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Unidad Asociada I+D+i Instituto de Qúımica Médica (IQM) CSIC-URJC, Spain.

‡ Dep. of Economics and Business, Università di Catania (Unict), Catania, Italia.

Abstract

Counting immunopositive cells on biological tissues generally requires either manual
annotation or (when available) automatic rough systems, for scanning signal surface and
intensity in whole slide imaging. In this work, we tackle the problem of counting microglial
cells in biomedical images that represent lumbar spinal cord cross-sections of rats. Note
that counting microglial cells is typically a time-consuming task, and additionally entail
extensive personnel training. We skip the task of detecting the cells and we focus only on the
counting problem. Firstly, a linear predictor is designed based on the information provided
by filtered images, obtained applying color threshold values to the labelled images in the
dataset. Non-linear extensions and other improvements are presented. The choice of the
threshold values is also discussed. Different numerical experiments show the capability of
the proposed algorithms. Furthermore, the proposed schemes could be applied to different
counting problems of small objects in other types of images (from satellites, telescopes,
and/or drones, to name a few).
Keywords: automatic counting algorithm; image processing; microglial cells;
immunohistochemistry; noisy labels

1 Introduction

Despite the great progress that image processing have experienced in recent years, cell counting
methodology is yet a relevant but unpolished issue for many applications [5, 7, 13, 14, 15]. The
problem of counting objects in images or video frames is still one of the relevant task in many real-
world applications: for instance, counting cells in microscopic and biomedical images, monitoring
crowds in surveillance systems, counting the number of green spots in satellite images [17, 8]
etc. More specifically, the study of biomedical images is typically a time-consuming task, and
additionally entail extensive personnel training [4, 2, 6, 18]. Indeed, computing mmunopositive



cells on biological tissues generally requires either manual annotation [4, 12].
In this work we address the problem of counting microglial cells in micrographs of lumbar
spinal cord cross-sections of rats (see Figures 1-2). Microglia constitute one major group of
glial cells. They are considered resident immune cells within the central nervous system and
increase in size and number upon activation [2, 18]. Moreover, they have been suggested to be
responsible for initiating altered synaptic and firing activity in neurological disorders, including
chronic neurodegenerative diseases (e.g., Alzheimers and Parkinsons disease) and chronic pain
[10]. However, one major concern when analyzing the microglial cells is their identification and
counting. They exhibit a variety of shapes, sizes and functions depending on their activation
state. Therefore, current gold-standards for quantifying cells imply undeniable bias when applied
to nerve tissue plus, they offer several limitations regarding usability, sensitivity, and robustness.

(a) (b)

Figure 1: (a) Example of complete image (spinal cord cross-section). The zoom frame indicates part of the

ipsilateral dorsal horn with microglial cells (scale = 200µm). (b) A portion of an image where some microglial

cells have been highlighted with red pixels.

Figure 2: Examples of microglial cells. Microglia is always represented by a brownish tinction, whereas blue

colored cells usually correspond to the nuclei of neurons.

Technically speaking, this problem could be addressed and divided in two main steps: firstly a
binary classification problem (two classes, “microglial cells” and “non microglia objects”) and
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secondly, after the detection, counting the microglial cells. However, in this work, we consider
just the counting problem of the microglial cells (without necessarily detecting them). Namely,
we avoid the hard task of detecting and/or localizing individual objects. Thus, our goal is to
accurately estimate the count. The main features for discriminating a microglial cell are the
following:

• they are very small objects,

• with a dark color (generally close to black), and

• often they can have an ellipsoidal form.

Nevertheless, the geometric shape of the microglial cell depends on the specific spinal cord cross-
section. See Figure 3 for an illustrative example of this issue: a two dimensional representation of
a three dimensional object can yield different shapes in an 2D image [2, 18].

Figure 3: Graphical sketch of a microglial cell in 3 dimensions, and the different scenarios in which microglial cells

can appear on a slice (2 dimensional representation). We also show a range of uncertainty level (0 no uncertainty,

1 maximum uncertainty) provided by the expert.

For this reason, we address the problem using only the color information, setting some thresholds
for the red-green-blue (RGB) images (more precisely, 3 thresholds, one for the red component,
one for the green component and one for the blue component). More specifically, we start from a
dataset of D images, labelled by an expert. From each labelled image, we build T different filtered
images, obtained considering different color thresholds. Clearly, each filtered image contains a
different number of microglial cells and a different number of false alarm objects (a.k.a., artifacts).
See Figure 4 for a graphical representation.
In this work, with this information we build a linear (and then also non-linear) predictor for
the number of microglial cells in a possible new image. An additional important feature of the
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proposed technique is also the ability to provide a smoothing version of the expert’s opinions (noisy
labels). In summary, we introduce a novel procedure (based on color thresholds) for automatically
counting the number of microglial cells in new image (prediction) or correct the expert’s opinion
in an image contained in the dataset (smoothing). Furthermore, the choice of the thresholds is
discussed in detail. Several further generalizations and extensions are also described, as well as
possible future works. Finally, we employ different numerical simulations to show the consistency
of the proposed algorithm in different scenarios. Clearly, the proposed approach has a vast range
of application, since it can be employed for different types of images, for instance, provided by a
satellite, a telescope, and/or any other sensor. We consider images obtained by the Department
of Basic Health Sciences, Faculty of Health Sciences of the Rey Juan Carlos University, Madrid.

The work is structured as follows. Some important features of the problem are highlighted in
Section 2. The main technical notations and ideas are introduced in Section 3. Section 4 is
devoted to the description of the main formulas of the proposed procedure, and to pose a notion
of consistency. Section 5 describes different extensions and improvements. The choice of the
thresholds is discussed in Section 6. Some numerical tests and experiments are provided in Section
7. We finish with some conclusions in Section 8.

2 Specific features of the problem

It is also important to remark the high complexity of the addressed application due to the following
features:
• Unbalanced dataset. The number of pixels forming the microglial cells is extremely smaller
with respect to the number of pixels that are not contained in a microglial cell. Namely, the
microglial cells are very small and represent just few objects within an image, that is plenty of
other artifacts as well, in general. The difference in order of magnitude, in terms of number of
pixels, is approximately 104 in favor of non-microglial objects (on average). For instance, Figures
1(b) or 2 depicts just very small portions of an entire image, whereas an entire image is given in
Figure 1(a).
• Noisy labels. The dataset is created by a human expert using a long (and often exhausting)
visual inspection, that can produce several errors including missing cells. But this is not the
unique cause of noise, there are two main sources of noise in our problem. The first source of
noise is due to the expert’s mistakes and/or oversights. The second source of uncertainty is the
structural issue due to the type of “cut” (and correspondence 2D slice), graphically represented
in Figure 3. As a consequence, the labels are noisy, even with a perfect fulfillment of the expert.
• Small dataset. The number of labelled images in the dataset (D) is generally small, since the
increase of the dataset depends on costly human work (in terms of effort, time required, etc).
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3 Main notation and proposed technical approach

Let consider a RGB image provided by the laboratory1. Each pixel is represented by 3 color values

p = [p1, p2, p3] ∈ [0, 1]3,

where pj ∈ [0, 1], where p1 represents the amount of red, p2 represents the amount of green, and
p3 represents the amount of blue. Hence, p = [1, 1, 1] represents a white pixel and p = [0, 0, 0]
represents a black pixel. In the same fashion, we define the vector of threshold values,

t = [t1, t2, t3] ∈ R3,

for the colors in the image, in order to build a filtered image considering only the pixels such that
p1 ≤ t1,

p2 ≤ t2,

p3 ≤ t3,

(1)

whereas, in the pixels such that at least one value pi > ti, we set p∗k = 1 for all k = 1, 2, 3, i.e., the
pixels which do not satisfy (1) are transformed into white pixels. The idea is to count the number
of objects (i.e., clusters of pixels) within each filtered image, denoted by the variable r.

Let us assume that we have D images in the database and we consider the d-th image to analyze
(clearly, d ∈ {1, ..., D}). Furthermore, we employ different threshold vectors t(i) ∈ [t

(i)
1 , t

(i)
2 , t

(i)
3 ]

with i = 1, ..., T , so that we obtain T different filtered images. The number of objects within each
filtered image is denoted as rid, i.e., rid represents the number of objects in the i-th filtered image,
obtained filtering d-th image in the database with the threshold vector t(i). Hence, we have a
correspondence between thresholds and number of objects in each d-th filtered image, i.e.,

t(i) =⇒ {rid}Dd=1, i = 1, ..., T.

Additionally, for each image provided by the laboratory, the expert provided the expected number
of microglial cells Nd ∈ N = {0, 1, 2, 3, ...}.

Important observation. Each filtered image will contain a certain percentage α ∈ [0, 1] of
total number of microglial cells Nd (true positives bαNde = #TP ) and also a certain number F
of other objects (false positives F = #FP , or number of “false alarms”) that do not represent
microglial cells. When the threshold values are small (i.e., we keep only dark pixels), we have a
small number of objects rid in the filtered image but, since microglial cells are usually formed by
dark pixels, most of the rid objects would be microglial cells, hence we would have a small number
of false alarms. As the threshold values grow, there will be a greater chance of getting a larger
portion of the microglial cells in the corresponding filtered image, but also a greater number of

1We recall that the approach described here can be employed for completely different type of application, for
instance, with images provided by a satellite, a telescope, or any other medical machinery.
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false alarms. Furthermore, still increasing the threshold values, at certain threshold values, all the
microglial cells would be contained in the filtered images. A further increase of the thresholds will
only yield an increase of the false alarm objects (since all the microglial cells are already contained
in the previous filtered images, i.e., we have reached the maximum of #TP = Nd, α = 1).

A possible statistical model. Mathematically speaking, we can express the behavior above
with the following statistical model,

rid = bαiNd + Fie, αi ∈ (0, 1], i = 1, ..., T, d = 1, ..., D, (2)

Fi ∈ {vi, vi + 1, vi + 2, ..., si} si, vi ∈ N+, si > vi, (3)

where bbe returns the nearest integer to b; the coefficient αi ∈ (0, 1] depends on the t(i), i.e.,
αi = α(t(i)), and Fi is a discrete random variable which takes non-negative integer values,
contained in [vi, si]. The other coefficients si, vi ∈ R+, are a positive real values depending also
on t(i), i.e., si = s(t(i)), and vi = v(t(i)). Clearly, si affects the support of the random variable Fi
such that

vi = minFi ∈ N+, (4)

si = maxFi ∈ N+. (5)

We have vi < ∞ whereas si could be infinity as well. The probability mass function (pmf) of Fi
defined in this support can change depending on the specific application. Note that, with this
model, we are assuming that αi, si, vi and Fi are in some sense stationary quantities/variables,
which do not depend on the specific image to analyze. However, αi = α(t(i)), si = s(t(i)) and
vi = v(t(i)) depend on the threshold vector, so that the signal noise ratio (SNR) is different in
each filtered image. Note that #TP = bαiNde and #FP = Fi.
Note that Eq. (2) shows the relationship between each rid and Nd. Since, αi ∈ (0, 1] and it
multiplies the number of microglial cells Nd in the d-th analyzed image, the value 100αi% is the
percentage of microglial cells in the d-th filtered image (i.e, percentage of true positives), whereas
Fi is the number of false positives (i.e., false alarms). Thus, si and vi are the maximum and
minimum possible number of false alarms in the image filtered with the threshold vector t(i).
Finally, since αi = α(t(i)), si = s(t(i)) and vi = v(t(i)), we can also write

vi = v(αi), si = s(αi), (6)

i.e., vi and si can be also seen as functions of the percentage of number of microglial cells in the
i-th filtered image. A summary of the main notation is given in the Table 1. An illustrative
example of filtered images and the corresponding rid values is given in Figure 4.

4 A linear estimator for prediction and smoothing

Note also that for each image in the database, d = 1, ..., D, we have T different data, ri,d ∈ N,
related to the number of microglial cells Nd in the d-th image. Thus, we can define a vector
rd = [r1d, r2d, ..., rTd] which is related to Nd,

rd = [r1d, r2d, ..., rTd]⇐⇒ Nd.
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Table 1: Main notation of the work.

t(i) i-th threshold vector decided by the user
Nd number of microglial cells of the d-th image given by the expert
rid number of objects in the i-th filtered image – filtering d-th image (by t(i)) known by the analysis

αi, si, vi coefficients in the observation model in Eq. (2) unknown
Fi a discrete random variable which takes non-negative values between vi and si unknown

#TP ,
true and false positives in an image obtained filtering an image in the dataset known by the analysis

#FP

Figure 4: Illustrative example of a generic d-th image and T = 4 corresponding filtered images, with different

threshold vectors t(i). In this illustrative example we have Nd = 4 microglial cells that can be recognized by

ellipsoidal shape (however, recall that the shape cannot be used as feature in our real application due to the issue

described in Figure 3).

We assume that D ≥ T . Given the different images in the database, we also build a D×T matrix,

R =


r1
r2
...

rD

 =


r11 r21 · · · rT1
r12 r22 · · · rT2
...

...
...

...
r1D r2D · · · rTD

 , (7)
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and a D × 1 vector

c =


N1

N2
...
ND

 , (8)

See Figure 4, for an example of construction of the vectors rd, c and the matrix R. Given a new
test image (denoted with the super-index ∗), one idea to estimate the number of microglial cells
is to build an estimator of N∗ as a linear combinations of the number of objects ri∗ given the T
different filtered images obtained with the threshold vectors t(i), i.e.,

N̂∗ = β̂1r1∗ + β̂2r2∗ + ...+ β̂T rT∗ = r∗β̂
>. (9)

where β̂ = [β̂1, ..., β̂T ] is found by a Least Squares (LS) procedure [1, 3, 9], i.e.,

β̂ = arg min
β
||c−Rβ||2, (10)

= arg min
β

D∑
d=1

(Nd − rdβ
>)2. (11)

The solution is given by the well-known formula,

β̂ =
(
R>R

)−1
R>c. (12)

4.1 Prediction and smoothing of the expert’s opinions

We have seen that the prediction of number of microglial cells in a new image will be

N̂∗ = r∗β̂
>,

where r∗ = [r1∗, r2∗, ..., rT∗] and each component ri∗ represents the number of objects in i-th filtered
image, obtained using the threshold vectors t(i). Moreover, a smoothing version ĉ of the expert’s
opinions contained in the vector c can be obtained as

ĉ = Rβ̂, (13)

= R
(
R>R

)−1
R>c. (14)

4.2 Some notion of consistency in this noisy framework

Let us consider the family of linear estimators of type in Eq. (9). Clearly, as the number of data

D →∞, the estimator β̂ converges to the best coefficient vector β which provides the best linear
estimator with T components. In this sense, the consistency is ensured. However, the best linear
estimator generally is not the best estimator. Hence, considering a fixed T and as D →∞, even
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if we obtain the best vector β̂, we usually have still errors in the prediction N̂∗.

However, we can ensure good results in the smoothing scenario. If we consider T = D, the
matrix R is square matrix and, in this specific case,

R
(
R>R

)−1
R> = ID,

where ID is a D × D identity matrix (assuming that R has maximum rank and, being a square
matrix, then is invertible). Hence, in this scenario, we have ĉ = c, i.e., the algorithm does not
smooth the expert’s opinions but just provides a perfect replica of the expert’s opinions [9].

Remark 1. An exhaustive statistical analysis of the estimator in Eq. (12) is not straightforward
since all the elements are noisy. First of all, each rid is noisy and, as a consequence, also the
matrix R. Secondly, the elements Nd of the vector c are noisy since they are obtained by an
expert’s opinion, so that they are affected by possible human mistakes.

However, the result above ensure that, if we use enough threshold vectors (i.e., increasing T → D),
we obtain good performance, according to the expert’s opinion. See the proposition below.

Proposition 4.1. Since for a fixed number of data values D (i.e., images analyzed by the expert),
we can increase the number of threshold vectors in order to obtain a square matrix R (i.e., T = D).
If R has maximum rank, then we can always obtain an algorithm able to perfectly reproduce the
expert’s opinion, i.e., ĉ = c. Therefore, even when D →∞, we can always increase T →∞, such
that ĉ→ c.

Furthermore, there is another way to see this point: increasing T means making the algorithm
more flexible since we have more parameters involved. Therefore, we can raise the flexibility of
the algorithm by just considering more threshold vectors t(i) (i.e., more filtered images).

Remark 2. Clearly, it is required that R has maximum rank (to be invertible). Namely, the rows
{rd}Dd=1 (or the columns) must be linear independent. Therefore, we should also consider this point
when choosing the T of threshold vectors t(i) ⇐⇒ {rid}Dd=1.

A possible issue is that the filtered images, corresponding to different threshold vectors t(i), could
present a high correlation in some cases. For any value of T , the estimator would still be linear.
Clearly, we can have some non-linear extensions as we describe below.

5 Further considerations and possible enhancements

5.1 Non-linear extensions

Non-linear bases. The easiest way to consider a non-linear regression to extend the previous
approach, is to include non-linear bases (i.e., non-linear transformations of the number of objects
rid) into the LS scheme previously described [9].
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In order to clarify this point, we consider the use of a quadratic regression function as an example.
For this purpose, now let us assume that D ≥ 2T . In this case, we build a D × 2T matrix,

R =


r1 r21
r2 r22
...

...
rD r23

 =


r11 r21 · · · rT1 r211 r221 · · · r2T1
r12 r22 · · · rT2 r212 r222 · · · r2T2
...

...
...

...
...

...
...

...
r1D r2D · · · rTD r21D r22D · · · r2TD

 . (15)

Note that the number T of threshold vectors t(i) ⇐⇒ {rid}Dd=1 is unchanged, although the columns
of R grows to 2T . The rest of formulas remain virtually unchanged:

β̂ =

[
β̂1

β̂2

]
=
(
R>R

)−1
R>c,

and the prediction of number of microglial cells in a new image (denoted with ∗) will be

N̂∗ = r∗β̂
>
1 + r2∗β̂

>
2 ,

that is, a quadratic estimator based on LS.
Assuming D ≥ KT , the procedure above can be generalized considering different K generic non-
linearities gk(r), i.e., we would have the following D ×KT matrix,

R =


r1 g1(r1) g2(r1) · · · gK(r1)
r2 g1(r2) g2(r2) · · · gK(r2)
...

...
...

...
...

rD g1(rD) g2(rD) · · · gK(rD)

 . (16)

Clearly, this kind of procedure improves the performance of the algorithm if there is a presence of
some non-linear behavior in the dataset. However, after that this non-linear behavior is captured
by the non-linear estimator, the only way to improve more and more the performance is to increase
the T of threshold vectors t(i) ⇐⇒ {rid}Dd=1, and the number D of images in the dataset [1, 3, 9].
Non-linear regression methods. Another more general approach is to consider more
sophisticated regression methods such as Gaussian Processes (GPs) and/or Artificial Neural
Networks (ANNs), to name a few, considering the following pairs of data points

{rd, Nd}Dd=1,

where rd = [r1d, r2d, ..., rTd]. The application and design of GPs and/or ANNs is left as a future
work [9, 11, 16].

5.2 Including the expert’s uncertainty

One possibility for including the expert’s uncertainty (within the proposed algorithm) is to consider
a “soft” labelling approach. Namely, in the d-th image of the dataset, let us consider that we have
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a certain number of objects, O, which can be considered possibly a microglial cell by the expert.
For each one of these objects, the expert can associate a number no between [0, 1] where numbers
close to zero, i.e., no ≈ 0, represent very high uncertainty, whereas no = 1 means a complete
guarantee that this o-th object is a microglial cell. These uncertainty levels are shown in Figure
3. In this framework, finally we have

Nd =
O∑
o=1

no,

which is a positive real number, Nd ∈ R+, representing the number of microglial cells in the
d-th image of the dataset, including the expert’s uncertainty. For instance, a value of Nd = 2.6
expresses the uncertainty over a third possible microglial cell. The procedure can be employed
to count the percentage of the microglial cells in the T filtered images, obtaining the vector
rd = [r1d, r2d, ..., rTd] where, in this case, rid ∈ R+ instead of being an integer number. Defining, in
the same way, c = [N1, ..., ND]> (but now Nd ∈ R+), the rest of the algorithm remains the same.

5.3 Data augmentation: increasing the dataset with surrogate data

Since the analysis and labelling of new images by the expert is generally slow and possibly contains
several mistakes (noisy labelling), the number of labeled images D in the dataset is often small.
Moreover, it entails an extensive personnel training and a cost in terms of personal salary, generally.
In order to increase the number D of images in the database, we could create surrogate (“fake”)
images with a certain (known) number of microglial cells, by re-using pixels of microglial cells
from the images in the database already labeled by the expert.
Clearly, the procedure employed for creating the surrogate images can yield a bias in the results.
Therefore, additional theoretical studies and empirical analysis are required for ensuring the
consistency of the overall methodology.

6 Choice of the threshold vectors

For a finite value of T , the performance of the algorithm depends on the choice of threshold vectors

t(i) ∈ [t
(i)
1 , t

(i)
2 , t

(i)
3 ] ∈ [0, 1]3,

with i = 1, ..., T , i.e., for obtaining T different filtered images from each d-th image in the database.
However, it is also important to remark that, as T grows and as T → D, the dependence of
the performance on the choice of t(i) tends to decrease. In this section, we discuss different
considerations regarding a proper choice of t(i).

Note that large values of t
(i)
k (close to 1) ensure the presence of the microglial cells, but also

a huge number of other artifacts that are false alarm. Small values of t
(i)
k (close to 0) ensure

to substantially reduce the number of false alarm, however, some microglial cells can be missed.
Considering the model in Eq. (2), we have that αi = α(t(i)) and si = s(t(i)), hence the signal
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noise ratio (SNR) is different in each filtered image (different #TP and #FP ). For our purpose,
the SNR can be defined as

SNR =
#TP

#FP
=
αNd

F
.

Clearly, the vectors t(i) corresponding to larger SNR values are preferable.

Remark 3. The idea is to choose the vectors t(i) which provide the higher values of SNR = #TP
#FP

.
For instance, this can be directly done by a Monte Carlo search. However, below we divide this
search in two steps.

Another interesting observation is that different vectors t(i) can provide the same number of
true positives #TP , but different number of #FP . Clearly, given a value #TP , we prefer the
vectors t(i) which provide the smallest value of false positives #FP . We call them as optimal
conditional thresholds.
Therefore, conceptually the search of proper threshold vectors can be divided in two steps:

• First of all, fixing a value of true positives #TP , find the optimal conditional thresholds,
i.e., the thresholds that maximizes the SNR providing the smallest number of false positives
#FP .

• Among the optimal conditional thresholds previously obtained, choose the thresholds
corresponding with the larger SNRs (possibly SNR > 1).

With the first step, we can build the curve “minimum number of #FP” versus #TP (or percentage
of #TP ), as shown in Figures 5 and 6(a). This allows to detect the range of #TP values with
SNR> 1, as depicted in Figure 6(b). Moreover, the division in these two phases, also allows the
use of a different payoff function in the second step, instead of maximizing the SNR (i.e., in the
proposed procedure, the payoff function is the SNR). The following two subsections describe these
two steps.

6.1 Optimal conditional thresholds

First or all, we have to notice that, given a threshold vector t ∈ R3, in the filtered image we have
a certain number of true positives #TP (microglial cells), and a certain number of false positives
#FP (i.e., false alarms). Two different threshold vectors t1, t2 could give the same number of true
positives #TP but different values of false positives #FP . Clearly, given a number of true pos-
itives #TP , we prefer the threshold vector which provides the smallest number of false positives
(i.e., that minimizes #FP ). We call this vector as optimal conditional threshold vector, i.e., the
optimal vector corresponding to the true positive value #TP . Namely, the optimal conditional
vector maximizes the signal-to-noise ratio (SNR), fixing #TP , SNR = #TP

#FP
. In order to find the

optimal conditional threshold vectors, we employ a Monte Carlo search:
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1. For s = 1, ...,Mruns:

• Draw ti,s ∼ U([0, 1]), for i = 1, 2, 3.

• Set ts = [t1,s, t2,s, t3,s] and obtain the filtered image corresponding to ts.

• Count the number of true positives #TP (s), and false positives #FP (s) in this filtered
image.

2. For each value γ = 1, 2..., Nd:

• Find all the indices s∗ such that #TP (s∗) = γ, defining a set of indices Sγ.
• For all s∗ ∈ Sγ:

– Find

soptγ = arg min
s∗∈Sγ

#FP (s∗). (17)

– Then the optimal conditional vector of thresholds (for r true positives) is tsoptγ =[
t1,soptγ , t2,soptγ , t3,soptγ

]
.

Therefore, given a pre-established number of true positives γ = #TP with 1 ≤ γ ≤ Nd, the
optimal conditional threshold vector is tsoptγ : this is the vector which provides the minimum pos-

sible number of false alarms #FP (given the pre-established value #TP = γ). Clearly, tsoptγ is an
estimation of the optimal vector due to the Monte Carlo procedure: as Mruns →∞, this approxi-
mation improves.
In our specific application, we use Mruns = 104 independent runs. Figure 5 depicts the minimum
possible number of false alarm objects (#FP ), obtained by the optimal conditional thresholds,
versus the percentage of true positives (#TP

Nd
100%). Clearly, there is a trade-off between the

number of false alarms and true positives.

6.2 Choosing among the optimal conditional thresholds

Each point of the curve in Figure 5 corresponds to an optimal conditional vector tsoptγ with

1 ≤ γ ≤ Nd and #TP = γ. Figure 6(a) shows the same curve in Figure 5 but, in this case, the
values of #TP are directly given in the horizontal axis. Moreover, the straight line #FP = #TP
is depicted with a solid black line. Clearly, when the blue curve is below the black straight line,
we have

SNR =
#TP

#FP
> 1.

The corresponding value of the SNR are provided in Figures 6(b). The rectangular region depicted
by dashed lines, shows the values of SNR bigger than 1 (obtained by the optimal conditional
thresholds for 25 ≤ #TP ≤ 53). Hence, we should choose T points in this interval, e.g., in this

13



0 20 40 60 80 100
Percentage of true positives

0

500

1000

1500

2000

N
u

m
b

er
 o

f 
fa

ls
e 

p
o

si
ti

ve
s 

(#
F

P
)

Figure 5: Example of minimum possible number of possible false alarms (false positives) (#FP ) versus the

percentage of true positives (#TP
Nd

100%) in a specific image of the dataset, obtained by the corresponding optimal

conditional thresholds. By increasing the values of thresholds, more #TP but also more #FP are obtained. Here,

the minimum possible number of false alarms for each given value of #TP is shown.

example (corresponding to results from our database),

25 ≤ γi ≤ 53, i = 1, ..., T,

and we use the corresponding optimal conditional vector tsoptγi
.

7 Numerical experiments

7.1 First experiment

We will test with a progressively closer to real-world application. So we consider again the model

rid = bαiNd + Fie, αi ∈ (0, 1], i = 1, ..., T, d = 1, ..., D,

Fi ∈ {vi, vi + 1, ..., si} si, vi ∈ N+, si > vi.
(18)

We consider that in each d-th image we can have a number of microglial cells between 0 and 200,
i.e., Nd ∈ [0, 200]. More precisely, we consider a uniform discrete pmf,

Nd ∈ Udisc([0, 200]). (19)

In this section, we assume that the expert is able to detect perfectly all the number of microglial
cells Nd in the d-th image, obtaining a non-noisy vector c = [N1, ..., ND]>.
Recall that the value αi ·100 represents the percentages of microglial cells in the i-th filtered image,
obtained filtering the d images with the i-th threshold vector t(i). We consider T threshold vectors
t(i) such as

αi =
i− 1

T − 1
, i = 1, ..., T,

14
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Figure 6: (a) The minimum number of false positives (#FP ) obtained by the optimal conditional thresholds,

versus number of true positives (#TP ), in a range of values where we can obtain SNR ≥ 1 (for a specific image

of the dataset). The solid black line represents the straight line #FP = #TP , then when the blue curve is below

the black straight line, we have SNR ≥ 1. (b) The SNR = #FP
#TP corresponding to the values in Figure 5. The

rectangular region depicted by dashed lines, shows the values of SNR bigger than 1 (obtained by the optimal

conditional thresholds for 25 ≤ #TP ≤ 53).

i.e., we assume that t(1) is chosen such that α1 = 0, t(2) is chosen such that α2 = 2
T−1 , t(3) is

chosen such that α3 = 3
T−1 and so on, until t(T ) that is chosen such that αT = T−1

T−1 = 1. Hence,
we have always α1 = 0 and αT = 1. Moreover, we assume uniform discrete pmf for the random
variable Fi,

Fi ∼ Udisc([vi, si]) ∈ N,

where we can write that the minimum and maximum values are function of αi as in Eq. (6), for
instance,

vi =

⌊
24

(
1

1 + exp(−3αi)

)
− 12

⌉
, (20)

si =

⌊
1 + 40

(
1

1 + exp(−3.5αi)

)
− 20

⌉
. (21)

Figure 7(a) depicts these curves. Note that this is equivalent to be function of t(i). We generate
Nd and rid by the model above, in D = 104 independent runs (i.e., we have D = 104 analyzed
images). We also consider different values of

T ∈ {2, 3, 5, 10, 20, 40, 60, 100, 150, 200, 500, 1000},

i.e., different numbers of threshold vectors t(i) (and consequently generating different filtered
images). We recall that the matrix R has dimensions D × T and we can write the smoothing

vector ĉT = R
(
R>R

)−1
R>c as function of T , where c = [N1, ..., ND]> in (8). Computing the

15



mean square error (MSE) in smoothing, i.e.,

MSE(T ) =
1

D
||ĉT − c||2 =

1

D
||R
(
R>R

)−1
R>c− c||2, (22)

where || · || is the Euclidean distance. As shown in Figure 7(b), we can observe that the MSE
is decreasing quickly as T grows. Note that when T = 200, the MSE is already virtually zero.
Therefore, by increasing T we can accurately reproduce the expert’s opinion in the training set.
In a new test image, where the number microglial cells and the number of false alarms follow the
model given above in Eqs. (18), (19), (20) and (21), the MSE in prediction will be very close to
the values obtained in Figure 7(b).
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Figure 7: (a) The two functions vi = v(αi) and si = s(αi) in Eqs.(20) and (21). Recall that
minFi = vi and maxFi = si. (b) The mean square error (MSE) in Eq. (22) as function of the
number of threshold vectors used, i.e., T .

7.2 Second experiment: using nonlinear bases

In this section, we repeat the experiment described in the previous section, but also considering
quadratic nonlinear bases as in Eq. (15). Therefore, the matrix R has dimension D× 2T instead
of D × T , as described in Section 5.1.
Figure 8(a) depicts the results in terms of MSE versus T . This figure is represented in log-scale,
to facilitate the visualization. The MSE curve of the experiment in the previous section is shown
with a solid line (this curve is also given in Figure 7(b), but using a standard scale), whereas the
MSE curve corresponding to the use of quadratic nonlinear bases is depicted with a dashed line.
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We can observe that introduction of the nonlinear bases improves substantially the performance.
This improvement is precisely produced by the nonlinear behavior of the bases: for instance, the
MSE with T = 200 and the quadratic bases (see the dashed line in Figure 8(a)) is much smaller
than the MSE with T = 400 and using only linear bases (see the solid line in Figure 8(a)). In
both cases, R has dimension D× 400 (where D = 104), but employing non-linear bases we obtain
a much better results, even using only 200 different threshold vectors instead of 400. Additionally,
the MSE with T = 200 and the quadratic bases is close to the MSE obtained with T = 1000 and
only linear bases.

7.3 Third experiment: considering noisy labels Nd

In this section, we consider again the model above in Eqs. (18), (19), (20) and (21). However, now
we assume that the expert provides noisy approximations of the number Nd of microglial cells in
the d-th image. Here, instead of a non-noisy vector c = [N1, ..., ND]>, we have noisy vector

c̃ = [Ñ1, ..., ÑD]>,

where
Ñd = Nd + εd, εd ∼ Udisc([−γ, γ]),

where εd is a positive uniform noise and γ ∈ {0, ..., Nd} is a constant integer parameter that
determines the power of this noise. Note that, by setting γ = 0, we recover to the non-noisy
framework in the previous section. In this example, we set γ = 5 and γ = 10. In this scenario,
the smoothing vector is given by

ĉT = R
(
R>R

)−1
R>c̃,

where we have used the actual observed vector c̃ with the noisy data Ñd.
However, the MSE is still computed considering always the true vector c = [N1, ..., ND]>, exactly
as in Eq. (22), i.e.,

MSE(T ) =
1

D
||ĉT − c||2 =

1

D
||R
(
R>R

)−1
R>c̃− c||2. (23)

This allows to appreciate the deterioration of the performance of the algorithm as γ grows, as
shown in Figure 8(b), where the MSE curve is depicted in log-scale to facilitate the visualization.
However, the MSE of the algorithm vanishes to zero as T grows, regardless the noisy observations
of Nd and regardless the noise power. This proves that the algorithm works properly with noisy
labelled images.

8 Conclusions

We have introduced an automatic counting algorithm for computing the number of micriglial cells
in biomedical images. We have designed a linear predictor based on the information provided by
filtered images, obtained applying color threshold values to the labelled images in the dataset.
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Figure 8: (a) The MSE curve in log-scale as function of the number T of threshold vectors,
as in Figure 7(b) (solid line and circles) and using with quadratic nonlinear bases (dashed line
and diamonds). (b) The MSE curve in log-scale as function of the number T of used threshold
vectors, and different values of γ = 0, 5, 10. Note that γ = 0 corresponds to the curve in Figure
7(b) without noisy evaluations of Nd. In any case, the MSE of the algorithm vanishes to zero as T
grows, regardless the power of the noise in Nd. Note that the solid line represents the same MSE
curve in both figures.

Non-linear extensions and other improvements, jointly with the choice of the threshold values,
have been discussed. Different numerical experiments show the capability and consistency of the
proposed algorithms, even with noisy labelled images.
The novel approach allows to increase its flexibility and its performance in a very simple and
automatic way: considering and adding more threshold vectors and, as a consequence, more
columns in the design matrix. Clearly, the proposed schemes could be directly applied to different
counting problems of small objects in other types of images. As future lines, we also plan the use
of ANNs and the total least squares method due to the presence of noise in the labels (or even
more complex techniques as in [12]). Increase the database by artificial images requires additional
studies as well.
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A Lower and upper bounds

Let us consider both vi <∞, si <∞, finite and known - or estimated - (recall that 0 ≤ vi < si).
Moreover, let us also assume the coefficients αi ∈ (0, 1], as known value (or approximately known
- estimated). In this scenario, if the observations rid are generated according to the model

rid = bαiNd + Fie, αi ∈ (0, 1], i = 1, ..., T, d = 1, ..., D,

we can obtain some lower and upper bounds. Since Fi ∈ [vi, si] Indeed,

N̂d,lower =

⌊
rid − si
αi

⌋
, N̂d,upper =

⌈
rid − vi
αi

⌉
. (24)

where bbc gives as output the greatest integer less or equal to b, whereas bbc returns the least
integer greater or equal to b. Namely, if the observations rid are generated according to the model
above, we can assert that the true number Nd of microglial cells is contained (with probability 1)
in the following interval:

N̂d,lower ≤ Nd ≤ N̂d,upper. (25)

Therefore, by estimating si and vi (for a certain percentage αi of microglial cells in the filtered
images) we can obtain lower and upper bounds for Nd, using the inequalities above.
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