime}>x^{\prime}$, we have:

$$
e^{x^{\prime \prime} t}<e^{x^{\prime} t} \Longrightarrow \frac{e^{x^{\prime \prime} t}}{e^{e^{t}}+1}<\frac{e^{x^{\prime \prime} t}}{e^{e^{t}}+1} \Longrightarrow \int_{-\infty}^{0} \frac{e^{x^{\prime \prime} t}}{e^{e^{t}}+1} \cos \left(y_{0} t\right) d t<\int_{-\infty}^{0} \frac{e^{x^{\prime} t}}{e^{e^{t}}+1} \cos \left(y_{0} t\right) d t
$$

so $g_{1}(x)$ is monotonically decreasing. This conclusion is corroborated by the graph of fig. 11.

Figure 11: Trend of the integrand function of $g_{1}(x)$ respectively for $x=2 / 5$ and $x=2 / 3$, and for $y_{0}=2$. The value assumed by $g_{1}(x)$ for these values of x, is the area of the rectangleoid related to the sinusoidal oscillations. As x increases, these oscillations reduce in amplitude so that the area decreases.

We proceed in a similar way for $g_{2}(x)$.
Proposition 13 For a given $y \in \mathbb{R}$, the function $F_{+}(x, y)$ is monotonically increasing in $(0,1)$.

Proof. Given arbitrarily $y_{0} \in \mathbb{R}$, let's say:

$$
\begin{equation*}
f_{+}(x)=F_{+}\left(x, y_{0}\right)=\left|\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y_{0} t} d t\right| \tag{40}
\end{equation*}
$$

If $y_{0}=0$

$$
f_{+}(x)=\left|\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t\right|=\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t
$$

Derivating with respect to x and taking into account the uniform convergence of the integral:

$$
f_{-}^{\prime}(x)=\int_{0}^{+\infty} \frac{t e^{x t}}{e^{e^{t}}+1} d t>0, \quad \forall x \in(0,1)
$$

so $F_{+}(x, 0)$ is monotonically increasing in $(0,1)$.
For $y_{0} \neq 0$

$$
f_{+}(x)=\left|h_{1}(x)+i h_{2}(x)\right|
$$

where

$$
\begin{align*}
& h_{1}(x)=\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} \cos \left(y_{0} t\right) d t \tag{41}\\
& h_{2}(x)=\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} \sin \left(y_{0} t\right) d t
\end{align*}
$$

So

$$
f_{+}(x)=+\sqrt{h_{1}(x)^{2}+h_{2}(x)^{2}}
$$

It suffices to show that $h_{1}(x)$ and $h_{2}(x)$ are monotonically increasing in $(0,1)$. Precisely, for an assigned $t>0$, however we take $x^{\prime}, x^{\prime \prime} \in(0,1)$ with $x^{\prime \prime}>x^{\prime}$, we have:

$$
e^{x^{\prime \prime} t}>e^{x^{\prime} t} \Longrightarrow \frac{e^{x^{\prime \prime} t}}{e^{e^{t}}+1}>\frac{e^{x^{\prime \prime} t}}{e^{e^{t}}+1} \Longrightarrow \int_{0}^{+\infty} \frac{e^{x^{\prime \prime} t}}{e^{e^{t}}+1} \cos \left(y_{0} t\right) d t>\int_{0}^{+\infty} \frac{e^{x^{\prime} t}}{e^{e^{t}}+1} \cos \left(y_{0} t\right) d t
$$

so $h_{1}(x)$ is monotonically increasing. This conclusion is corroborated by the graph of fig. 12.

Figure 12: Trend of the integrand function of $h_{1}(x)$ respectively for $x=2 / 5$ e $x=2 / 3$, and for $y_{0}=14$. The value assumed by $h_{1}(x)$ for these values of x, is the area of therectangleoid related to the sinusoidal oscillations. As x increases, these oscillations grow in amplitude so that the area increases.

We proceed in a similar way for $h_{2}(x)$.

Proposition 14 The functions $F_{ \pm}(x, y)$ have no zeros.
Proof. Proceeding by absurdity

$$
\begin{equation*}
\exists(\xi, \eta) \in A \mid F_{-}(\xi, \eta)=0 \tag{42}
\end{equation*}
$$

Since $F_{-}(x, \eta)$ is monotonically decreasing for $x \in(0,1)$ (proposition 12), the (42) implies

$$
\begin{aligned}
& F_{-}(x, \eta)>0 \text { for } 0<x<\xi \\
& F_{-}(x, \eta)<0 \text { for } \xi<x<1
\end{aligned}
$$

The second is absurd since F_{-}is nonnegative. We proceed in a similar way for F_{+}. The absurd proves the assertion.

From the proposition just proved it follows that the only zeros of $F_{ \pm}(x, y)$ are at infinity in the y coordinate (proposition 10).

4.3 Study of surfaces $S_{ \pm}$

As established in the section 4.1, for the search for the zeros of $\hat{f}(x, y)$ we must impose

$$
\begin{equation*}
F_{-}(x, y)=F_{+}(x, y) \Longleftrightarrow\left|\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right|=\left|\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right| \tag{43}
\end{equation*}
$$

From the impossibility of solving the equation (43) follows the need to force its solutions by examining the intersection of the two open surfaces S_{-}and S_{+}, of cartesian representation:

$$
\begin{equation*}
S_{ \pm}: z=F_{ \pm}(x, y), \quad(x, y) \in A \tag{44}
\end{equation*}
$$

having assigned an orthogonal cartesian reference $\mathcal{R}(O x y z)$. An obvious parametrization of $S_{ \pm}$is

$$
x=u, \quad y=v, \quad z=F_{ \pm}(u, v), \quad(u, v) \in A
$$

whose Jacobian matrix is:

$$
J_{ \pm}(u, v)=\left(\begin{array}{ccc}
1 & 0 & \frac{\partial F_{ \pm}}{\partial u} \tag{45}\\
0 & 1 & \frac{\partial F_{ \pm}}{\partial v}
\end{array}\right) \Longrightarrow \operatorname{rank}\left(J_{ \pm}(u, v)\right)=2, \quad \forall(u, v) \in A
$$

From the proposition 11 the functions $F_{ \pm}(u, v)$ are analytic, so taking into account (45) we have that the surfaces $S_{ \pm}$they are regular analytics ${ }^{2}$.

From the proposition 8 follows the symmetry of $S_{ \pm}$with respect to the y axis. Furthermore, $S_{ \pm}$are plotted in the half-space $z>0$. Inequality in the strict sense is a consequence of the proposition 14.

From the proposition 10 it follows that for $y \rightarrow \pm \infty$ the surfaces $S_{ \pm} \ll$ recline» on the coordinate plane $x y$.

An obvious implicit representation of $S_{ \pm}$is

$$
\begin{equation*}
G_{ \pm}(x, y, z)=0 \tag{46}
\end{equation*}
$$

being $G_{ \pm}(x, y, z)=F_{ \pm}(x, y)-z$ defined in $B=A \times[0,+\infty)$. From the regularity of $S_{ \pm}[8]$

$$
\boldsymbol{\nabla} G_{ \pm}(x, y, z) \neq \mathbf{0}, \quad \forall(x, y, z) \in B
$$

Thus the normal unit vector fields for both surfaces are uniquely determined.

$$
\mathbf{n}_{1}^{(\pm)}(x, y, z)=\frac{\boldsymbol{\nabla} G_{ \pm}(x, y, z)}{\left|\nabla G_{ \pm}(x, y, z)\right|}, \quad \mathbf{n}_{2}^{(\pm)}(x, y, z)=-\frac{\boldsymbol{\nabla} G_{ \pm}(x, y, z)}{\left|\nabla G_{ \pm}(x, y, z)\right|}, \quad \forall(x, y, z) \in B
$$

hence the adjustability of $S_{ \pm}$.
Given this, we study the sections of these surfaces or the intersections with planes parallel to the coordinate planes. We start with the intersection of S_{-}with a plane π_{0} parallel to the coordinate plane $x z$, so its equation is $y=y_{0}$ with y_{0} assigned arbitrarily. Let γ_{-}be the orthogonal projection of this intersection on the $x z$ plane. By varying y_{0} we obtain the family of plane curves with one parameter:

$$
\begin{equation*}
\mathcal{F}_{-}=\left\{\gamma_{-}: z=F_{-}(x, y)\right\} \tag{47}
\end{equation*}
$$

[^1]where the single curves have in common the asymptote $x=0$, since
\[

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} F_{-}(x, y)=+\infty, \quad \forall y \in \mathbb{R} \tag{48}
\end{equation*}
$$

\]

From the first of (32):

$$
F_{-}(x, y) \leq \int_{-\infty}^{0}\left|\frac{e^{x t}}{e^{e^{t}}+1} e^{i y t}\right| d t=\int_{-\infty}^{0}\left|\frac{e^{x t}}{e^{e^{t}}+1}\right| \underbrace{\left|e^{i y t}\right|}_{=1} d t=\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t=F_{-}(x, 0)
$$

Furthermore

$$
\sup _{\mathbb{R}}\left(\frac{1}{e^{e^{t}}+1}\right)=\frac{1}{2} \Longrightarrow \int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t<\frac{1}{2} \int_{-\infty}^{0} e^{x t} d t=\frac{1}{2 x}
$$

So

$$
\begin{equation*}
0<F_{-}(x, y) \leq F_{-}(x, 0)<\frac{1}{2 x}, \quad \forall x \in(0,1) \tag{49}
\end{equation*}
$$

From (49) it follows that the curves γ_{-}are contained in the internally connected domain which is identified with the rectangleoid related to $F_{-}(x, 0)$ of basis $(0,1)$:

$$
\begin{equation*}
\mathcal{D}_{-}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,0 \leq y \leq F_{-}(x, 0)\right\} \tag{50}
\end{equation*}
$$

The curve $z=F_{-}(x, 0)$ is manifestly the intersection of S_{-}with the coordinate plane $x z$. Note that $F_{-}(x, 0)$ can be evaluated exactly for $x=1$. In fact, by means of an elementary substitution we arrive at:

$$
\begin{equation*}
F_{-}(1,0)=\int_{-\infty}^{0} \frac{e^{t} d t}{e^{e^{t}}+1}=1+\ln 2-\ln (1+e) \simeq 0.38 \tag{51}
\end{equation*}
$$

For each $x \in(0,1)$ the function can only be determined numerically, obtaining the trend plotted in fig. 13.

Figure 13: Trend of $F_{-}(x, 0)$. The curvers γ_{-}curves are plotted in the domain \mathcal{D}_{-}.
We denote by γ_{+}the orthogonal projections of the intersections of S_{+}with π_{0}. It follows that whatever the value of the parameter y, we have:

$$
\gamma_{+}: z=F_{+}(x, y)
$$

and therefore constituting a family \mathcal{F}_{+}of plane curves with one parameter. It turns out:

$$
\begin{equation*}
F_{+}(x, y)=\left|\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right| \leq F_{+}(x, 0) \tag{52}
\end{equation*}
$$

From (52) it follows that the curves γ_{+}are contained in the internally connected domain which is identified with the rectangleoid related to $F_{+}(x, 0)$ of basis $(0,1)$:

$$
\begin{equation*}
\mathcal{D}_{+}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1,0 \leq y \leq F_{+}(x, 0)\right\} \tag{53}
\end{equation*}
$$

where the curve $z=F_{+}(x, 0)$ is the intersection of S_{+}with the $x z$ plane. $F_{+}(x, 0)$ can also be evaluated exactly for $x=1$:

$$
\begin{equation*}
F_{+}(1,0)=\int_{0}^{+\infty} \frac{e^{t} d t}{e^{e^{t}}+1}=-1+\ln (1+e) \simeq 0.31 \tag{54}
\end{equation*}
$$

For each $x \in(0,1)$ the function can be determined only numerically, obtaining the trend plotted in fig. 14. In fig. 15 we report the trend of both curves.

Figure 14: Trend of $F_{+}(x, 0)$. The curvers γ_{+}curves are plotted in the domain $\mathcal{D}_{-} . \mathcal{D}_{+}$.
Since $S_{ \pm}$are symmetrical with respect to the $x z$ plane, y and $-y$ identify the same curve:

$$
\gamma_{ \pm}: z=F_{ \pm}(x, y) \equiv F_{ \pm}(x,-y)
$$

Furthermore, taking into account the propositions 12-13, we have:

$$
0<F_{+}(x, y) \leq F_{+}(x, 0)<F_{+}(1,0)<F_{-}(1,0)<F_{-}(x, 0), \quad 0<x<1
$$

from which

$$
F_{+}(x, 0)<F_{-}(x, 0), \quad \forall x \in(0,1)
$$

It follows the non-existence of trivial zeros in the critical strip. This confirms a known result [1][2].

We arrive at the same conclusion by looking for the solutions of the equation in x

$$
F_{-}(x, 0)=F_{+}(x, 0) \Longleftrightarrow \int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t=\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t
$$

Figure 15: Trend of $F_{ \pm}(x, 0)$. The curve below has the equation $z=F_{+}(x, 0)$ and the rectangoloid related to this function is \mathcal{D}_{+}(in fig.it is not indicated for graphical reasons).

Turns out

$$
\nexists x \in(0,1) \left\lvert\, \int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} d t=\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} d t\right.
$$

since mis $\left(\mathcal{R}_{-}\right)>$mis $\left(\mathcal{R}_{+}\right)$where

$$
\begin{align*}
& \mathcal{R}_{-}=\left\{(t, \eta) \in \mathbb{R} \mid-\infty<t \leq 0,0 \leq \eta \leq \frac{e^{x t}}{e^{e^{t}}+1}\right\} \tag{55}\\
& \mathcal{R}_{+}=\left\{(t, \eta) \in \mathbb{R} \mid 0 \leq t<+\infty, 0 \leq \eta \leq \frac{e^{x t}}{e^{e^{t}}+1}\right\}
\end{align*}
$$

as we see in fig. 16 .

Figure 16: The regions (55) for an assigned $x \in(0,1)$.
We conclude the study of the intersections of $S_{ \pm}$with planes parallel to the coordinate plane $x z$, observing that the monotonicity of the corresponding functions is exactly what we expect, since the assumed values are correlated to the absolute maximum of the module $|\hat{f}(x, y)|$ of the Fourier transform as a function of x . Recalling that the «dominant» integral is the one relating to the interval $(-\infty, 0)$ it follows that this amplitude diverges as $x \rightarrow 0^{+}$ to then become monotonically decreasing as $0<x<1$.

As regards the intersections of $S_{ \pm}$with planes parallel to the $y z$ coordinate plane, we limit ourselves to observing that qualitatively we have the typical oscillating behavior of a Fourier transform.

Finally, the study of the intersections of $S_{ \pm}$with planes parallel to the $x y$ plane (contour lines) is impractical due to the implicit representation of these geometric loci:

$$
\left|\int_{-\infty}^{0} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right|=C_{-}, \quad\left|\int_{0}^{+\infty} \frac{e^{x t}}{e^{e^{t}}+1} e^{i y t} d t\right|=C_{+}
$$

dove $C_{ \pm}>0$.

5 Proof of RH

Lemma 15 Given arbitrarily $\bar{y} \in \mathbb{R}$, the set of points of intersection of the curves

$$
\begin{aligned}
& \bar{\gamma}_{-}: z=F_{-}(x, \bar{y}) \\
& \bar{\gamma}_{+}: z=F_{+}(x, \bar{y})
\end{aligned}
$$

either it is the empty set or it reduces to a single point.
Proof. It follows immediately from the monotonicity property proved in the propositions 12-13. Graphically in fig. 17.

Figure 17: Proof of lemma 15:if the intersection exists, it is unique.
It is known that $\zeta(s)$ has infinitely many non-trivial zeros in A. It follows that $\hat{f}(s)$ has infinitely many non-trivial zeros in A.

Theorem 16 The non-trivial zeros of $\hat{f}(s)$ have real part $1 / 2$.
Proof. Absurdly: $\left(x_{0}, y_{0}\right)$ is a non-trivial zero with $x_{0} \neq 1 / 2$. This implies

$$
F_{-}\left(x_{0}, y_{0}\right)=F_{+}\left(x_{0}, y_{0}\right)
$$

The curves

$$
\begin{align*}
& \gamma_{-}^{(0)}: z=F_{-}\left(x, y_{0}\right) \tag{56}\\
& \gamma_{+}^{(0)}: z=F_{+}\left(x, y_{0}\right) .
\end{align*}
$$

intersect 3 at $\left(x_{0}, z_{0}\right)$, where $z_{0}=F_{-}\left(x_{0}, y_{0}\right)=F_{+}\left(x_{0}, y_{0}\right)>0$. By the previous lemma the point $\left(x_{0}, z_{0}\right)$ is unique. But this contradicts the symmetry property of the distribution of zeros according to which $\left(1-x_{0}, y_{0}\right)$ is still a zero and therefore $\left(1-x_{0}, z_{0}\right)$ is a second point of intersection of the curves (56), hence the assertion.

Graphically in figg. 18-19-20.

[^2]

Figure 18: Proof of the theorem 18. The intersection between the curves (56) occurs at the single point $\left(x_{0}, z_{0}\right)$. But for the symmetry of the zeros, there must be a second point of intersection $\left(1-x_{0}, z_{0}\right)$ between the same curves. If such an intersection exists, it necessarily occurs with another curve identified by $y_{0}^{\prime} \neq y_{0}$.

Figure 19: Proof of the theorem 18. As established in fig. 18, the only intersection to which a zero of $\hat{f}(x, y)$ corresponds can only occur on the straight line $r^{\prime}: x=1 / 2$. Precisely, on the segment $\left\{(x, z) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{2}\right., 0<z<F_{+}\left(\frac{1}{2}, 0\right)\right\}$.

Figure 20: Proof of the theorem 18. Three-dimensional representation.

6 Conclusion

The conclusion of our work is graphically interpreted in fig. 21.

Figure 21: Graphic interpretation.
We now premise the following theorem for the proof of which we refer to [9].
Theorem 17 The function $g(s)$ is holomorphic and not identically zero in a connected field T.

The derivative of the set of zeros of $g(s)$ belonging to T, is contained in ∂T.
Roughly speaking, the set of zeros of a holomorphic function in a connected field T is at most countably infinite, and any accumulation points belong to the boundary of T.

By the theorem 16 the intersections of the cross sections of $S_{ \pm}$which give rise to non trivial zeros are realized only for $x=1 / 2$, corresponding to the critical line. As previously

Figure 22: Value $y_{<}$of parameter y.
established, there is necessarily a minimum value $y_{<}$of the parameter y corresponding to the first intersection (fig. 22).

It follows that the orthogonal projection \mathcal{C}_{0}^{\prime} on the $x y$ plane of the place \mathcal{C}_{0} of intersection of S_{-}with S_{+}, is :

$$
\begin{equation*}
\mathcal{C}_{0}^{\prime}=\left\{\left.(x, z) \in A\left|x=\frac{1}{2}, \quad\right| y \right\rvert\,>y>\right\} \tag{57}
\end{equation*}
$$

where the presence of the absolute value derives from the symmetry of the $S_{ \pm}$with respect to the $x z$ plane. From (57) we see that \mathcal{C}_{0}^{\prime} is the critical line without the open segment of extremes $\left(\frac{1}{2}, \pm y>\right)$ (fig. 23). In fig. 24 we report the qualitative trend of the projection $\mathcal{C}_{0}^{\prime \prime}$ of \mathcal{C}_{0} on the coordinate plane $z y$.

Figure 23: Projection of the point of intersection of S_{-}with S_{+}on the $x y$ coordinate plane.
By the Hardy-Littlewood theorem [4] on the critical line there are infinitely many zeros of $\zeta(s)$ and therefore of $\hat{f}(s)$. Denoting this set with H we have $H \subset \mathcal{C}_{0}^{\prime}$ with H countably infinite by virtue of the theorem 17.

If $s_{0}=\frac{1}{2}+i y_{0}$ is an element of H i.e. $\hat{f}\left(\frac{1}{2}, y_{0}\right)=0$, for the (30)

$$
\left\{\begin{array}{l}
F_{-}\left(\frac{1}{2}, y_{0}\right)=F_{+}\left(\frac{1}{2}, y_{0}\right) \tag{58}\\
\varphi_{-}\left(\frac{1}{2}, y_{0}\right)=\pi+\varphi_{+}\left(\frac{1}{2}, y_{0}\right)
\end{array}\right.
$$

Figure 24: Projection of the point of intersection of S_{-}with S_{+}on the $z y$ coordinate plane.

In other words, the condition $F_{-}(x, y)=F_{+}(x, y)$ generates the set of points \mathcal{C}_{0} and therefore the set \mathcal{C}_{0}^{\prime}. The condition on the phase $\varphi_{-}\left(\frac{1}{2}, y_{0}\right)=\pi+\varphi_{+}\left(\frac{1}{2}, y_{0}\right)$ whatever $\left(\frac{1}{2}, y_{0}\right) \in H$, generates the countability of H. We note incidentally that by virtue of the proposition 14 the case $F_{ \pm}\left(\frac{1}{2}, y_{0}\right)=0$ never arises, which would reduce the equation $F_{-}(x, y)=F_{+}(x, y)$ to the identity $0=0$ and to the condition on the phase to an indeterminacy.

Recalling that $F_{ \pm}(x, y)=\left|I_{ \pm}(x, y)\right|$ we have the graphical representation of fig. 25 in the complex plane containing the co-domain of the functions

$$
I_{ \pm}(x, y): A \rightarrow \mathbb{C}
$$

Let $y_{<}<y_{0}^{\prime} \neq y_{0}$ such that $s_{0}=\left(\frac{1}{2}+i y_{0}^{\prime}\right) \notin H$ i.e. $\hat{f}\left(\frac{1}{2}, y_{0}^{\prime}\right) \neq 0$. We still have $F_{-}\left(\frac{1}{2}, y_{0}^{\prime}\right)=$ $F_{+}\left(\frac{1}{2}, y_{0}^{\prime}\right)$ but

$$
\varphi_{-}\left(\frac{1}{2}, y_{0}^{\prime}\right) \neq \pi+\varphi_{+}\left(\frac{1}{2}, y_{0}^{\prime}\right)
$$

as illustrated in fig. 26.

Figure 25: The complex numbers $I_{-}\left(\frac{1}{2}, y_{0}\right)=\int_{-\infty}^{0} \frac{e^{t / / 2}}{e^{e t}+1} e^{i y_{0} t} d t, I_{+}\left(\frac{1}{2}, y_{0}\right)=\int_{0}^{+\infty} \frac{e^{t / / 2}}{e^{t}+1} e^{i y_{0} t} d t$ have phases that differ by π.

Figure 26: I numeri complessi $I_{-}\left(\frac{1}{2}, y_{0}^{\prime}\right)=\int_{-\infty}^{0} \frac{e^{t / / 2}}{e^{t}+1} e^{i y_{0}^{\prime} t} d t, I_{+}\left(\frac{1}{2}, y_{0}^{\prime}\right)=\int_{0}^{+\infty} \frac{e^{t / 2}}{e^{e t}+1} e^{i y_{0}^{\prime} t} d t$ non sono in opposizione di fase.

We define

$$
\begin{align*}
\Delta \varphi(y) & =\varphi_{-}\left(\frac{1}{2}, y\right)-\varphi_{+}\left(\frac{1}{2}, y\right), \quad \forall y \in Y \tag{59}\\
0 & \leq \Delta \varphi(y)<2 \pi
\end{align*}
$$

being

$$
Y=\left(-\infty, y_{<}\right] \cup\left[y_{<},+\infty\right)
$$

i.e. the projection of \mathcal{C}_{0}^{\prime} onto the $x y$ coordinate plane. It follows

$$
\begin{equation*}
H=\left\{\left.\left(\frac{1}{2}, y\right) \in \mathcal{C}_{0}^{\prime} \right\rvert\, \Delta \varphi(y)=\pi\right\} \tag{60}
\end{equation*}
$$

As stated above, the equation $\Delta \varphi(y)=\pi$ admits infinitely many roots $y_{k}($ con $k \in \mathbb{Z})$. Follows:

$$
z_{k}=F_{-}\left(\frac{1}{2}, y_{k}\right)=F_{+}\left(\frac{1}{2}, y_{k}\right), \quad k \in \mathbb{Z}
$$

let's say

$$
Z=\left\{z_{k}=F_{-}\left(\frac{1}{2}, y_{k}\right)\right\}_{k \in \mathbb{Z}} \subset\left[0, z_{\max }\right], \quad z_{\max }=F_{+}\left(\frac{1}{2}, 0\right)
$$

which is the image of the sequence of elements of \mathbb{R} defined by the restriction of $F_{-}\left(\frac{1}{2}, y\right)$ to the set whose elements are the imaginary part y_{k} of the zeros. For the above, Z is countably infinite and being limited, by the Bolzano-Weierstrass theorem, admits at least one point of accumulation. The latter is the image, through $F_{-}\left(\frac{1}{2}, y_{k}\right)$ of the points at infinity along the critical line.

References

[1] Titchmarsh E.C., Heath-Brown D.R., The theory of the Riemann zeta-function Clarendon Press - Oxford.
[2] Edwards H.M., Riemann's Zeta Function Dover Publication, INC. Mineola, New York
[3] Smirnov V.I. Corso di Matematica superiore, vol. II. Editori Riuniti.
[4] Hardy G.H., Littlewood J.E., The zeros of Riemann's Zeta Function on the Critical Line, https://piyanit.nl
[5] Landau L.D., Lifsits E. M. Fisica Teorica 5. Fisica statistica (parte prima). Editori Riuniti.
[6] Smirnov V.I. Corso di Matematica superiore, vol. $I V^{*}$. Editori Riuniti.
[7] Titchmarsh E.C., Introduction to the Theory of Fourier Integrals Clarendon Press - Oxford.
[8] Fasano A. Marmi S. Analytical Mechanics. Oxford University Press.
[9] Fichera G. De Vito L., Funzioni analitiche di una variabile complessa. Editrice Veschi.

[^0]: ${ }^{1}$ The parameter x therefore controls the speed of convergence of the integral in the interval $(-\infty, 0)$.

[^1]: ${ }^{2} \mathrm{~A}$ surface is called regular analytic if however we take its regular parametric representation $x=$ $x(u, v), y=y(u, v), z=z(u, v),(u, v) \in \mathcal{B} \subseteq \mathbb{R}$, the functions $x(u, v), y(u, v), z(u, v)$ are analytic in \mathcal{B}.

[^2]: ${ }^{3}$ By the proposition 14 the functions $F_{ \pm}$are finitely zero-free, so $z_{0}>0$.

