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1 Introduction

Quantum gravity has been studied and investigated for a long time by lots of researchers.
However we could not obtain even the twinkles of quantum gravity. Wormholes may give us
some hints toward quantum gravity which may be different from black holes. Wormholes
are the solutions to the Einstein field equations that have topological structures with a
throat connecting two asymptotically regions of spacetime , called mouth.[1], [2], [3]. They
can be interpreted, classically, as instantons describing a tunneling between two distant
regions. The traversable wormhole solution was at first investigated by Morris and Thorne
to verify the realistic possibilities of travelling through it [4]. A wormhole needs a negative
energy in order to form and keep wormhole structure[4], though the standard energy con-
ditions are violated. Without such a exotic matter which is defined to be violated energy
conditions , a wormhole cannot keep the structure to collapses. Such a situation may sug-
gest that wormholes belong to the realm of a possible quantum gravity[14] . Casimir energy
is one of the candidates as such a negative energy. A Casimir wormhole in D dimensions
[6] can be constructed if D > 3. But a three dimensional traversable Casimir wormhole
cannot be constructed since it has an event horizon [5][6]. Namely, three dimensional case
is very different from D(> 3) dimensional case. A traversable wormhole has two ways ,
which situation is very different from a black hole which has one way through horizon. In
addition the cosmological constant is also the candidate of the exotic matters.The negative
energy is realized if Λ < 0.
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In this report we will study wormholes in (2+1) dimensions , considering Gravity Rainbow.
Traversable wormholes in (2+1) dimensions were studied in the past [5][9][10].
Note that the (2+1)case is very different from the case of (3+1) in the Morris Thorne
wormhole
It is generally believed that the geometry of spacetime should be fundamentally described
by quantum gravity above and around the Planck energy[11]. Several candidates for that
description are investigated with difficulties; string theory, non-commutative geometry,
loop quantum gravity , Lorentzian dynamical triangulations , etc. A key points are to
study how to transit between the fundamental quantum description and the effective low
energy description in terms of classical general relativity. We explore the possibility that
wormhole geometries are sustained by the Casimir energy and the Cosmological constant in
three dimensional space-time in the context of Gravity’s Rainbow. Gravitational Rainbow
consists of a distortion of the space-time metric around the Planck energy. A wormhole is a
solution to the Einstein Field Equation, which is structured by two mouthes and a throat.
A traversable wormhole has no space-time singularity and no horizon . Semi-classical the-
ory of quantum gravity may play a crucial role since we have no full quantum gravity as
yet
The outline of the present paper is as follows: In Sec.2, we review the wormhole in (2+1)
dimensional gravity with no Gravity Rainbow. In Sec.3 we obtain the metrics of the worm-
holes in (2+1) dimensions in the presence of Gravity Rainbow.

2 Traversable Wormholes in (2+1) dimensions with no grav-
itational Rainbow

The general metric of a traversable circularly symmetric wormhole in three dimensions is
represented as

ds2 = −e2φ(r)dt2 +
dr2

1− b(r)/r
+ r2dθ2 (1)

= gµνdx
µdxν (2)

where φ(r) and b(r) are the red-shift and shape functions, respectively.
A wormhole solution satisfies at the throat : b(r0) = r0 and b́(r0) < 1. The latter condition

is induced from the flaring-out condition of the throat : b−b́(r)r
2b2 > 0. Asymptotic flatness

imposes b(r)/r → 0 as r → +∞. In addition, in order for the wormhole to be traversable
, one must demand that there exists no horizon ( two ways travel is approved) , so that
φ(r) must be finite everywhere. Here gµν is expressed as,
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gµν =

⎛

⎝
−e2φ(r) 0 0

0 1
1−b(r)/r 0

0 0 r2

⎞

⎠ (3)

gµν as the inverse of gµν is

gµν =

⎛

⎝
−e−2φ(r) 0 0

0 1− b(r)/r 0
0 0 r−2

⎞

⎠ (4)

Next we calculate the Christoffel symbols:

Γλ
µν =

1

2
gλα(∂µgνα + ∂νgαµ − ∂αgµν) (5)

Non-vanishing Christoffel symbols are

Γ0
01 = Γ0

10 = φ′

Γ1
00 =

(
1− b

r

)
e2φφ′

Γ1
11 =

1

2

(
1− b

r

)−1 b́r − b

r2
=

b́r − b

2r(r − b)

Γ1
22 = −r

(
1− b

r

)

Γ2
21 = Γ2

12 =
1

r

The Ricci tensor is calculated as

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓ

λ
λµ + Γλ

λαΓ
α
νµ − Γλ

ναΓ
α
λµ

We describe 0, 1, 2 as t, r, θ respectively. The components are

Rtt =

(
−1

2

b́r − b

r2
+

1

r

(
1− b

r

))
e2φφ́+

(
1− b

r

)
e2φφ́2 +

(
1− b

r

)
e2φφ′′

Rrr = −φ′′ − φ′2 + 1

2

(
φ′+ 1

r

)(
1− b

r

)−1 b′r − b

r2

Rθθ = −φ′r
(
1− b

r

)
+

b′
2
− b

2r
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The Ricci scalar is calculated as

R = Rµ
µ = gµνRµν = g00R00 + g11R11 + g22R22

R =

(
b′
r
+

b

r2
− 2

r

)
φ′ − 2

(
1− b

r

)
φ′2 − 2

(
1− b

r

)
φ′′+ b′

r2
− b

r3
(6)

The Einstein tensor: Gµν ≡ Rµν − 1
2Rgµν has no vanishing components

Gtt = Rtt −
1

2
Rgtt =

rb′ − b

2r3
e2φ

Grr =
φ′
r

Gθθ = r (r − b)

[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

Here it is better to treat the Einstein equation in an orthonormal basis of observers who
remain always at rest in the coordinate system , since the stress-energy tensor is interpreted
most eaaily. Basis transformation:

e⃗ṫ =
∂xt

∂xṫ
e⃗t = e−φe⃗t (7)

e⃗ṙ =
∂xr

∂xṙ
e⃗r = (1− b

r
)1/2e⃗r (8)

e⃗θ̇ =
∂xθ

∂xθ̇
e⃗θ =

1

r
e⃗θ (9)

Metric representation:

ds2 = gµνdx
µdxν

= e⃗µ · e⃗νdxµdxν

= e⃗µ · e⃗ν
∂xµ

∂xµ̇
dxµ̇

∂xν

∂xν̇
dxν̇

= e⃗µ
∂xµ

∂xµ̇
· e⃗ν

∂xν

∂xν̇
dxµ̇dxν̇

= e⃗µ̇ · e⃗ν̇dxµ̇dxν̇

= gµ̇ν̇dx
µ̇dxν̇
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Components;

gµ̇ν̇ = e⃗µ̇ · e⃗ν̇
gṫṫ = e⃗ṫ · e⃗ṫ = e−φe⃗t · e−φe⃗t

= e−2φe⃗t · e⃗t = e−2φgtt = e−2φ
(
−e−2φ

)
= −1

gṙṙ = e⃗ṙ · e⃗ṙ =
(
1− b

r

)1/2

e⃗r ·
(
1− b

r

)1/2

e⃗r

=

(
1− b

r

)
e⃗r · e⃗r =

(
1− b

r

)
grr =

(
1− b

r

)(
1− b

r

)−1

= 1

gθ̇θ̇ = e⃗θ̇ · e⃗θ̇ =
1

r
e⃗θ ·

1

r
e⃗θ =

1

r2
e⃗θ · e⃗θ =

1

r2
gθθ =

1

r2
r2 = 1

So we obtain the simplified metric,

gµ̇ν̇ =

⎛

⎝
gṫṫ 0 0
0 gṙṙ 0
0 0 gθ̇θ̇

⎞

⎠ =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ = ηµ̇ν̇ (10)

The Einstein tensors in this orthonormal frame;

Gµ̇ν̇ =
∂xµ

∂xµ̇
∂xν

∂xν̇
Gµν (11)

Gṫṫ =
∂xt

∂xṫ
∂xt

∂xṫ
Gtt = e−φe−φGtt = e−2φ rb′ − b

2r3
e2φ =

rb′ − b

2r3
(12)

Gṙṙ =
∂xr

∂xṙ
∂xr

∂xṙ
Grr = (1− b

r
)1/2(1− b

r
)1/2Grr = (1− b

r
)
φ′
r

(13)

Gθ̇θ̇ =
∂xθ

∂xθ̇
∂xθ

∂xθ̇
Gθθ =

1

r

1

r
r (r − b)

[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

=

(
1− b

r

)[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

(14)

The Einstein field equations in the orthonormal frame are

Gµ̇ν̇ = 8πGTµ̇ν̇ (15)

where Tµ̇ν̇ is the stress-energy tensor and the above equations imply that the stress-energy
tensor Tµ̇ν̇ must have the same algebraic structure as the Einstein tensor Gµ̇ν̇ .

Tµ̇ν̇ =

⎛

⎝
ρ(r) 0 0
0 pr(r) 0
0 0 pl(r)

⎞

⎠ (16)
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T µ̇
ν̇ = gµ̇α̇Tα̇ν̇ =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
ρ(r) 0 0
0 pr(r) 0
0 0 pl(r)

⎞

⎠ =

⎛

⎝
−ρ(r) 0 0

0 pr(r) 0
0 0 pl(r)

⎞

⎠(17)

where ρ(r) is the total density of mass energy; pr(r) is the radial pressure ; pl(r) is the
lateral pressure. If we set the radial tension τ(r), τ(r) = −pr(r). In this case the energy-
momentum tensor in the orthonormal flame is represented as

Tµ̇ν̇ =

⎛

⎝
ρ(r) 0 0
0 pr(r) 0
0 0 pl(r)

⎞

⎠ =

⎛

⎝
ρ(r) 0 0
0 −τ(r) 0
0 0 pl(r)

⎞

⎠ (18)

The Einstein field equations yield

Gṫṫ = 8πGTṫṫ = 8πGρ(r) (19)

Gṙṙ = 8πGTṙṙ = −8πGτ(r) = 8πGpr(r) (20)

Gθ̇θ̇ = 8πGTθ̇θ̇ = 8πGpl(r) (21)

more explicitly

8πGρ(r) = Gṫṫ =
rb′ − b

2r3
(22)

8πGpr(r) = Gṙṙ =

(
1− b

r

)
φ′
r

(23)

8πGpl(r) = Gθ̇θ̇ =

(
1− b

r

)[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

(24)

So the Einstein field Equations are obtained as a component representation. Next we have
to need the equation of state in order to solve the above equations. Now we assume it as

pr = ωρ (25)

it is possible to compute the proper radial distance.

l(r) = ±
∫ r

r0

dr√
1− b

r

(26)

Some conditions for forming a traversable wormhole
1.flaring-out condition,( details see appendix)

rb́(r)− b(r) < 0 (27)
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2.Throat definition

b(r0) = r0 (28)

3. φ(r) should be finite everywhere, namely there should be no horizons present
in order to permit two way travel. If horizons exist, a wormhole permits one way travel.

|φ(r)| ≪ 1 (29)

4.comfortable journey through the wormhole, more precisely , the tidal gravitational forces
experienced by a traveller must be reasonably small.

|φ́(r)| ! |our earth gravity| (30)

5.the metric should be spherically symmetric and static for simple calculations

6.The time to traverse the wormhole must be reasonably short (one year)as measured by
both the traveller and any observers who wait on the outside of the wormhole.

2.1 Casimir effect

The Casimir effect which appears between two plane parallel, closely spaced, uncharged,
metallic plates in vacuum , was predicted theoretically by H. Casimir.[8] This effect has the
intriguing feature that an attractive force appears which is generated by negative energy.
Casimir effect is one of the candidates which play a part as a negative energy source to
construct a traversable wormhole. However wormholes in (2+1) dimensions cannot be
sourced solely by both Casimir energy and tension [5] . It was shown that Casimir energy
can be a source of the traversable wormhole for all spacetime dimensions with D > 3 [6].
Why low dimensional case (three dimensionl space-time) is impossible? Explicitly we will
check the above words.
Equation (22) shows if ρ(r) is negative , the flare out condition rb́(r)− b(r) < 0 is satisfied.
Namely we have to find out the candidate of the negative ρ in order to build a wormhole
.The Casimir system is a suitable example which provides a negative energy. For arbitrary
D dimensions, the Casimir energy density is given by [7]

ρD = −(D − 2)Γ(D/2)ζR(D)

(4π)D/2

1

rD
(31)

where ζR(z) is the Riemann zeta function. Taking D = 3

ρ = ρ3 = −(3− 2)Γ(3/2)ζR(3)

(4π)3/2
1

r3
= −λ

1

r3
(32)
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where

λ =
Γ(3/2)ζR(3)

(4π)3/2

We substitute (32) into (22) we obtain the equation:

db

dr
r − b = −16πGλ (33)

∫
db

b− 16Gπλ
=

∫
dr

r
= ln r

ln |b− 16Gπλ| = ln r + C

Using b(r0) = r0,

ln |b(r0)− 16Gπλ| = ln r0 + C

C = ln |r0 − 16Gπλ

r0
|

We obtain

b(r) =
r0 − 16πGλ

r0
r + 16πGλ (34)

Next we determine φ(r), from following (20),(23),(25) and (32), we obtain the equation:

(1− b

r
)
φ́

r
= −8πG(ωλ

1

r3
) (35)

continue to calculate,

dφ

dr
= − 8πGωλ

r(r − b)
(36)

We obtain

φ =

∫
dφ = −8πGλω

∫
dr

r(r − b)
= −ω

2
ln |r − r0

r
| (37)

where we used the result of b(r) (34).
So we obtain the metric:

ds2 = −|1− r0
r
|−ωdt2 +

r0
16πGλ

dr2

(1− r0
r )

+ r2dθ2 (38)

This metric represents one way because there exists a horizon at r = r0.

9



2.2 Cosmological Constant

Wormholes with a cosmological constant were investigated [5][13]. In the orthonormal
reference frame, the Einstein field equation with a cosmological constant, is given by

Gµ̇ν̇ + Λgµ̇ν̇ = 8πGTµ̇ν̇ (39)

Gµ̇ν̇ = 8πGTµ̇ν̇ − Λgµ̇ν̇ (40)

= 8πG

(
Tµ̇ν̇ −

Λ

8πG
gµ̇ν̇

)
(41)

= 8πG
(
Tµ̇ν̇ + T (vac)

µ̇ν̇

)
(42)

where T (vac)
µ̇ν̇ = − Λ

8πGgµ̇ν̇ may be interpreted as the stress-energy tensor associated with
the vacuum energy.

T (vac)
µ̇ν̇ =

⎛

⎝
Λ

8πG 0 0
0 − Λ

8πG 0
0 0 − Λ

8πG

⎞

⎠ (43)

Thus the Einstein equations with a cosmological constant:

Gṫṫ = 8πGρ(r) + Λ (44)

Gṙṙ = −8πGτ(r)− Λ (45)

Gθ̇θ̇ = 8πGpl(r)− Λ (46)

More explicitly

rb′ − b

2r3
= 8πGρ(r) + Λ (47)

(
1− b

r

)
φ′
r

= −8πGτ(r)− Λ (48)

(
1− b

r

)[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

= 8πGpl(r)− Λ (49)

Here we consider pure gravity with no matter( no exotic matter); ρ(r) = τ(r) = pl(r) = 0,
namely only the cosmological constant is considered as the stress-energy tensor factor.

rb′ − b

2r3
= Λ (50)

(
1− b

r

)
φ′
r

= −Λ (51)

(
1− b

r

)[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

= −Λ (52)
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From the above equations we calculate to obtain;

b(r) = r(1− Λ(r20 − r2)) (53)

φ(r) =
1

2
log |r2 − r20| (54)

Here we have to notice that the flare-out conditon says rb́(r)− b(r) < 0, namely from (43)
Λ < 0 in other word as far as we consider the pure gravity, Λ < 0.

The last metric line element is

ds2 = −|r2 − r20|dt2 +
dr2

Λ(r20 − r2)
+ r2dθ2 (55)

This solution has the event horizon at r = r0, which means one way travel, not two
way travel. So this solution was rejected by the article [5]. However here we may admit
the one way solution as wormhole solution ?

2.3 Casimir energy + Cosmological constant

We consider wormholes with Casimir energy and cosmological constant . We use the
equations (25), (32),(47),(48)

rb′ − b

2r3
= 8πGρ(r) + Λ (56)

(
1− b

r

)
φ′
r

= −8πGτ(r)− Λ = 8πGpr(r)− Λ (57)

pr(r) = ωρ (58)

ρ = −λ
1

r3
(59)

For simplicity, we assume φ = constant. φ́ = 0 We calculate to obtain the metric:

ds2 = −dt2 +
dr2

16πG(1 + ω)λ( 1
r0

− 1
r )

+ r2dθ2 (60)

3 Traversable Casimir Wormholes in (2+1) dimensions with
gravitational Rainbow

In this section we will study the traversable Wormhole in the context of Gravity Rainbow[11].
The gravity Rainbow , doubly general relativity, is the extension of doubly special

relativity to the case of curved space-time. The doubly special relativity is motivated by
the following generalized energy-momentum dispersion relation;

E2f2(ϵ)− p2g2(ϵ) = m2 (61)
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where ϵ = E/Ep, Ep is the Planck energy and E is the energy probe of the test particle.
The functions f(ϵ) and g(ϵ) are called Rainbow functions. The Rainbow functions should
satisfy the following constraint:

lim
ϵ→0

f(ϵ) = 1, lim
ϵ→0

g(ϵ) = 1 (62)

The space-time metric may be distorted at the Planck scale energy.
The traversable wormhole metric in (2+1) dimensions with gravitational Rainbow is

represented as

ds2RB = −e2φ(r)
dt2

f2(ϵ)
+

dr2

(1− b(r)/r)g2(ϵ)
+ r2

dθ2

g2(ϵ)
(63)

= gµνdx
µdxν (64)

The above space-time metric is modified by the Rainbow functions. if ϵ tends to zero,
rainbow effects disappear. On the other hand if ϵ tends to Ep, the metric is deformed in
the quantum gravity level.

gµν =

⎛

⎝
−e2φ(r)/f2(ϵ) 0 0

0 1
(1−b(r)/r)g2(ϵ) 0

0 0 r2/g2(ϵ)

⎞

⎠ (65)

gµν as the inverse of gµν is

gµν =

⎛

⎝
−e−2φ(r)f2(ϵ) 0 0

0 (1− b(r)/r)g2(ϵ) 0
0 0 r−2g2(ϵ)

⎞

⎠ (66)

Non-vanishing Christoffel symbols are

Γ0
10 = Γ0

01 = φ′

Γ1
00 =

(
1− b

r

)
g2

f2
e2φφ′

Γ1
11 =

1

2

(
1− b

r

)−1 b′r − b

r2

Γ1
22 = −r

(
1− b

r

)

Γ2
12 = Γ2

21 = 1/r

12



The Ricci tensor components are calculated similarly as:

R00 =
g2

f2

[(
−1

2

b́r − b

r2
+

1

r

(
1− b

r

))
e2φφ́+

(
1− b

r

)
e2φφ́2 +

(
1− b

r

)
e2φφ′′

]

R11 = −φ′′ − φ′2 + 1

2

(
φ′+ 1

r

)(
1− b

r

)−1 b′r − b

r2

R22 = −φ′r
(
1− b

r

)
+

b′
2
− b

2r

The Ricci scalar ;

R = Rµνg
µν = R00g

00 +R11g
11 +R22g

22

= g2
[(

b′
r
+

b

r2
− 2

r

)
φ′ − 2

(
1− b

r

)
φ′2 − 2

(
1− b

r

)
φ′′+ b′

r2
− b

r3

]

The Einstein tensor: Gµν ≡ Rµν − 1
2Rgµν has no vanishing components

Gtt = Rtt −
1

2
Rgtt =

g2

f2

rb′ − b

2r3
e2φ

Grr =
φ′
r

Gθθ = r (r − b)

[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

The Einstein tensors in the orthonormal frame;

Gµ̇ν̇ =
∂xµ

∂xµ̇
∂xν

∂xν̇
Gµν (67)

Gṫṫ =
∂xt

∂xṫ
∂xt

∂xṫ
Gtt = e−φe−φGtt = e−2φ g

2

f2

rb′ − b

2r3
e2φ =

g2

f2

rb′ − b

2r3
(68)

Gṙṙ =
∂xr

∂xṙ
∂xr

∂xṙ
Grr = (1− b

r
)1/2(1− b

r
)1/2Grr = (1− b

r
)
φ′
r

(69)

Gθ̇θ̇ =
∂xθ

∂xθ̇
∂xθ

∂xθ̇
Gθθ =

1

r

1

r
r (r − b)

[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

=

(
1− b

r

)[
φ′2 + φ′′+ b− b′r

2r (r − b)
φ′
]

(70)

Then the Einstein field equation in the orthonormal basis ;

Gµ̇ν̇ = 8πGTµ̇ν̇ − Λgµ̇ν̇ (71)

Here we adopt the Casimir energy as the source of negative energy density and we
study the case with cosmological constant Λ.
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3.1 Casimir energy

Casimir energy density (3-dimensional case)(31) is given as

ρc = −λ
1

r3

We obtain the components of the Einstein field equation:

g2

f2

b́r − b

2r3
= 8πGρc = 8πG(− λ

r3
) (72)

r − b

r2
φ́ = 8πGpr = 8πGωρc = 8πGω(− λ

r3
) (73)

where

λ =
Γ(3/2)ζR(3)

(4π)3/2

We used the equation of state : pr = ωρc
From(73),

db

dr
r − b = −16πGλf2

g2
(74)

The above equation is solved as same as the past section:

b(r) =
r0 − 16πGλf2

g2

r0
r + 16πGλ

f2

g2
(75)

φ is obtained in the the same way as the case with no rainbow:

φ == −ω

2

g2

f2
ln |r − r0

r
|

And we obtain the line element with Gravitational Rainbow:

ds2 = −
(
1− r0

r

)−ωg2

f2 dt2

f2
+

dr2
(
1− r0

r

) 16πGf2

r0
Γ(3/2)ζ(3)
(4π)3/2

+
r2dθ2

g2
(76)

3.2 Cosmological Constant

The case of only Cosmological Constant is considered. Einstein field equations are as
component:

g2

f2

b́r − b

2r3
= Λ (77)

r − b

r2
φ́ = −Λ (78)

14



From (78), considering b(r0) = r0, we obtain

b(r) = r

(
1− Λf2

g2
(r20 − r2)

)
(79)

Here we will check the flare- out condition:
From (79),we obtain:

dφ

dr
=

r2

r − b
(−Λ) (80)

Next we do integration:

φ =

∫ r

r0

dr
Λr2

b− r
=

∫ r

r0

dr
Λr2

r
(
1− Λf2

g2 (r20 − r2)
)
− r

(81)

=
g2

f2

∫ r

r0

dr
r

r2 − r20
=

g2

2f2
log |r2 − r20|rr0 (82)

The above integral is divergent. So the metric is

ds2 = −(r2 − r20)
g2

f2
dt2

f2
+

dr2

Λf2(r2 − r20)
+

r2dθ2

g2
(83)

3.3 Casimir energy + Cosmological Constant

Next we consider the case with Casimir energy and Cosmological constant. The components
of the Einstein field equation :

g2

f2

b́r − b

2r3
= 8πGρc + Λ (84)

r − b

r2
φ́ = 8πGpr − Λ (85)

where

ρ = − λ

r3
(86)

pr = ωρ (87)

(87) is inserted into (85);

g2

f2

b́r − b

2r3
= 8πG(− λ

r3
) + Λ (88)
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(89) is solved explicitly

b(r) =
Λf2

g2
r3 +

(
1− 16πGλf2

g2r0
− Λf2r20

g2

)
r +

16πGλf2

g2
(89)

If we assume, φ = constant, φ́ = 0 Then (61) means

8πGpr − Λ = 0 (90)

Some calculation is performed. we obtain

ds2 = −dt2

f2
+

dr2

16πG(1 + ω)f2λ( 1
r0

− 1
r )

+ r2
dθ2

g2
(91)

Of course the above metric coincide with equation (60) as f, g → 1.

4 Conclusion

We studied the traversable wormhole in the presence of the Casimir Energy and the cos-
mological constant in three dimensions. Considering the deformation of the metric when
the energy tends to the Planck energy, we found the Rainbow metric for the traversable
wormhole in three dimensions in the presence of the Casimir energy and the cosmological
constant.
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Appendix A

It is very simplified to use embedding diagrams in order to study wormhole. The line
element for a slice is obtained by setting t = constant, in Eq()

ds2 =
dr2

1− b/r
+ r2dθ2 (92)

We construct a two dimensional surface with the same geometry as this slice in three di-
mensional Euclidean space for visualization. In he embedding Euclidean space we introduce
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cylindrical coordinates z, r, θ. Then the Euclidean metric of the embedding space has the
form;

ds2 = dz2 + dr2 + r2dθ2

The embedded surface will axially symmetric and thus can be described by the single
function z = z(r). On that surface the line element will be

ds2 =

[
1 +

(
dz

dr

)2
]
dr2 + r2dθ2

Comparing the above two equations , we have the equation for the embedding surface ,
given by

dz

dr
= ±

(
r

b(r)
− 1

)−1/2

(93)

On (r,z) plane, r has a minimum point r = r0 and convex downward - clocwise rotation by
π/2 which figures the wormhole shape. Mathematically

d2r

dz2
> 0 (94)

dr

dz
=
(r
b
− 1
)1/2

(95)

d2r

dz2
=

dr
dz b−

db
dr

dr
dz r

2
(
r
b − 1

)1/2
b2

=
b− b′r
2b2

> 0 (96)

(97)

Then,

b− b′r > 0 (98)

This is the flare-out condition. In addition, this condition means that the null energy
condition is violated , namely exotic matter is needed for the wormhole. The null energy
condition applied to the matter is

ρc2 − τ > 0 (99)

Usually exoticity is defined through the exoticity parameter ξ as:

ξ =
τ − ρc2

ρc2
(100)
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The parameter ξ is dimensionless and ξ > 0 means that space is occupied by exotic matter
and NEC(null energy condition) is violated. Using equations(22)-(23) one finds

ξ(r) =
τ − ρ

|ρ| =

−1
8πG

(
r−b
r2 φ́+ Λ

)
− 1

8πG

(
b́r−b
2r3 − Λ

)

∣∣∣ 1
8πG

(
b́r−b
2r3

)
− Λ

∣∣∣

=
b
r − b́− 2r

(
1− b

r

)
φ́∣∣∣́b− b

r − 2Λr2
∣∣∣

=
b−b́r
r∣∣∣́b− b

r − 2Λr2
∣∣∣
−

2r
(
1− b

r

)
φ́∣∣∣́b− b

r − 2Λr2
∣∣∣

=
2b2

r
b−b́r
2b2∣∣∣́b− b

r − 2Λr2
∣∣∣
−

2r
(
1− b

r

)
φ́∣∣∣́b− b

r − 2Λr2
∣∣∣

=
2b2

r
d2r
dz2∣∣∣́b− b

r − 2Λr2
∣∣∣
−

2r
(
1− b

r

)
φ́∣∣∣́b− b

r − 2Λr2
∣∣∣

At the throat (r = r0, b(r0) = r0), then

ξ(r0) =

2b(r0)2

r0
d2r
dz2∣∣∣ ´b(r0)− b(r0)

r0
− 2Λr20

∣∣∣

=

2r20
r0

d2r
dz2∣∣∣ ´b(r0)− r0

r0
− 2Λr20

∣∣∣

=
2r0

d2r
dz2∣∣∣ ´b(r0)− 1− 2Λr20

∣∣∣

=
2r0

d2r
dz2∣∣2(Λ+ ρ(r0))r20 + 1− 1− 2Λr20

∣∣

=
2r0

d2r
dz2∣∣2(ρ(r0))r20

∣∣ =
d2r
dz2

|ρ(r0)r0|
> 0 (101)

Here we used (22) and (37). We conclude at the throat ξ(r0) > 0 namely NEC is violated
, matter is exotic.
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