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Abstract

We present the theoretical description of plane turbulent wall-bounded flows based on the previ-
ously proposed equations for vortex fluid, which take into account both the longitudinal flow and the
vortex tubes rotation. Using the simple model of eddy viscosity we obtain the analytical expressions
for mean velocity profiles of steady-state turbulent flows. In particular we consider near-wall bound-
ary layer flow as well as Couette, Poiseuille and combined Couette-Poiseuille flows. In all these cases
the calculated velocity profiles are in good agreement with experimental data and results of direct
numerical simulations.

1 Introduction

The plane wall-bounded flows are relatively simple types of shear flows, which are actively investigated
both theoretically and experimentally for a long time. Conventionally, the studies in this area can be
divided into four groups: near-wall (boundary layer) flow [1]-[5], Couette flow [6]-[12], Poiseuille flow
[13]-[15], and combined Couette-Poiseuille flow [16]-[19]. In particular, the special attention is paid to the
conditions for the transition to the turbulent regime and the dependence of the parameters of a steady
turbulent flow on the Reynolds number (Re) and on the boundary conditions on the walls. The theoretical
description of turbulent flows is based on the solution of the Reynolds-averaged Navier–Stokes (RANS)
equation with the Reynolds stress tensor, which takes into account the influence of the fluctuating part
of the velocity on the average flow characteristics [20],[21]. There are several approaches to calculating
the Reynolds tensor and closing the system of equations for a turbulent flow [22]-[25]. The central point
here is the concept of eddy viscosity, which relates fluctuating velocities to the average flow velocity.
It is assumed that the eddy viscosity depends on the coordinates in the flow, which makes it possible,
using additional boundary layer models, to match the results of calculations with experimental data [26]-
[28]. With the development of computer technology, methods for the direct numerical simulations (DNS)
based on solution of non-stationary RANS equation have become widespread. These methods allow one
to simulate the evolution of unsteady flows and calculate the average values of different physical quantities
[29]-[33].
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The existing analytical models of turbulence adequately describe the experimental data, however,
they contain many fitting parameters and are difficult for analysis. The advantages and disadvantages of
various models are considered in [34],[35]. They satisfactorily describe the experimental distributions of
mean velocity in the central region of the flow, however the matching of the velocity profiles near the walls
require additional assumptions related to the properties of the eddy viscosity in this region. Therefore,
there is still a need for a simple analytical model suitable for the estimations and simple explanation of
experimental results.

In this paper, we consider the description of a turbulent flow based on a symmetric system of equations
explicitly accounting vortex motion. There are a number of works in the literature, in which a symmetric
system of Maxwell-type equations for the velocity and the vorticity vectors is used to describe the vortex
flow [36]-[42]. In particular, these equations are applied for the consideration of turbulent flows [39]
and electron-ion plasma in the framework of a hydrodynamic two-fluid model [43]-[45]. However, the
additional equation for vorticity is actually obtained by applying the curl operator to the Euler equation,
so the resulting equation is not independent. Recently, we have developed an alternative approach based
on the droplet model of a liquid, which was introduced by Helmholtz [46]. We have derived a system of
Maxwell-type equations, which take into account the longitudinal motion and rotation of vortex tubes [47]-
[49]. In [50], we generalized these equations for the case of turbulent flows. As an example we considered
Couette flow in the framework of simple model of eddy viscosity based on Boussinesq assumption [51]-
[52] and showed that there is a good agreement between the calculated velocity profiles and experimental
data.

In the present paper we apply this approach for the description of near-wall turbulent flows as well
as for Couette, Poiseuille and combined Couette-Poiseuille turbulent flows. We derive the analytical
expressions for the profiles of mean velocity and demonstrate that they are in good agreement with
experimental data and results of direct numerical simulations.

2 Model of vortex plane flow

In the present paper we consider steady-state plane turbulent flows of viscous vortex fluid moving parallel
to the plane xy with the velocity directed along the X axis (Fig. 1).

Figure 1: Sketch of the coordinate system for the plane flow. The fluid moves along the X axis with
speed v.

As we previously showed [50], in case of incompressible fluid a vortex isentropic flow is described by
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the following symmetric equations:

1

c

(
∂

∂t
+ (v · ∇)− ν∆

)
v +∇×w +

1

cρ
∇p = 0,

1

c

(
∂

∂t
+ (v · ∇)− ν∆

)
w −∇× v = 0,

∇ · v = 0,

∇ ·w = 0.

(1)

Here c is a speed of sound, v is a local velocity, ν is a kinematic viscosity, ρ is a fluid density, p is a
pressure. The vector w characterizes the rotation of the vortex tube around its axis

w = 2c θ,

ω =
dθ

dt
,

(2)

where θ is the angular vector of rotation and ω is the angular velocity of the vortex tube rotation.
To describe the turbulent flow, we represent v = v̄ + v′ , where v̄ is the time-averaged velocity

and v′ describes the velocity fluctuations. Similarly, for the tube rotation vector we take w = w̄ + w′.
Considering plane flow we assume that the velocity v has only x component and depends only on the y
coordinate vx = vx(y, t). Similarly, in plane flow the vector of rotation angle w has only z component
and depends only on y coordinate wz = wz(y, t). Also we assume that 1

cρ
∂p
∂x = −g = const. Then for the

time averaged values we obtain the following equations

1

c

∂v̄x
∂t
− λ∂

2v̄x
∂y2

+
∂w̄z

∂y
− g = 0,

1

c

∂w̄z

∂t
− λ∂

2w̄z

∂y2
+
∂v̄x
∂y

= 0,

(3)

were the parameter λ is a constant characterizing the scale of the turbulence. This parameter is defined
by eddy viscosity [50]. In the next sections, we consider some simple solutions to this system for various
cases of plane turbulent flows.

3 Near-wall turbulent flow

Let us consider a steady-state turbulent flow near the infinite plate (Fig. 2) without pressure gradient
(g = 0).

First we consider the case when, on average, the steady flow occurs at zero value of the average
angular velocity of the vortex tubes (ω̄ = 0). The values v̄x and w̄z depend only on the y coordinate and
do not depend on time v̄x = v̄x(y), w̄z = w̄z(y), . Then the equations (3) take the following form:

−λ∂
2v̄x
∂y2

+
∂w̄z

∂y
= 0,

−λ∂
2w̄z

∂y2
+
∂v̄x
∂y

= 0.

(4)
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Figure 2: Sketch of the fluid flow along the X axis with speed v∞ over the infinite plate.

The boundary conditions for the velocity are

v̄x(0) = 0,

v̄x(∞) = v∞.
(5)

The boundary conditions for the rotation angle w̄z(y) are not obvious, therefore we choose them in the
following form

w̄z(0) = w0,

w̄z(∞) = w∞,
(6)

where w0 and w∞ are certain values.
The solutions of system (4) are written as

v̄x = v∞ {1− exp (−y/λ)} , (7)

w̄z = −v∞ {1− exp (−y/λ)}+ w0. (8)

The values w0 and w∞ satisfy the following relation

w0 − w∞ = v∞. (9)

Note that the velocity distribution (7) does not depend on the boundary conditions for the function
wz(y). On the other hand, the angle of rotation is determined up to a constant value. Therefore, without
loss of generality, one can choose the beginning of angle counting as w0 = 0.

The normalized distribution of the mean velocity (7) is shown in Fig. 3. Note that since we consider
the flows with v∞ < c, the average angle of rotation θ̄z = w̄z/2c is small.

We emphasize that in this case the only spatial scale is the turbulent length λ. However, in theoretical
models and in experimental studies, the concept of a turbulent boundary layer is actively used. Therefore,
further we consider another model of turbulent flow, in which we artificially introduce an additional spatial
scale, namely the boundary layer thickness.
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Figure 3: Stationary profile of the mean velocity of turbulent flow over an infinite plate.

4 Flow in the near-wall boundary layer

4.1 Flow in the near-wall layer without tubes rotation

The model of turbulent flow in thin near-wall layer is often used for the interpretation of experimental
data. Let us consider the boundary layer with a thickness δ, in which the motion is turbulent, and outside
(y > δ) it is laminar with the velocity v∞ (Fig. 4).

Figure 4: Sketch of a steady-state turbulent flow in a thin layer over an infinite plate.

In the region 0 6 y 6 δ this flow is described by the system of equations

−λ∂
2v̄x
∂y2

+
∂w̄z

∂y
= 0,

−λ∂
2w̄z

∂y2
+
∂v̄x
∂y

= 0,

(10)
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with the following boundary conditions:
v̄x(0) = 0,

v̄x(δ) = v∞,

w̄x(0) = w0,

w̄x(δ) = wδ,

(11)

where w0 and wδ are certain constants.

Figure 5: The mean velocity profiles of turbulent flow in the boundary layer for different parameters λ/δ.
The green dotted line λ/δ = 10; the blue dashed line λ/δ = 0.34; the red solid line λ/δ = 0.11.

We will look for the solutions to this system under the additional condition that at δ → ∞ the
solutions have to transform to (7) and (8). The corresponding solutions in the region of the near-wall
layer have the following form:

v̄x = v∞
1− exp (−y/λ)

1− exp (−δ/λ)
, (12)

w̄z = −v∞
1− exp (−y/λ)

1− exp (−δ/λ)
+ w0. (13)

The values w0 and wδ are related by the following relation:

w0 − wδ = v∞. (14)

Indeed, it is not difficult to see that when δ → ∞ the solutions (12) and (13) transform to previous
solutions (7) and (8). As an example, Fig. 5 shows several velocity profiles calculated by formula (12)
for different parameters λ/δ. Note when δ/λ� 1 the mean velocity is v̄x ' v∞ y/δ.

The solution (12) can be used to describe turbulent flows with low Reynolds numbers and for the
flows near the leading edge of a flat plate. As an example Fig. 6 demonstrates the fitting of experimental
velocity profile near the leading edge [2]. One can see that the calculated profile is in a good agreement
with experimental data. For comparison, the same figure shows the Blasius profile for laminar flow,
normalized to 0.99 v∞ [53].
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Figure 6: The mean velocity profiles of turbulent flow. The circles (©) are the experimental data [2], the
solid red line corresponds to the distribution (12) with the parameters λ/δ = 0.25. The Blasius profile is
shown by dashed line.

4.2 Turbulent flow in the near-wall layer with rotation of vortex tubes

Let us consider a model of turbulent flow in the near-wall layer of thickness δ taking into account the
rotation of vortex tubes (Fig. 7). We assume that in average the tubes rotate with the same angular

Figure 7: Sketch of stationary turbulent flow over an infinite plate. The vortex tubes in the thin layer,
on average, rotate with angular velocity ω̄.

velocity ω̄z, but with different phases ϕ̄z(x). Then the vector of rotation is written as

w̄z(x, t) = 2cω̄zt+ ϕ̄z(x). (15)
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In this case the equations (3) take the following form

−λ∂
2v̄x
∂y2

+
∂ϕ̄z
∂y

= 0,

−λ∂
2ϕ̄z
∂y2

+
∂v̄x
∂y

+ 2ω̄z = 0.

(16)

Figure 8: The mean velocity profiles of turbulent flow over a flat fixed wall. The squares (�) are
the experimental data [3], the solid red line corresponds to the distribution (18) with the parameters
λ/δ = 0.071, β = 0.23.

We choose the following boundary conditions

v̄x(0) = 0

v̄x(δ) = v∞,

ϕ̄z(0) = ϕ0,

ϕ̄z(δ) = ϕδ.

(17)

We will look for the solutions to this system under the additional conditions that at ω → 0 and δ → ∞
the solutions have to transform to (7) and (8). Then the solution of system (16) in the region of the
near-wall layer has the following form:

v̄x = v∞(1− β)
1− exp (−y/λ)

1− exp (−δ/λ)
+ v∞β

y

δ
, (18)

ϕ̄z = −v∞ (1− β)
1− exp (−y/λ)

1− exp (−δ/λ)
+ ϕ0. (19)

Here we introduce the dimensionless parameter β = −2ω̄zδ/v∞. The values ϕ0 and ϕδ are related by the
following relation

ϕ0 − ϕδ = v∞ (1− β) . (20)
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Figure 9: The mean velocity profiles of turbulent flow over a wall with obstacle. The circles (©) are
the experimental data [2], the solid red line corresponds to the distribution (18) with the parameters
λ/δ = 0.085, β = 0.27.

As an example, Fig. 8 shows the fitting of experimental data [3] for turbulent flow over a flat fixed wall
using the distribution (18). Fig. 9 demonstrates the calculated and experimental velocity profiles for
turbulent flow over a wall with obstacle. These figures show the good agreement between the fitted curves
and the experimental data.

5 Turbulent plane Couette flow

Figure 10: Sketch of a plane Couette flow between two infinite plates, which move along the X axis with
speed v in opposite directions.
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We consider a turbulent flow of viscous vortex fluid formed between two infinite, parallel plates moving
relative to each other in opposite directions with speed v (Fig. 10).

5.1 Couette flow without rotation of vortex tubes

First, we consider a steady-state turbulent flow, when the average angular velocity of the vortex tubes
rotation is equal to zero (ω̄z = 0). This flow is described by equations

−λ∂
2v̄x
∂y2

+
∂w̄z

∂y
= 0,

−λ∂
2w̄z

∂y2
+
∂v̄x
∂y

= 0.

(21)

We choose the following boundary conditions:

v̄x (h) = v,

v̄x (−h) = −v,

w̄z (h) = wh

w̄z (−h) = w−h,

(22)

where wh and w−h are certain values.

Figure 11: The model profiles of the mean velocity of turbulent Couette flow without rotation of vortex
tubes. The dotted green line λ/h = 2, dashed blue line λ/h = 0.26, solid red line λ/h = 0.11.

In this case the solutions satisfying the boundary conditions (22) are

v̄x = v
sinh(y/λ)

sinh(h/λ)
+

(wh − w−h)

2

[cosh(y/λ)− cosh(h/λ)]

sinh(h/λ)
, (23)
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w̄z = v
[cosh(y/λ)− cosh(h/λ)]

sinh(h/λ)
+

(wh − w−h)

2

sinh(y/λ)

sinh(h/λ)
+

wh + w−h
2

. (24)

For the antisymmetric Couette flow v̄x(0) = 0 and, therefore, the angles are related as wh = w−h. In
this case the velocity profile is fully antisymmetric

v̄x = v
sinh(y/λ)

sinh(h/λ)
. (25)

As an example, the mean velocity distributions (25) for different parameters λ/h are shown in Fig. 11.
Note, that when h/λ� 1 the mean velocity profile is linear v̄x ' v y/h.

5.2 Couette flow with vortex tubes rotation

Let us consider fully developed turbulent flow, in which the vortex tubes on average rotate with a constant
angular velocity ω̄z = const, but with different phases ϕ̄z(y). We will look for a solution in the following
form:

v̄x(y, t) = v̄x(y),

w̄z(y, t) = 2cω̄zt+ ϕ̄z(y).
(26)

Then the equations (3) take the following form:

−λ∂
2v̄x
∂y2

+
∂ϕ̄z
∂y

= 0,

−λ∂
2ϕ̄z
∂y2

+
∂v̄x
∂y

+ 2ω̄z = 0.

(27)

As the boundary conditions, we choose
v̄x (h) = v,

v̄x (−h) = −v,

ϕ̄z (h) = ϕh

ϕ̄z (−h) = ϕ−h,

(28)

where ϕh and ϕ−h are certain phases.
The solutions of equations (27) are written as

v̄x = αv
y

h
+ (1− α)v

sinh(y/λ)

sinh(h/λ)
+

(ϕh − ϕ−h)

2

cosh(y/λ)− cosh(h/λ)

sinh(h/λ)
, (29)

ϕ̄z = (1− α)v
cosh(y/λ)− cosh(h/λ)

sinh(h/λ)
+

(ϕh − ϕ−h)

2

sinh(y/λ)

sinh(h/λ)
+
ϕh + ϕ−h

2
, (30)

where we introduce the dimensionless parameter

α = −2ω̄zh

v
. (31)

Let us consider fully antisymmetric Couette flow. In this case we assume that v̄x(0) = 0 and, therefore,
the phases are related as ϕh = ϕ−h. Then we obtain the following distribution of velocity

v̄x = αv
y

h
+ (1− α)v

sinh(y/λ)

sinh(h/λ)
. (32)
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Figure 12: Distributions of the mean-velocity in a turbulent Couette flow. Squares (�) are the exper-
imental results for Re = 2900 [6]; solid red line corresponds to (32) at λ/h = 0.16, α = 0.3. Circles
(©) are the experimental results for Re = 18000 [6]; solid blue line corresponds to (32) at λ/h = 0.09,
α = 0.24.

As an example, in Fig. 12 we show the comparison of mean velocity distribution (32) with experimental
results for Couette flow with Re = 2900 and Re = 18000 [6].

Figure 13: Distributions of the mean-velocity in a turbulent Couette flow between two moving plates.
Squares (�) are the results of DNS with Re = 3000 [54]; solid red line corresponds to (32) at λ/h = 0.18,
α = 0.165. Circles (©) are the DNS results with Re = 12800 [55]; solid blue line corresponds to (32) at
λ/h = 0.072, α = 0.189.
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In addition, Fig. 13 demonstrates the comparison of solution (32) with the DNS results for Couette
flow with Re = 3000 [54] and Re = 12800 [55]. In all cases the fitted velocity profiles are in good agreement
with the experimental data and the results of the DNS.

6 Plane turbulent Poiseuille flow

In case of plane Poiseuille flow in a channel with fixed walls (Fig. 14), the fluid moves under the action
of a pressure gradient.

Figure 14: Sketch of a plane turbulent Poiseuille flow in a channel between two infinite plates.

Let us consider a steady-state turbulent flow. In this case the equations (3) take the following form:

−λ∂
2v̄x
∂y2

+
∂w̄z

∂y
− g = 0,

−λ∂
2w̄z

∂y2
+
∂v̄x
∂y

= 0,

(33)

with the following boundary conditions

v̄x(h) = v̄x(−h) = 0,

w̄z(h) = wh

w̄z(−h) = w−h.

(34)

The solutions of system (33) are

v̄x =
(gh− wh + w−h)

2

[cosh(h/λ)− cosh(y/λ)]

sinh(h/λ)
, (35)

w̄z = − (gh− wh + w−h)

2

sinh(y/λ)

sinh(h/λ)
+ gh

y

h
+

wh + w−h
2

. (36)

The normalized velocity distribution (35) for different parameters λ/h is shown in Fig. 15. The
normalization is v̄x/v̄0 (where v̄0 is the velocity at y = 0).
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Figure 15: The profiles of the mean velocity of turbulent Poiseuille flow (35). The dotted green line
λ/h = 1.1; dashed blue line λ/h = 0.2; solid red line λ/h = 0.085.

Figure 16: The distribution of mean velocity for plane Poiseuille flow. Experimental data are shown by
circles (©) [17]. The solid red line corresponds to the profile (35) with λ/h = 0.17.

As an example, in Fig. 16 we demonstrate the fitting of the experimental velocity profile [17] by the
normalized distribution (35). This figure shows the good agreement between the calculated profile and
the experimental data.
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7 Turbulent Poiseuille-Couette flow

Let us consider the combined Poiseuille-Couette flow in the channel, when one wall moves with speed v
while the other one does not move (Fig. 17). We assume the fully developed turbulent flow, in which the
vortex tubes on average rotate with a constant angular velocity ω̄z = const, but with different phases
ϕ̄z(y).

Figure 17: Sketch of a plane turbulent Poiseuille-Couette flow in a channel with one wall moving with
speed v.

Let us look for a solution in the following form:

v̄x(y, t) = v̄x(y),

w̄z(y, t) = 2cω̄zt+ ϕ̄z(y).
(37)

In this case the equations (3) are rewritten as

−λ∂
2v̄x
∂y2

+
∂ϕ̄z
∂y
− g = 0,

−λ∂
2ϕ̄z
∂y2

+
∂v̄x
∂y

+ 2ω̄z = 0.

(38)

We choose the following boundary conditions

v̄x (h) = v,

v̄x (−h) = 0,

ϕ̄z (h) = ϕh

ϕ̄z (−h) = ϕ−h.

(39)

The solutions of these equations are

v̄x =
[2gh− (ϕh − ϕ−h)] [cosh(h/λ)− cosh(y/λ)]

2 sinh(h/λ)

+ v

[
ε

2

y

h
+

(1− ε)
2

sinh(y/λ)

sinh(h/λ)
+

1

2

]
,

(40)
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Figure 18: Distribution of mean velocity for Couette-Poiseuille flow in channel with moving wall. Circles
(©) are experimental data [17], solid blue line corresponds to the profile (40) with ξ = 0.006, ε = 0.65,
λ/h = 0.155.

Figure 19: Distribution of mean velocity for Couette-Poiseuille flow in channel with wall moving in
opposite to the flow. Circles (©) are the DNS data [19], solid blue line corresponds to the profile (40)
with ξ = 0.014, ε = 0.6, λ/h = 0.17.

ϕ̄z = − [2gh− (ϕh − ϕ−h)] sinh(y/λ)

2 sinh(h/λ)
+ gy

+ v
(1− ε)

2

[cosh(y/λ)− cosh(h/λ)]

sinh(h/λ)
+
ϕh + ϕ−h

2
,

(41)
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where we introduce the dimensionless parameter

ε = −4ω̄zh

v
. (42)

To compare with experiment, we normalize the distribution (40) to the mean velocity at y = 0. As an
example, Fig. 18 shows the correspondence between the velocity profile (40) and experimental data [17].
The dimensionless parameter ξ = gh/v characterizes the relationship between the main flow velocity and
the wall velocity. If the wall moves against the main flow, then in solution (40) the sign before the second
term is changed. As an example, Fig. 19 shows the correspondence between the normalized velocity
profile (40) and DNS data [19]. The figures 18 and 19 show that the calculated mean velocity profiles are
in good agreement with the experimental data and the results of the DNS.

8 Concluding remarks

Thus, we have considered various types of plane steady-state turbulent flows within the simple model
based on the equations describing the vortex motion of viscous fluid. In this model, the main parameter
describing the characteristic spatial changes in the velocity profile is the turbulence scale λ, which is
determined by the eddy viscosity of the flow [50].

In the case of near-wall turbulent flow over a flat plate, the parameter λ completely describes the
velocity profile. The increase in velocity from 0 to v∞ occurs asymptotically. However, to compare
the model profiles with the experimental data published in the literature, we artificially introduced a
boundary layer with the effective thickness δ. In this case, the parameter δ is the spatial scale on which
the velocity increases, and the character of the mean velocity profile in the near-wall region is determined
by the ratio λ/δ. This approach makes it possible to compare the results of model calculations with
experimental data on velocity profiles in turbulent flows with low Reynolds numbers, as well as in a
flow near the leading edge of a streamlined plate (see Fig. 6). However, to describe the flows with high
Reynolds numbers, we had to complicate the model and take into account the averaged rotation of vortex
tubes in the boundary layer. In this case, along with the parameter λ/δ, the velocity profile is described
by an additional parameter β, which is determined by the ratio of the angular velocity of the tubes
rotation to the main flow velocity. This allowed us to more accurately describe the velocity profiles for
flows with high Re over a flat plate and over a plate with an obstacle (see Figs. 7 and 8).

The Couette and Poiseuille flows occur in a channel between two walls, and here an additional spatial
scale, the channel width 2h, appears naturally. Within our model the near-wall change in the Couette
and Poiseuille velocity profiles is also determined by the turbulent length and depends on the parameter
λ/h. This allowed us to qualitatively approximate the profile of the plane Poiseuille flow in the case of low
Re (Fig.16). However, as the calculations showed, for a agreement between the model and experimental
velocity profiles in the turbulent Couette flow, it is necessary to take into account the rotation of the
vortex tubes. In this case, the additional parameter α (determined by the ratio of the angular velocity
ω̄z and the wall velocity v) mainly controls the slope of the profile in the central region of the channel
(Figs. 12 and 13). In addition, we have shown that the proposed simple model satisfactorily describes
the velocity profiles of combined Poiseuille-Couette flows (Figs. 18 and 19). All calculated mean velocity
profiles are in good agreement with the experimental data and the results of the DNS.

We believe that the proposed model of plane turbulent flows, based on the equations for vortex flows,
can be used for a qualitative consideration of problems in hydrodynamics. Further extension of this
model can be realized by considering composite flows and by varying the boundary conditions.
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[41] M. Tanişli, S. Demir, N. Sahin, Octonic formulations of Maxwell type fluid equations, Journal of
Mathematical Physics, 56, 091701 (2015).
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