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Abstract

The problem of cosmological acceleration (PCA) is usually
considered in the framework of General Relativity and here
the main uncertainty is how the background space is treated.
In the approaches where it is flat, PCA is usually treated as a
manifestation of dark energy and (as acknowledged in the liter-
ature) currently its nature is a mystery. On the other hand, if
the background space is curved then a problem arises why the
observed value of the cosmological constant is as is. Following
the results of our publications, we show that the solution of
PCA does not contain uncertainties because cosmological ac-
celeration is an inevitable kinematical consequence of quantum
theory in semiclassical approximation. In this approach, back-
ground space and its geometry (metric and connection) are not
used and the cosmological constant problem does not arise.
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In the problem of cosmological acceleration (PCA), only nonrel-
ativistic macroscopic bodies are involved, and one might think that
here there is no need to involve quantum theory. However, ideally, the
results for every classical (i.e., non-quantum) problem should be ob-
tained from quantum theory in semiclassical approximation. We will
see that, considering PCA from the point of view of quantum theory
sheds a new light on understanding this problem.

In PCA, it is assumed that the bodies are located at large (cos-
mological) distances from each other. Therefore, interactions between
them can be neglected and we can consider quantum theory of N free
bodies. It is also reasonable to assume that the sizes of the bodies
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are much less than distances between them. Therefore, the internal
degrees of freedom of those bodies can be neglected and, from the
formal point of view, the description of our system is the same as the
description of N spinless elementary particles.

In the literature, symmetry in Quantum Field Theory (QFT) is
usually explained as follows. Since Poincare group is the group of
motions of Minkowski space, the system under consideration should
be described by unitary representations of this group. This approach
is in the spirit of the Erlangen Program proposed by Felix Klein.

However, Minkowski space is only a classical concept. In particle
theory, transformations from Poincare group are not used because, ac-
cording to the Heisenberg S-matrix program, it is possible to describe
only transitions of states from the infinite past when t→ −∞ to the
distant future when t → +∞. In this theory, systems are described
by observable physical quantities — momenta and angular momenta.
So, in fact, symmetry at the quantum level is defined not by a back-
ground space but by a representation of a Lie algebra A by self-adjoint
operators (see [1, 2] for more details).

Then each elementary particle is described by an irreducible rep-
resentation (IR) of A and a system of N noninteracting particles is
described by the tensor product of the corresponding IRs. This implies
that, for the system as a whole, each momentum operator is a sum
of the corresponding single-particle momenta, each angular momen-
tum operator is a sum of the corresponding single-particle angular
momenta, and this is the most complete possible description of this
system. In particular, nonrelativistic symmetry implies that A is the
Galilei algebra, relativistic symmetry implies that A is the Poincare
algebra, the de Sitter (dS) symmetry implies that A is the dS algebra
so(1,4) and the de anti-Sitter (AdS) symmetry implies that A is the
AdS algebra so(2,3).

In his famous paper ”Missed Opportunities” [3] Dyson notes that:

• a) Relativistic quantum theories are more general (fundamental)
than nonrelativistic quantum theories even from pure mathemat-
ical considerations because Poincare group is more symmetric
than Galilei one: the latter can be obtained from the former by
contraction c→∞.

• b) dS and AdS quantum theories are more general (fundamental)
than relativistic quantum theories even from pure mathematical
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considerations because dS and AdS groups are more symmetric
than Poincare one: the latter can be obtained from the former by
contraction R→∞ where R is a parameter with the dimension
length, and the meaning of this parameter will be explained
below.

• c) At the same time, since dS and AdS groups are semisim-
ple, they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.

As noted above, symmetry at the quantum level should be de-
fined by a Lie algebra, and in [2], the statements a)-c) have been
reformulated in terms of the corresponding Lie algebras. It has also
been shown that the fact that quantum theory is more general (fun-
damental) than classical theory follows even from pure mathematical
considerations because formally the classical symmetry algebra can be
obtained from the symmetry algebra in quantum theory by contrac-
tion h̄→ 0. For these reasons, the most general consideration of PCA
should be carried out in terms of dS or AdS symmetries.

The definition of quantum dS and AdS symmetries is as follows.
If Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) are the angular momentum
operators for the system under consideration, they should satisfy the
commutation relations:

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (1)

where ηab = 0 if a 6= b, η00 = −η11 = −η22 = −η33 = 1 and η44 = ∓1
for the dS and AdS symmetries, respectively.

Although the dS and AdS groups are the groups of motions of dS
and AdS spaces, respectively, the description in terms of relations (1)
does not involve those spaces at all, and those relations can be treated
as a definition of dS and AdS symmetries at the quantum level (see
the discussion in [1, 2]).

In QFT, Minkowski, dS and AdS spaces are auxiliary mathematical
concept for describing interacting fields. However, since we consider
only noninteracting bodies, we don’t need to use these spaces.

The procedure of contraction from dS or AdS symmetry to Poincare
one is defined as follows. If we define the momentum operators P µ as
P µ = M4µ/R (µ = 0, 1, 2, 3) then in the formal limit when R → ∞,
M4µ →∞ but the quantities P µ are finite, Eqs. (1) become the com-
mutation relations for the Poincare algebra (see e.g., [1, 2]). Here R

3



is a parameter which has nothing to do with the relation between the
Minkowski and dS/AdS spaces.

As seen from Eqs. (1), quantum dS and AdS theories do not
involve the dimensionful parameters (c, h̄, R) at all. In other words,
one can say that Eqs. (1) are written in units (c = h̄ = R = 1). The
parameters (kg,m, s) are meaningful only at the macroscopic level.

In particle theories, the quantities c and h̄ typically are not used
and it is said that the units (c = h̄ = 1) are used. Physicists usually
understand that physics cannot (and should not) derive that c ≈ 3 ·
108m/s and h̄ ≈ 1.054 · 10−34kg · m2/s and those values are as are
simply because people want to describe velocities in m/s and angular
momenta in kg · m2/s. At the same time, physicists usually believe
that physics should derive the value of the cosmological constant Λ
and that the solution to the dark energy problem depends on this
value.

The cosmological constant has a physical meaning only at the clas-
sical level. At this level, Λ is the curvature of the background space
and equals 3/R2 where R is the radius of this space. As noted be-
low, in semiclassical approximation, R is the same as the parameter
R in quantum theory where this parameter is only the coefficient of
proportionality between M4µ and P µ. As follows from the above dis-
cussion, at the quantum level, the quantity R is fundamental to the
same extents as c and h̄. Here the question why R is as is does not
arise simply because the answer is: because people want to describe
distances in meters. There is no guaranty that the values of (c, h̄, R)
in (kg,m, s) will be the same during the whole history of the universe.

Standard particle theories involve IRs of the Poincare algebra by
self-adjoint operators. They are described even in textbooks and do
not involve Minkowski space. Therefore, when Poincare symmetry is
replaced by more general dS or AdS one, dS and AdS particle theories
should be based on IRs of the dS or AdS algebras by self-adjoint
operators, respectively. However, physicists usually are not familiar
with such IRs because they believe that dS and AdS quantum theories
necessarily involve quantum fields on dS or AdS spaces, respectively.

The important observation is that, at this stage, we have no spatial
coordinates yet. For describing the motion of particles in terms of
spatial coordinates, we must define the position operator. A question:
is there a law defining this operator?

The postulate that the coordinate and momentum representations
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are related by the Fourier transform was taken at the dawn of quantum
theory by analogy with classical electrodynamics, where the coordi-
nate and wave vector representations are related by this transform.
But the postulate has not been derived from anywhere, and there
is no experimental confirmation of the postulate beyond the nonrel-
ativistic semiclassical approximation. Heisenberg, Dirac, and others
argued in favor of this postulate but, for example, in the problem of
describing photons from distant stars, the connection between the co-
ordinate and momentum representations should be not through the
Fourier transform, but as shown in [2]. However, since, PAC involves
only nonrelativistic bodies then, as follows from the above remarks,
the position operator in momentum representation can be defined as
usual, i.e., as r = ih̄∂/∂p where p is the momentum.

The mathematical literature on unitary IRs of the dS group is
wide but there are only a few papers where such IRs are described for
physicists. For example, the excellent Mensky’s book [4] exists only
in Russian. At the same time, to the best of our knowledge, IRs of
the dS algebras by self-adjoint operators have been described only in
[2, 5, 6].

The explicit derivation in Chap. 3 of [2] (see also [7]) gives that,
for the dS case in semiclassical approximation, for each pair of bodies
in the N -body system, the relative acceleration is given by

a = rc2/R2 (2)

where a and r are the relative acceleration and relative radius vector
of the bodies, respectively. An analogous calculation using the results
of Chap. 8 of [2] on IRs of the AdS algebra gives that in the AdS
case, a = −rc2/R2, i.e., we have attraction instead of repulsion. The
experimental facts that the bodies repel each other show that in PCA,
dS symmetry is more relevant than AdS one. The fact that the relative
acceleration of noninteracting bodies is not zero does not contradict
the law of inertia, because this law is valid only in the case of Galilei
and Poincare symmetries, and in the formal limit R→∞, a becomes
zero as it should be.

Relative accelerations given by Eq. (2) are the same as those de-
rived from General Relativity (GR) if the curvature of dS space equals
Λ = 3/R2, where R is the radius of this space. However, the cru-
cial difference between our results and the results of GR is as follows.
While in GR, R is the radius of the dS space and can be arbitrary, in
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quantum theory, as noted above, R is the coefficient of proportional-
ity between M4µ and P µ, this coefficient is fundamental to the same
extent as c and h̄, and a question why R is as is does not arise.

In GR, the result (2) does not depend on how Λ is interpreted, as
the curvature of empty space or as the manifestation of dark energy.
However, in quantum theory, there is no freedom of interpretation.
Here R is the parameter of contraction from the dS Lie algebra to the
Poincare one, it has nothing to do with the radius of the background
space and with dark energy and it must be finite because dS symmetry
is more general than Poincare one.

Attempts to derive the value of Λ have been made in the problem
of cosmological constant which starts from Poincare invariant QFT
of gravity on Minkowski space. This theory contains only one phe-
nomenological parameter — the gravitational constant G, and Λ is
defined by the vacuum expectation value of the energy-momentum
tensor. The theory contains strong divergencies which cannot be elim-
inated because the theory is not renormalizable. The results can be
made finite only with a choice of the cutoff parameter. Since G is the
only parameter in the theory, the usual choice of the cutoff parame-
ter in momentum space is h̄/lP where lP is the Plank length. Then,
if h̄ = c = 1, G has the dimension 1/length2 and Λ is of the order
of 1/G. However, this value is more than 120 orders of magnitude
greater than the experimental one.

As explained above, in quantum theory, Poincare symmetry is a
special degenerate case of dS symmetry in the formal limit R → ∞,
R is a parameter of contraction from dS algebra to Poincare one, this
parameter has nothing to do with the relation between Poincare and
dS spaces and the problem why R is as is does not arise by analogy
with the problem why c and h̄ are as are. Therefore, the cosmological
constant problem and the problem why the cosmological constant is
as is do not arise.

Therefore, the phenomenon of cosmological acceleration has noth-
ing to do with dark energy or other artificial reasons. This phe-
nomenon is an inevitable kinematical consequence of quantum theory
in semiclassical approximation and the problem of cosmological con-
stant does not arise.
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