
Bundle Gerbes and Euclidean Apartments
Ryan J. Buchanan | Roseburg, OR

rjbuchanan2000@gmail.com

Abstract
We continue from our last session on𝔼∞-spaces. Here, we discuss apartments as graphs. The

radial completion of the apartments relate to bundle gerbes and also Mochizuki’s ideas of the 𝜃-link.
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Chapter 1 | Bundle Gerbes
Wewill start with the most trivial construction. Let𝒰 be a U(1)-bundle. The bundle gerbe

multiplication is given by the isomorphism:

𝒰
𝑦

1

* ⊗ 𝒰
𝑦

2

⊗ 𝒰
𝑦
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* ⊗ 𝒰
𝑦
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≃ 𝒰
𝑦
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* ⊗ 𝒰
𝑦

3

describing a bundle gerbe (P, Y) with𝒰 acting on Y such that P= .δ𝒰
Assume thatQ is an integral scheme, which is classi�ed by a stackQStk. We de�ne an n-fold

cover as a twist of the trivial gerbewhich covers some smooth section of alcoves, mod torsion. In order

to do this, we write the torsor 𝔱𝔬𝖗𝔰( ), and assign to it a display:𝑢
^

𝔱𝔬𝖗𝔰( ) → ,ϕ
𝑛
: 𝑢

^
Ω

𝑢
^
𝒰

which is e�ectively a covering sieve for each of the analytic elements of𝒰. For instance, we have the
classical Hermitian immersion

𝔱𝔬𝖗𝔰( ) ↪ ,ϕ
2
: ℝ Ω

ℝ2^
𝒰

which foliates a copy of a hyperbolic space which locally approximates . This is called a “geodesicℝ2

lamination” in the literature; see, e.g. [M.M.].
Right o� the bat, we see the utility of working with bundle gerbes; for starters, they are typically

pretty general objects, which means they have utility in lots of situations. Secondly, a bundle gerbe may
have an obstruction to lifting to some stack, such as

,ℝ ⇸
𝑖
 ℂ∪{∞}
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which means that they are also used to compute topological invariants1.
LetK1be an open cover of a Kolmogorov spaceK0. We write by

U(1) × ℤ ×U(1)→ ℤp⋍M
the set of all automorphisms of ℤwith torsion class induced by a prime integer. This gives us a p-adic
covering of the space rep(ℤ), which realizes the �eld of integers. E�ectively, this is a “twisting” of the
original space; we see that, in the modular variety of ℤp, hyperbolic curvature is introduced by setting
exp(p) to be a valid function of the inner model ofM. Whence there is no k-rational splittingM kM’,⇉
we say that there is an obstruction to surgery on the manifold m�d(ℤp). This is simply because there are
not enough divisors for the relevant invariant, in this case some unspeci�ed ideal, 𝖎, which determines
the Ricci �ow overM.

Whence observing an obstruction to surgery, one obtains a signi�cant amount of information
about the constituent submanifolds which one wishes to isolate. One interesting question is, “is there a
way to ease such an obstruction?” This gives a clue as to what extent the perverse structure obtained by
deforming a structure is actually related to the genuine manifold(s) one wishes to obtain.

A good way to do this is to introduce some projective measure, ℙ𝜇, which physically
corresponds to the Kerr metric.

ℙ𝜇= = ,𝒰
𝑦

1

⊗
𝑑
∑  𝒰*

where is the sum of all orthonormal vectors raised to the power of the number of dimensions of the
𝑑
∑

system being measured. We then apply the formula

0

π

∫(1/2)𝑠𝑖𝑛θ𝑑θ 𝒰* = 𝐿𝐼

to obtain the Louisville current of a time-dependent equation varying periodically in degree. This type
of a metric is actually very nice for certain spaces with holomorphic displays, for instance Teichmüller
spaces, and spectral slices of𝔼∞ spaces. As it turns out, we can relate LI to the Chern class of a 1-cocycle
by the formula

= -1,𝐿𝐼  𝒰*𝔹

where -1 the inverse of the fine structure constant. This provides us the -link𝔹 θ

θ𝑅:  𝐿𝐼 ⇒  𝒰Ω
κ

ℙ
µ

such that a right action on the matrix of the current provides an appropriate approximation of some
corresponding eigenstate of a complex system. The bundle gerbe is used to provide a “test geometry”

1 See [Ger].



for the compass, so that its trivial �ber bundles can act via nilpotent rotations and thus minimize the
work required to form an adequate representation of the underlying invariants.

Indeed, the trivial bundle gerbes is about the simplest structure one might ask for in terms of
analyzing the periodicity of a group of functions. It allows one to associate to each Lie group a
hypercharge direction, H, corresponding to a smooth deformation of charts under a coherent atlas.
That the atlas is coherent follows from [E], where we proved that period-preserving maps are at least

quasi-coherent, and from the fact that both sides of the transformation have a common -link.θ𝑅

Proposition 1.0.1Any monadT=( ,𝖌,𝒰) can be used to generate a Serre-�bred space.θ
ProofWe let 𝖌 be a small category with a group-like structure. We would like here to introduce the
notion of a Thurston measure2, de�ned as

𝜇
𝑇𝐻𝑈𝑅

= 𝑙𝑖𝑚
←

Ω
*
⊗

θ
𝖌

We let there be an admissible monic →𝔸n into a category with a�ne presentation. ThenT𝜇
𝑇𝐻𝑈𝑅

generates, by 𝖌-action, the a�ne space, which has as its pullbacks Serre �brations.
A U(1) bundle gerbe acts on these Serre-�bered objects, which are 1-connected; however, they

are not only �brations of simply connected spaces. Let𝒩2 be the two-torus. Then ={*} for two𝜇
𝑇𝐻𝑈𝑅

distinct points, and is densely equal to the image of a Hopf �bration elsewhere. As by [ger], we identify

with the 2-form3 𝜌. That 𝜌 is integrally closed in follows from “transporting” left inverses𝜇
𝑇𝐻𝑈𝑅

Ω
*

along the compass to alternate orientations, notably by deforming the constant 𝜋. This transportation
is the current of geodesic laminations as de�ned previously, but for which we lacked a �nal notation.
We write 𝜆CUR for the generalized current on aMinkowski or other (2n±k)-manifold.

De�nition 1.0.2 The generalized current (of a compass, manifold) is the capacity to realize a curl
functor at any given spatial point using a locally constant function. We write it

𝜆CUR= =∮ /t,∇
~

{*}
 Σ‾

where t is the time dimension.
Proposition 1.0.3 For two mutually orthogonal manifolds o1, o2, assuming polarity distinct, there is a
di�ering canonically graded truth value, assuming truth values follow a monotonically decreasing
discrete chain from the sup-pole of a compass to the inf-pole, or vice versa.
Proof Since we have distinct polarities, and a �xed object in motion as the target of Scene→, we have
Rat( ) > Rat( ), for an arbitrary algebraic character in [0,1]. A �eld of scalars equipped withτΣ Σ τ
multiplicative potentials has more possible outcomes than the outcome of a set of potentials itself.

3 Loc. cit. Pg. 6

2 See [Cur]



The Kerr metric characterizes trans�nite and generic spectra in the fashion that ℙ𝜇(*) → ℙ𝜇(*)
does not preserve polarity, which makes it subject to distinct lensing conditions given on the choice of
display block. A bundle gerbe takes a kernel of the source and maps it to a co�bration of the target,
thus -linking them together.θ

{ }n≃𝛩 𝛴n𝔹
-n±

This is amusingly similar toRapoport-Zink spaces, and in fact, that’s because this is a derived version of
that synthetic concept. We introduce two new ghostmodes of polarity; 𝕓±, and {*}-1. These are
accessible through n-chains of forgotten i-truncated data, in some hypothetical model where it is
obtainable. This data reliably forces a transfer of witnesses from the left-hand side to the right, and vice
versa.

The Liouville current was a single example of an automorphic kernel which splits at the
co-kernel level. It is recognizable because it was colorful, but there are other, more transparent
formulations of these currents. For instance, take any field, , and let 𝔢𝓍 be its extension. Assuming𝔉 𝔉
tame inverse limits are preserved under

lim←(fi): → 𝔢𝓍,𝔉 𝔉
we can take the Dixmier Douady class of the gerbe bundle𝒰 𝔢𝓍 and obtain (a) segment(s) of a Hodge𝔉
�ltration. The ghost modes show up as iso�brations → ’, which are projective, but not exact onto𝔉 𝔉
the extension of . We can always take the carrier set, c( ), and transform it into a compact moduli𝔉 𝔉
center, MOD so that the lensing of the space then conforms to a hyper-conformal boundary, consisting𝔉
of at least a complex analytic locus, and two or more real loci. We then say that the function

P: → *’𝔉 𝔉
Is the proper topos for the generalized kernel to comport with a (2n±k)-manifold of arbitrary
representation.

This is an example of fi being inserted as aminiscule cocharacterwhich generates a product of
, “for free.” Here, i is an alcove, and f is a small-category fusion rule. By this, we mean that since fi is𝔉

already “cohomologically a�ne”4, so is the space to which it vanishes as a representation.

∈ Pϵ‾Ω
𝑥

𝑦
δ

𝑖 →
𝑓

𝑖

4 [gms], pg. 7



De�nition 1.0.3An object 𝔱 is called an adic brake if every torsionfree subclass generated by the
weakly chained space p±n is the centralizer of a locally perfect ring. | An adic bake is the one-point sum
over a pluripotent packet of Gaussian di�usion data.

The sum is taken at the negative nth term and rendered absolute at the positive nth.

1.1 Scenes with multiple displays

A scene with multiple displays, obeys the �ber-product rule ↦f(p±n). Each of theϕ
𝑖
,..., ϕ

𝑛
ϕ

𝑖
∩

𝑛
∑ ϕ

𝑛

intersecting a�ne surfaces summed over are cotangent to at least some locally small manifold.
The functional form, f(p±n), in particular should not be thought of as having a strong

representation; rather, it is a more general shtuka, and is something like a formal power series

𝑥𝑎...𝑛

This is somewhat justi�ed, as the i-truncated (portion of a) braid group over 𝖎{...} is e�ectively lensed,
and so has either a tightly or loosely laced presentation. Here, {...} is the adic brake of the intermediate
ring of sums.

An interesting result (at least to the author), springs from supplying each character in the chain
a unique sub-object identi�er, say as a subscript. Then, one obtains

𝑥
0

𝑎
1

...
𝑛𝑛

where the subscript is forgotten after, e.g. 1. In this example, we are working with a Boolean base, but it
may be extended by an easy extension of the diagonal. So, {...} is actually amorphism, a1→… nn; by
exponentiation of sets, we let nn denote the number of self-maps (automorphisms) of n, and thus, {...}

is a functor which produces a vocabulary of at least . Thus, our original example, , obeys2ω 𝑥𝑎...𝑛

Cantor’s diagonalization argument, and is therefore isomorphic to ℝ. Here, we analytically continue
this to any Hermitian space.

Put another way, a1…𝛩nn describes a space obeying the Susslin chain condition, forming a
Countryman line from 0+1 to n. This is a link from the binary regime to the polymodal sup-pole.

1.2 Categorically extending objects along a gerbe
Let be a one-object category. Let there be an arbitrary map b to a category with many𝑎 𝑎→

objects.



Where do we insert a? Well, some intuition tells us that it is perhaps at the boundary, as all
sections of the one-point space are isomorphic to their own boundary. However, we can also instead
choose to insert it randomly into a nucleus of the graph; that is, a section of n-separated spaces which
are locally at the center of the graph.

Now, one has that , as a single object, with pluripotent determination, has some more or less𝑎
probabilistically determinant realization, which is forced by the distance metric at the boundary. So,

∝cent Bn𝑎
becomes the correlation from an otherwise information-free packet and some gravitational centralizer.
Here, we are letting the subscript denote an inertial stabilizer, which is simply to say a stabilizer in the
inertial stack I𝚫.

This is interesting, because it means a higher number of balls are determined by amuch lower
number! This is a sign that the probabilistic determination between the two events, the central element,
and the large-neighborhood representation, is sharp! Now, by coupling time to a by ↔t, we have𝑎
some quantity of information contained in that time, logk(n+a).

To explain this, we use black hole phenomenology; the relatively minimal in brightness can
appear to have a surprisingly intricate spectral distortion if it were possibly fathomable. Thus, they
mirror white light by creating the dual phenomenon. This is seen as a re�ection of sets

→ SetsΣ
𝑖

We have so far been interested in the -space version of this story, but now we will shift our point ofΣ
∞

view to thinking of miniscule alcoves.

Chapter 2 | Miniscule Alcoves
Recall from our retelling of the Bruhat-Tits story that an alcove, 𝜆, isminiscule, if it is generated

as a rational quantity by a tiling space invariant.

This gives to 𝜆→ 𝜆 (𝔉), where 𝔉 is any su�ciently large �eld, a nice one-to-one1
ξ

correspondence with certain hyperbolic metric spaces, namely the anti de-Sitter Spacetime and the
conformal variety of, speci�cally,Tgm.

For the �rst set of n apartments, a correspondence between the generative factor and the
opf-map into a real Lie algebroid. For any apartments thereafter, there is an unspeci�ed cardinal
invariant, which is presumably inaccessible to us. We identify the cokernel, id𝛿, as a real representation
of some geometric constant. So, there is a “kite” (a certain diagram), which includes

Id𝛿× Id𝛿-1→op 𝔹,
where (�b(x)) is the function mapping co-kernels to terminal objects in separate slice categories.ϕ

𝑜𝑝

This is because the �at morphisms Id𝛿→ 𝔹 are tame for all lim← 𝖎𝕓±.



Id𝛿 ⇄ Id𝛿× Id𝛿→ St(X,Y) ≃𝕄ST

𝛿ij ≃M ≃HUR ℂz

2.1 Example of a unique witness which is not transcendental
Using the zero-cycled Chow group, we have:

→ 𝜖𝔎𝐶𝐻
0
δ

𝑖

When corresponds to the Witt ring completionW( ), there is the obvious trivial mapδ
𝑖

𝔎

Hom(CH0,W(k))→ 𝜖 ét. This functor is algebraic over any smooth stack, and some discrete stacks as𝔎
well.

2.2 Curve complexes with transcendentals

Let𝒞(S) be a based curve complex. Then, we can write the transcendental ordinal 𝜅 as a•

strictly decaying zero-object in the category of sets with superreals. If there is a re�nement for every
similitude over 𝜅, then we say 𝜅→{*} is a supercompact cardinal. We say that the uncountable set of
in�nite elements preceding {*} is a super compact chain, and that element of the *-chain is *-small.

If there is a bijective isomorphism between every member of the *-chain, and some object at the

site of𝒞(S) , then it ought to be a genuine isomorphism. This constitutes a foliation by of the• λ
𝐶𝑈𝑅

base space of a retract from an uncountable ordinal to {*} through the reduction morphism. The
complex of interactions

𝒞(S) ↔HUR {*}•

is written by and is given an auto-equivalence of p(ol)arity {*}↔ We call this equivalence the∆
~

•
Walsh-Hadamard transform.5

This is a function bringing phase spaces to a space with an quasi-isotropic potential, with, in
general, anisotropy being generated by the relevant transform. This is at first a binary process, but
quickly spirals into a process of very large p-arity. This gives to a �xed point in a geometric
representation the property that it is the reducer of a Witt group of n-potentials.
ExampleTake the 𝕃4Minkowski light-cone embedding a 3-potential at the nucleus.
Example 2A cobordism with a singularity at the zipper is reduced to a point “at in�nity.”

So, for some shaped space 𝕊, we have the compacti�cation 𝕊→ r on the transform
(Walsh-Hadamard) manifold.

{St(X,Y) ⇉𝕄ST(X,Hom(Y,𝒰))⬤|X~𝕃4,Y~ℂ𝔹},

5 See, [ben]



which is “tame” at a point! This point is then known as a 𝜃-adherent point, as the “vector direction” of
a codomain of linear, pointed objects “adheres” to some point, 𝜃𝜀 in𝕄ST(X,Hom(Y,𝒰)), where𝕄ST

is the mapping stack class.
Example 3The “Hilbert sphere” is a space, ℂ𝛴, “equipped with” a reductive (supercompact) “point at
in�nity.” ℂ:ℂ∪{∞}
2.3Miniscule Alcoves with Inertial Subweights

Let a complex be a regular Newton polytope, and let it admit �at decomposition into faces.𝑁
~

We have, for vertices only connecting to edges on the boundary of the polytope, a number of “alcoves”
into which the polytope may be decomposed. Each of these, according to the proportions ,𝑠𝑖𝑛θ𝑑θπ𝑖𝑘
are arranged so as to create analytically continuous shapes, according to a hyperbolic “smoothing” of
each neighborhood adjoining a vertex.

According to the GIT (invariant) number of each, we assign a -link to each extremal pointϕ
θ

nk.

: nk →ϕ
θ

∆
~

𝑁
~

According toMochizuki, the left and right objects are called “mutually alien copies;” they are perhaps a
generalization of mutually orthogonal Lie groups.

For a superposition of two such right objects, we have a strong action, and a weak action. The
weak may be either top or bottom, and the strong are contrary. We have:

(1-|nk|)=𝒾,𝑠𝑖𝑛θ𝑑θπ𝑖𝑘
where |–| is the polarity of a polarized hyperbolic vertex. We call each 𝒾 an inertial subweight of the
Newton polytope.

𝒾(𝔉) ⇉Hom(X,Hom(X,Y)) ≃ 𝔢𝓍 ≃𝔉 ∆∪ •
~

We have the formula

𝒾(Hom(X,Y)) ≃ 𝛴 𝒾ϕ
for describing how an analytically open set of a Hermitian manifold behaves in correspondence with a
set of regular -displays.ϕ

For each inertial sub-weight, s, there is a unique miniscule cocharacter corresponding to the
reducer of s.
2.3.1 Hom-sets of alcoves

For each generative factor, , there is an object in the direct sum of scenes with real1
ξ Λ ⊕ Λ

loci. We denote the hom-set between each object associated to a generative factor by , and call anΛ Λ
“apartment” (of a Euclidean building).



An apartment, in more modern terminology, is essentially a “sheaf” whose germs are all alcoves.
More or less, if there arem stalks of , then stalkm is called the “closure operator,” and is the functorΛ
m: → . In my own words, I have called this the “radial completion” of a regular graph.Λ Λ

Hom( , ) ⊢ | |rΛ Λ Λ
With r the regularity of the graph.

Remark 2.3.2Map(Hom( , )) gives the relevant picture in𝕄ST. A building is the higher-orderΛ Λ

closure of a sheaf.Λ‾‾

Map(( 𝔢𝓍,Hom( , )),( )):proét𝔉 Λ Λ 𝔉

Chapter 3 | The Countryman Line
Let w:p1→p2 be a walk between two poles of a compass. Let the compass be such that the

universe 𝔘( ) encloses a �eld of uncountable cardinality. Then, we call w the Countryman line. ThisΩ
•
•'

line is a �ow-minimizing geodesic from the inf-pole to the sup-pole, or vice versa. It corresponds to a
count of the cardinal invariants of a metric space’s diagonal.

w2 : (–)FIN→Sets
WarningThe map from (–)FIN does not imply that w is countable; only that wwith right-action obeys
the countable chain condition. w is the span of a (possibly imaginary) space.

The countryman line is the union of an in�nite number of countable shaped sets, in this case,
tiles such as alcoves. They are the projections at the diagonal of a space generated by its set of bases.

Example Let S1×S2 be a fuzzy set of truth values. Then one obtains ℝ2, which is strati�ed by the
continuous line w.
Example 2 Let𝒮\s,s∈𝒮 be two distinct, complimentary sites. Then, the countryman line forms the
projector

Projs→Kolm𝒮i ×𝒮i

which relates the sites as Kolmogorov spaces.
In our project, countryman lines will take more of a backseat role as we relate them to gerbe

bundles. In fact, it is rather easy to construct gerbe bundles which are contortions of countryman lines.
LetW be the countryman line. Then, we can coupleW to the indigenous bundle of Gunning,

and obtain:

W ￮𝔊-1 = ∇⊗𝛴i( ).𝒰
𝑦

𝑛

𝑧
𝑖

To this e�ect, we have an indigenous gerbe bundle.
Let𝒲P be the worldline of a traveling parton. Then, by lettingW=𝒲Pwe obtain a kink

around the reducer of𝕄ST, which here represents a locally small d-brane. If the kink is



non-commutative, then it is an obstruction to the �at immersion of𝒲P at the reducer. This makes fail to
be 𝕊Red polystable.

𝒲P| ⇥KOLM 𝕊Red∆
~

In these cases, the obstruction does not seem to admit a crepant resolution. Thus, the tension of a string
in the associated Kolmogorov space seems permanently “raised,” or suspended. This cannot be resolved
at the level of the building, or even apartment, but must be operated upon at the level of the alcove.

𝒲P| ≃ℂ/𝜉2∆
~

Here, the Hermitian kernel is stable under a slight modi�cation of the associated harmonic equations.
Proposition 3.0.1A stable kernel is Hermitian.
The co-kernels of the Hermitian kernels are ortho-regular projectors, and so H-kernels are more special
than Kolmogorov kernels. This is because
Proposition 3.0.2 AnH-kernel has as its adic brake the suspension morphismH-1→-1Kn.

Its special �ber has a convolution,WH→Kn-1, where coker(Kn-1) is an adically complete ring
spectrum. This is the classical Riemann-Hilbert correspondence in dim=2 classical and imaginary
dimensions, with a string (as a slice of ℝ2) exhibiting Minkowski-measurable tension.
Proposition 3.1.0 Let 𝔉 be any in�nite �eld. Then, 𝔉/W yields the diagonal of 𝔉2.
Proof It is clear by now thatW is the decomposition:

W: 𝔉×𝔉→ 𝔉𝛥

So, it follows for any �eld of in�nite length, and also for �elds of �nite length, since they satisfy a
weaker condition.
Proposition 3.1.1 If𝓡 is a �nite ring spectrum, thenW decomposes𝓡 into two locally ringed spaces
of �nite cardinality.

So, if L2p𝖃→ Lp𝖃 is a pair of mutually orthogonal hyperspaces, their “gluing space” would in
some sense beW.
Theorem 3.1.2The centralizer ofW, if it exists, is an adic brake.
Proof Let 𝒪→𝒪’ be a map between mutually orthogonal hyperspaces. If there is some element, whose
inertial weight is 𝛾, then we write :𝒪→𝛾𝒪’. That this is an adic break follows by extending →ϕ

γ
ϕ

γ
ϕ

δγ

along a trivial bundle gerbe.
One obtains the following diagram:



Letting be an earthquake mapMap( , ) along the diagonal of a compass. We haveϕ
δγ

δ + 𝑖 γ

MapFin( ) →Mapproét( ) →…→ 𝛴ϕ
δγ

𝓔
~

so that the �oor poles are successively removed as the chain becomes restricted to a real locus. The
top-left and top-right objects are both weakly chained covering maps of spaces. Cent is a bijection
between the set of perfect rings representable in each space. ↠ is an epimorphism which∇𝔹 ϕ

δγ

transforms the site-level base space into a sheaf of rings.

3.2 The generative factor and its relationship withW
Letting two distinct strata be called Lie strata allows us to dualize a building into sections of scalable
normal cones. These have a factor of ≥𝜀 referred to as the generative factor, which parameterize the
convexity of each unique apartment. The generative factor is reciprocal to the moduli center

1/Centx\int(Centx\int(mCentx)) =Cent❤,
for m some arbitrary factor.Cent❤ prescribes a flat metric to a distance, which is, in some blurrier
sense, tame.W can be re-sewn through the miniscule co-characters whichCent❤ generates.
3.2.1 Smallness ofW
We let < represent an “inclusion” relation, so that if A<B, then B covers totally A and some space
complement to A. Let ℵ be an arbitrary transcendental character, and say ℵ-sup(B)>ℵ-sup(A). Then, A
is smallwithin B; it is in fact both A-small and B-small, but it is A0-small while it is B1-small. If we have
an arbitrarily decreasing set of �elds,𝜔…C,B,A, then they are ringed spaces whose centers are (locally)
zero. The “smaller” �eld is that which bounds the zero elementmore tightly, and thus has a more
limited domain of absolute valuations to draw from.



We are philosophically motivated to discuss how “small” the Countryman line is. Arbitrarily, it
isW0-small; but, shall we allow that it is not transcendental over some �eld,N, then it isN>0-small.
However, for any compass C, we can de�ne a Countryman line whose compass shares the same
sup-pole as C. Thus, we are motivated to say thatWn itself is a valid sup-pole for any compass.
Proposition 3.2.2 For anyGrothendieck universe, 𝖀, there is an isomorphism 𝖀(–)↔Wn(ℙ).

This �nal statement relies on the equivalence of sup-poles in a compass with the polarity of a
weakly Abelian Lie group. We can make a smooth transfer (of schemes) between the two and leave
having preserved most of the desired generic properties. So,

Proj(𝕄ST(P, Y))→Wn(ℙ)
gives the desired functor from a bundle gerbe at a mapping stack and a geometric space. Here, we make

let the left-hand side be a pole encompassing 𝖀(–), and we write to relate the genericΩ
*
𝑃𝑟𝑜𝑗(𝕄𝑆𝑇(𝑃, 𝑌))

universe with a space whose countryman line divides it into a stratum consisting of “pure data,” and
“mapping stack data.”

Proposition 3.2.3 (F) de�nes an arbitrary spectral topos with sup(P,Y)=1.Ω
*
𝑃𝑟𝑜𝑗(𝕄𝑆𝑇(𝑃, 𝑌))

Proof Let 𝖀(–)=𝖀(𝜕𝔹) be a weakly chained space, whose �nite joins are all simply connected. Then,
the underlying lattice is complete. Since the co-zero components of the map

𝖀(𝜕𝔹) →cozWn(ℙ)
all vanish at a point {*}, we set that to be our inf-pole. We use this result to brie�y make the statement
that all automorphisms 𝖀(𝜕𝔹) → 𝖀(𝜕𝔹) are cohomologically a�ne.
Proposition 3.2.4 For an alcove, a, and a space K, the alcove is K3-small.
Proof By counting the chain a⊂apartments⊂building⊂K, one obtains this result.

Proposition 3.3.1 Every building is a geodesic lamination of ℙn\W.

ProofWe let rk be an underring ofW. An earthquake : rk→rk-n acts via torsion on ℙn. Thus, for𝓔
~

every representable Lie group 𝖌, there is an action . Integrating gives us a foliation of theλ𝓔
~

∫
𝑊

λ𝓔
~

projective space, where every point inW corresponds to a bounded neighborhood of truth values.
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