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Abstract

In this hypothesis, a possible extension of Einstein’s field equations will
be presented which is reduced to his field equation by contractions. Basic
concepts such as the description of the inertial system or the definition of a
physical observer are discussed. The field equation predicts the existence
of exactly four-dimensional space-time, as only in four-dimensional space-
time does this equation have an equal number of unknowns for each term
of the equation. The equation itself can be written in two mixed and fully
covariant forms:

Rρ
µσν − 1

2
Rσκg

κρgµν = κTµκg
κρgσν (0.1)

Rϕµσν − 1

2
Rσϕgµν = κTµϕgσν (0.2)

This model relates the field of matter to the curvature of space-time in a
direct way, if matter is not present at a given point in space, it is simply
flat space-time, which makes it a requirement that the momentum energy
tensor does not equal zero in the presence of space-time curvature. In this
work, i not give the exact solutions of the equations, only their derivation
and their form in a particular case. This paper is in two parts, first is
classical part, second one is quantum part that uses a complex spacetime
to make sense of probability in field equations. It turns field equation into
complex field equation and then from it it creates a scalar that represents
probability of finding particle in spacetime.
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1 Classic part

1.1 Description of the inertial system
According to Newton’s laws of motion, motion with constant velocity or lack
of it gives an inertial frame of reference. This definition can be simplified even
more that it is a system in which there are no forces associated with the mo-
tion of this system. Such a system does not feel the forces associated with its
movement. The key question is whether an observer under the influence of a
gravitational field can be treated as an inertial observer?

According to the equivalence principle, the gravitational field cannot be lo-
cally distinguished from the acceleration, on the other hand, omitting the tidal
forces, one can look at the inertial system as the system of any falling observer
in the gravitational field. This observer locally has no weight, no force acts on
him. There are two possibilities, either the observer is in uniform motion or the
observer is at rest. The first possibility can be ruled out for obvious reasons
only the second possibility remains, the observer in the gravitational field is
motionless. This means that every observer in the gravitational field that is not
subjected to any kind of apparent force connected with e.g. standing on the
surface of the gravitational field source or any other force is treated as an iner-
tial system. And according to this observer’s perspective, this gravitational field
needs to be described. This means that any non-inertial observer cannot see the
true cause of motion because there are forces in his system, so they exclude him
from being an inertial system. The description of the laws of physics and thus
motion must always be seen from the perspective of an inertial observer as only
he perceives the true cause of motion, which also applies to the gravitational
field.

An inertial frame of reference is defined as one which, under the influence of
a physical field, remains completely still from its own perspective, where this
stillness is defined only locally. This locality makes us ignore the tidal forces
that will naturally accompany the gravitational field, and thus the physical field
that is the source of motion. However, the definition of the physical field itself,
i.e. the gravitational field, the field that causes motion, is more delicate. It
results from the definition of the inertial system itself, physical fields are a field
from the perspective of which no inertial observer can be described as an inertial
observer, so he must be in motion relative to this field. This means that the
field itself cannot give us the whole picture of how motion physically occurs.
Only the perspective of a field that is the source of motion and an inertial ob-
server that is able to detect true non-relative motion as a combination gives us
a description of physical reality. Any motion that is relative depends on the
system in which it is measured, the physical field or simply the gravitational
field cannot be dependent on the system in which it is measured, it must be a
source of motion for every inertial observer.
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1.2 Light signals and their interpretation
The basis of the Theory of Relativity (Special) is the constancy of the speed
of light for each inertial system. This creates a transformation of the frame
of reference so that the speed of light is conserved for each observer. For two
observers observing an event of length ds, you can write this transformation as
a requirement ds2 = ηµνdx

µdxν = ηµνdx
′µdx′ν where prime coordinates are the

second observer. This means that the light signal plays a key role in building
the concept of distance in space-time. Consider a light signal propagating from
the point x then the space-time distance (interval) can be written as:

ds2 (x) = ηµνdx
µ (x) dxν (x) (1.1)

This means that distance is fundamentally linked to the ability to send a light
signal from a given point in spacetime. How a given observer measures axis of
time and space is not absolute, but the magnitude is. So what is its physical
meaning? A light signal sent from a given point in space-time determines that
event happening at that point in space-time. This means events are understood
as light signals propagating from every existing point in space at every possible
point in time. Of course, these signals do not have to be physically sent, it’s
just a geometric fact, so for a light signal, the interval is always zero ds2 = 0.
An event for itself has no distance from its beginning. Despite this, different ob-
servers will perceive differently how these events occur, the light signal does not
"perceive" the distance between itself and every other event. The light signal is
immediately located in that place and time in which the event is present from
the perspective of the given observer. This gives a fairly obvious interpretation
of how an inertial observer defines his laws of motion and how he perceives time
and space.

Since the observer is always stationary relative to the light signal emitted from
any point in time and space, this gives an additional important rule in deter-
mining motion, the observer is always stationary from the perspective of any
light interval, i.e. an interval with zero distance in time and space. The iner-
tia of this observer is always defined with respect to the event itself, or more
precisely with respect to space-time. The observer itself is always motionless
relative to any event that happens in space-time. So any truly inertial frame
of reference is defined by the impossibility of motion with respect to the event.
Thus, space-time consists of inertial observers and this inertia results from the
invariance of the speed of light for each observer, i.e. events in space-time.
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1.3 Observer definition
The observer is understood as a frame of reference capable of measuring time
(clock) and distance (ruler). The units of measurement must always be chosen
to express distance in time or space. This means that if I measure distance in
meters and seconds I have to express both units in meters or seconds, which is
achieved by multiplying time by the speed of light (meters) or dividing distance
by the speed of light (seconds). This is a fairly basic assumption in the Theory
of Relativity.

What is crucial for extending the field equations is the exact physical defini-
tion of the phenomenon for a given observer. A physical phenomenon is simply
such a phenomenon that meets the previous assumption, the observer is com-
pletely at rest relative to the event, which means that it is defined as an inertial
frame of reference. The previous definition, of course, only makes sense in the
case of flat space-time, so it is not a general case. To go to the general case,
it is necessary to define an observer in a gravitational field as still an observer
motionless relative to an event in which a gravitational field is present. Before
discussing free fall from the perspective of an inertial observer, one key point
needs to be addressed.

Space-time in the mathematical description must adhere to the principle ac-
cording to which the observer remains inertial to the event, this means that
locally, as in the Theory of Relativity, the observer locally measures flat space-
time, which is not true globally. The whole point of this paper is to show that
there are other field equations that reproduce this principle but with an addi-
tional condition. This condition is that the gravitational field is fully dependent
on the existence of a field of matter and/or energy at every point in space-time.
In the absence of matter at any point in space-time, these equations become
equations for flat space-time, which means that literally the source of devia-
tions from flat space-time must be the presence of matter at the point where
this space-time deviates from it, otherwise we get flat Minkowski space. There
is an additional principle that is central to this whole model and its assump-
tions, the equivalence of gravity and the field of matter. Which I will discuss
in more detail later in the section on the non-zero momentum energy tensor
requirement.
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1.4 Free fall
Fall of freedom is a basic gravitational phenomenon, the assumption is that
during free fall the falling observer remains motionless in relation to the grav-
itational field. Additionally, the gravitational field is equivalent to the field of
matter or energy. From these two assumptions, only one interpretation of what
happens in free fall can be gained that is consistent with experience.

Let us consider a thought experiment, I have an inertial frame U and a gravita-
tional field source U’, the mass of the frame U’ is much greater than the mass of
the inertial frame U so that the gravitational influence of the first frame is neg-
ligible. Since the system U is at rest, it means that the system U’ is in motion.
The first frame is approximately point-like and the U’ frame is a spherical mass
expressed by the energy density functions ρ =

∫ R
0

m(r)drc2

4
3πr

3 such that the integral

of m(r) is equal to the initial mass or rest mass of the system
∫ R

0
m(r)dr = m0.

Where R is the surface radius of this mass. An inertial observer perceives that
the motion of the U’ system is directed spherically in all directions as the rel-
ative size of this object "increases", the U’ system expands in all directions,
but when this system expands enough for the U system to hit it with surfaces
the size of both will not change himself. This means that both objects must
have experienced exactly the same expansion in space. This can be described
by the Ricci tensor and the equivalence of this tensor to the field of matter.
However, the units of the energy tensor and the Ricci tensor are not the same,
it is necessary to use Einstein’s constant, the whole thing can be written as:

R00 = nκT00 (1.2)

Where the numeric constant n is some number. The key here is that only the
time-time component of the Ricci tensor and the momentum energy tensor are
taken into account. Due to the fact that the geodesic lines move away from each
other or the volume form increases over time, this constant must have a negative
sign, so n = −a where a is a certain number. This means that the observer
U is stationary but time is expanding with the gravitational field source U’.
Objectively, both observers remain at rest, while time expands along with the
gravitational field. Writing the whole thing as an equation:

R00 = −aκ

∫ R

0
m(r)drc2

4
3πr

3
(1.3)

This equation is crucial for the whole of this work, it shows the equivalence
between the material field and the expansion of space-time and thus the inertia
of both systems U and U’ as systems that are physically stationary.
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1.5 Spacetime
According to the principle written in the previous chapter, gravitational systems
remain inertial. It should be remembered, however, that these systems are truly
inertial, they must meet not only the stationary in the gravitational field in the
classical sense, but also in the sense of the necessity of stationarity in relation
to the light ray sent from a given point in space-time. According to the Theory
of Relativity, this requirement can be written as a transition from flat to curved
spacetime:

ds2 (x) = gµν (x) dx
µ (x) dxν (x) (1.4)

gµν (x) =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ (1.5)

On the other hand, the space-time metric itself must be not so much arbitrary
as fulfilling the principle described in the previous chapter. To obtain this, we
need a gravitational field equation whose solution is a space-time metric satis-
fying this equation. Before proceeding to the derivation of this equation, it is
important to introduce all the rules that must be met so that such a space-time
satisfies the principle of stationarity of any system defined in this space-time.

This means that each system must be defined as inertial, while the structure of
space-time itself depends on the field of matter or energy at a given point. From
the previous chapter it can be deduced that the momentum energy tensor does
not disappear at any point in spacetime, it is necessary that the Ricci tensor
does not disappear with it. This is quite a simple rule, the farther from the
center of mass, the lower the density of matter, the closer it is, the greater,
the surface of this matter is only conventionally understood as the limit beyond
which the mass does not increase because the amount of matter, and more pre-
cisely the rest mass, does not increase. On the other hand, the density of matter
will continue to decrease indefinitely no matter how far we move away from the
central mass, which means that the gravitational field does not disappear and
the field of matter does not disappear with distance.

Since it follows from the assumptions that we are studying the deviation of
space-time from Minkowski space, the principle that the inertial observer should
be motionless relative to the hypothetical light signal sent from a given point still
applies. Combining all these principles into one principle, we get a space-time
consistent with this general idea of inertial systems. The last step to success in
this reasoning is to find field equations that satisfy this principle, fortunately
there is only one way to derive such an equation and doing so mathematically
complicates Einstein’s field equations. However, the assumption is that it gives
a better description of the gravitational field and reduces to the field equations
in a suitable way.
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1.6 Finding the field equation
The field equation must reduce to the Einstein field equations but this is only
one requirement, the second requirement is the stationarity of all observers rela-
tive to the light signal sent from a given point in space-time, the last requirement
is that the momentum energy tensor must not vanish at each point otherwise
we get Minkowski space. An equation that satisfies all these conditions is very
difficult to find without any mathematical clue, it turns out that all assumptions
are satisfied if we take only the first law. The field equations must be reducible
to Einstein’s field equations.

The Einstein field equations have ten unknowns, they consist of the Ricci tensor,
the Ricci scalar, the metric tensor, and the momentum energy tensor. I’ll start
by writing these equations without the momentum energy tensor, i.e. I’ll write
the Einstein tensor:

Gµν = Rµν − 1

2
Rgµν (1.6)

The key question is can there be a tensor that reduces to the Einstein tensor?
Well, yes, the Einstein tensor can also be written as two contractions of the
Riemann tensor and contractions of the Ricci tensor with the metric tensor:

Gρ
µρν = Rρ

µρν − 1

2
Rρκg

κρgµν (1.7)

Such writing of the Einstein tensor automatically yields a tensor whose contrac-
tion leads to the Einstein tensor. Now to get the tensor that I am looking for
I only need to change the index ρ to another index, in this case I will use the
index σ which will give me a new tensor:

Gρ
µσν = Rρ

µσν − 1

2
Rσκg

κρgµν (1.8)

For obvious reasons, this tensor reduces to the Einstein tensor, the problem is
that this tensor has 256 components, of which only 20 are independent in four-
dimensional space-time. Interestingly, this tensor has only the same number of
unknowns in four-dimensional spacetime, which can be written as an equality,
where on one side there are the number of independent components of the Rie-
mann tensor on the other side twice the number of components for a symmetric
second-order tensor:

n2
(
n2 − 1

)
12

= n (n+ 1) (1.9)

The solution to this equation is four-dimensional space-time, or zero-dimensional
space-time, I omit solutions with a negative number for obvious reasons. The
last step to complete the field equation is the other side of the equation, namely
the momentum energy tensor.
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1.7 Field equation
The last element of the full field equation is the momentum energy tensor, in
this case I need to write a tensor whose contraction leads to the momentum
energy tensor itself. I need to use the ρ and σ indices the same way as in the
Einstein tensor except that I want to get the momentum energy tensor not its
trace multiplied by the metric tensor. So a contraction is needed that leads to
the Knocker delta, I can write this part as:

T ρ
µσν = Tµκg

κρgσν (1.10)

It can be easily verified that in fact the contraction of the index ρ and σ leads
to the Knocker delta gκρgρν = δκν acting on the momentum energy tensor will
change its indices to be consistent with the rest of the equation, so I finally get
the field equation:

Rρ
µσν − 1

2
Rσκg

κρgµν = κTµκg
κρgσν (1.11)

It can be checked again that this equation reduces to Einstein’s equations with
the difference that there is not only one possible contraction, it means that the
field equation can not only be reduced to one equation but to several different
equations. Their common feature is that for a vacuum they all reduce to one
equation, the Ricci tensor is equal to zero. This results in their common fea-
ture, returning to the extended equation, as will be shown later in this work,
this equation meets all the requirements that are necessary for the observer to
always be motionless in relation to the event, i.e. simply space-time, which is
equivalent to a light signal sent from a given point of it, and additionally satisfy
this principle for the gravitational field.

This equation, however, is quite a complicated equation and is at the cost of be-
ing mathematically more complicated as a whole than Einstein’s field equations
on the other hand, it is possible that this equation solves problems that are
observed in cosmology (dark matter and energy) and does not require addition
to the gravitational field no additional ingredients to make certain predictions
match them. The cost of this is the mathematical complication of the gravita-
tional field equations, where already difficult field equations become even more
difficult to solve. The principle on which these equations are based can also
be highly controversial as gravity acts as an attraction here this attraction is a
kind of illusion in fact we are talking about the expansion of time which looks
like an attraction from a certain perspective. However, it gives a theoretically
reasonable description of every observer as inertial, which also applies to the
gravitational field.
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1.8 Requirement for a non-zero momentum energy tensor
The extended Einstein tensor for a vacuum will always give a Minkowski space.
This can easily be proved if I zero the components of the Riemann tensor by
setting all indices equal to each other, I get:

−1

2
Rσκg

κσgσσ = 0 (1.12)

This equation will end up with a Ricci tensor equal to zero, I can rearrange it
in two ways, the first way is to write the equation as a Ricci scalar times the
metric tensor is equal to zero but remember that there are components of the
Ricci tensor in the equation, so I can use the metric tensor identity which will
give E equality of diagonal elements Ricci tensor of zero:

Rσσ = 0 (1.13)

So I used the fact that the metric tensor gives the Knocker delta δκσ , that’s part of
the equation, but since the Ricci tensor is equal to zero (its diagonal elements)
then whenever there are diagonal elements of the Ricci tensor, the Riemann
tensor will also be equal to zero. You can prove from this equation that if all
the diagonal elements of the Ricci tensor are equal to zero, the Riemann tensor
will also be equal to zero. I’ll write the field equation again only this time for
the diagonal components of the Ricci tensor, where I take into account that if
the Ricci tensor has non-diagonal components it gives zero so only the diagonal
components of the metric tensor are allowed:

Rσ
µσν − 1

2
Rσσg

σσgµν = 0 (1.14)

Rσ
µσν = 0 (1.15)

Rµν = 0 (1.16)

Which ultimately gives the Ricci tensor, which is always zero, and therefore the
Riemann tensor, which is always zero:

Rρ
µσν = 0 (1.17)

Which proves that the momentum energy tensor must be nonzero at every
point in space for the equation not to result in flat spacetime. The extended
Einstein tensor is zero, so for vacuum it just gives Minkowski space. Here the
two equations are completely different from each other in relativity there are
solutions for vacuum here there are no solutions for vacuum other than flat
space-time so another requirement that was assumed is satisfied by the field
equation.
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1.9 Conservation laws and the covariant derivative
With respect to the covariant derivative, the Einstein tensor and the momen-
tum energy tensor are zero, which is a key conservation law in the Theory of
Relativity. It can be easily shown that from the Einstein field equation it is
possible to derive an extended field equation using only metric tensors whose
covariant derivative is equal to zero, so they can be treated as constants, instead
of deriving the formula from the Banach equation, it will be easier to do it from
the Einstein equations. The trick is to choose the right summation indices of
the Riemann tensor that yields the Ricci tensor. I can write this whole process
except that it will use the covariant derivative altered by the metric tensor to
have a superscript ∇ν = gνα∇α by writing the whole equation starting with the
Einstein tensor :

∇ν

(
Rµν − 1

2
Rgµν

)
= 0 (1.18)

∇ν

(
Rρ

µρν − 1

2
Rρκg

κρgµν

)
= 0 (1.19)

∇νgσαg
αρ

(
Rρ

µρν − 1

2
Rρκg

κρgµν

)
= 0 (1.20)

∇νδρσ

(
Rρ

µρν − 1

2
Rρκg

κρgµν

)
= 0 (1.21)

∇ν

(
Rρ

µσν − 1

2
Rσκg

κρgµν

)
= 0 (1.22)

The same reasoning can be applied to the momentum energy tensor, except that
I have to rewrite this tensor as a product of the Knocker delta, then this delta
as a product of two metric tensors, which doesn’t change the result but allows
us to get the correct tensor. Writing the entire mathematical transformation:

∇νTµν = 0 (1.23)
∇νTµκδ

κ
ν = 0 (1.24)

∇νTµκg
κρgρν = 0 (1.25)

∇νgσαg
αρTµκg

κρgρν = 0 (1.26)
∇νδρσTµκg

κρgρν = 0 (1.27)
∇νTµκg

κρgσν = 0 (1.28)

So this field equation, just like Einstein’s equation, satisfies the conservation
principle, which is a very important feature. Otherwise, the model would be
mathematically inconsistent.
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1.10 Field equation for free fall
In the chapter on free fall, I wrote down an equation that I can now fully derive
from the field equation. A special case of the field equations is one where the
components of the Riemann tensor are zero and I get only the diagonal elements
of the metric tensor, the momentum energy and the Ricci tensor. By writing
this equation:

Rµ
µµµ − 1

2
Rµκg

κµgµµ = κTµκg
κµgµµ (1.29)

−1

2
Rµκg

κµgµµ = κTµκg
κµgµµ (1.30)

−1

2
Rµκδ

κ
µ = κTµκδ

κ
µ (1.31)

−1

2
Rµµ = κTµµ (1.32)

Rµµ = −2κTµµ (1.33)

Now I can go back to free fall, and from the perspective of an observer moving
with the frame of reference, I have four equations to solve for dust:

R00 = −2κρ0c
2 (1.34)

R11 = R22 = R33 = 0 (1.35)

So the constant we’re looking for is two, which was discussed in the chapter
on free fall, and according to that chapter, the field equation gives exactly the
expected result. Going back to the equation itself, this is the only way to write
the field equation where the elements of all tensors are only diagonal without
getting a flat space-time. The unknown in this equation is the metric tensor and
the equation itself is quite complicated despite the relatively simple notation, the
time-time component of the Ricci tensor differs from the Theory of Relativity,
the rest remains the same as in solutions for vacuum. The interpretation of this
equation is the same as for free fall. The minus sign means that the volumetric
form, as the radius coordinate decreases, increases in proportion to the density,
which becomes larger and larger. Of course, real mass is described by mass
functions from the radius, not from the point concentrated mass - the point
mass will be a singularity at zero radius equal to zero, but if the mass is a
function that vanishes at zero then you can get rid of this singularity. This
model is not free of singularities, which inherits in a sense from the Theory of
Relativity, on the other hand, these singularities are completely dependent on
the field of matter.
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1.11 The universe and its expansion as a matter field effect
From the previous chapter, you can assume that the universe behaves like dust
and calculate the value of the Ricci tensor for the present conditions. These
calculations result in a result very close to the cosmological constant, with the
difference that here it is not a constant but a value dependent on the density
of the matter field, where dark matter must be taken into account in mass
calculations. For dust as in the previous chapter, there is only one non-zero
component of the Ricci tensor in the frame of reference that is not moving. This
is a time-time component and its direct effect is to increase the distance between
geodesics in time, which results from the negative sign of this component. Two
observers in the universe, depending on how far they look, will always perceive
the universe as expanding globally, not necessarily locally, this is not due to the
existence of an additional energy field in this model, but to gravity itself, which
I discussed in the chapter on free fall. I will now write the value of the Ricci
tensor where I multiply the mass of the universe by 1 + 85

15 where the fraction
represents the dark matter of which there is about 85% in the universe:

R00 = −2κρ0c
2 (1.36)

ρ0 = ρU

(
1 +

85

15

)
(1.37)

ρ0 ≈ 3 · 10−27[kg/m3] (1.38)

R00 ≈ −1 · 10−52[m−2] (1.39)

Which is a result practically equal to the observed cosmological constant, with
the difference that it is not a constant but a value depending on the field of
matter. This means that, according to this model, the cosmological constant is
not constant but variable depending on the density of matter in the universe.
The lower the density, the lower the value, the higher the higher the value.
On the local scale, this magnitude is so small that other gravitational fields
dominate, while on the global scale of the universe, this magnitude will be
visible as it is the effect of the global gravity of the universe. This means that,
according to this model, the universe expands in the same way as any other
gravitational field. Just like in free fall, the earth gets bigger and bigger as it
expands, so time expands as the earth moves, which makes it appear stationary
to an observer on its surface, but to any other observer in free fall it is. he is
motionless and the earth is expanding with time all around, the same applies to
the universe, we are in free fall relative to the universe, therefore we perceive its
expansion in time as the expansion of space, where according to this model it is
not space that expands but time what it gives the impression of matter moving
away from each other inside the universe.
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1.12 Non-vanishing matter fields and dark matter
The requirement that the momentum energy tensor is non-vanishing at every
point in space so that the curvature is non-zero automatically generates seem-
ingly extra matter in the universe. According to this model, it is not extra
matter but matter itself is treated as a continuous field. This means that every
physical object extends to infinity in space. Depending on the adopted model
of matter, this will give different geometries of space-time. This means that
the geodesic equation no longer describes the trajectory of a single object, but
must be treated as the motion of a continuous field. This means that I have to
consider not the trajectories but the motion of the whole region of space or the
whole field in general. This means that matter can only be locally gravitation-
ally defined as a constant amount of mass or energy.

Exactly the same requirement works for the momentum energy tensor, it must be
defined over the entire manifold, in addition, if the manifold is not a Minkowski
space, it must be nonzero over the entire manifold. The requirement for rest
mass as total mass in the field is no longer met, rest mass is only locally con-
served, global mass not equal to rest mass, rest mass is only the area of greatest
concentration of the field if the field has one. This means that the field is treated
as a continuous field of matter defined over the whole manifold, not just one
region or point. Therefore, the total field mass or energy has no interpretation,
only the local field energy or mass can have an interpretation. It is locally that
causes gravitational effects, so it is responsible for the modification of space-
time from Minkowski space. This is a possible explanation for dark matter as
missing mass, the amount of total mass not equaling the rest mass.

This means that the momentum energy tensor must be defined in such a way
that its value always agrees with the local and global curvature of space-time.
This only says that the transition from the definition of matter to the definition
of the field of matter is necessary for this model to make sense. The definition
of rest mass must therefore be globally replaced by a field which only locally
has a rest mass and only locally this mass remains constant. Since the field is
equivalent to the gravitational field, the law of conservation of the field requires
that this tensor gives zero covariant derivative. This requirement is crucial to
the whole field equation and is described in the chapter on conservation laws.
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1.13 Model and Principle Problems
The biggest problem with this model is that it is not a quantum model, it is still
a classical theory of gravity which is in opposition to the quantum theory. The
second problem of the model is the occurrence of singularities. It is impossible
to remove singularities from this model if any mass is concentrated in a point,
it leads to infinite curvature of space-time, in this case negatively infinite. The
ideal model would be devoid of singularities, however, this model, through the
mathematical description used, generates singularities depending on the field of
matter, the key question is whether these singularities can be removed. Alter-
natively, whether these singularities can be surpassed. The key question is also
whether any non-quantum theory of gravity will lead to singularities, so it is
necessary to look for quantum theory or singularities in the real world that exist
and have physical significance.

If singularities do not occur in the real world (I mean the points where the
curvature of space-time becomes infinite) eventually quantum gravity is needed
to get around this problem, but if singularities are real and occur in the physical
world there must be accurate ways to understand the geometry of such objects.
Singularities must be surpassable for the field of matter, geodesics cannot end
at singularities, in relativity geodesics end at singularities the key question is
whether geodesics end in this model the same as in relativity, unfortunately the
exact answer to this question requires, firstly, exact solutions of the field equa-
tions which are not presented here, secondly, their analysis. A good clue to this
is that singularities only appear due to the existence of a point mass, assum-
ing that the mass is a continuous field that only concentrates in a given region
of space and this concentration is equal to the rest mass, and at zero distance
from the mass, the singularity disappears for the zero radius disappears with the
mass, it means that in purely theoretical imprecise considerations, singularities
can be avoided.

The mere fact that for a positive momentum energy tensor, the Ricci tensor
is negative in the simple case of writing the field equation gives hope that the
geodesic lines, instead of ending at the singularity, start there. Because if you
reverse the motion away from the singularity, you get an expansion of space-time
that slows down until you get to infinite distance from the source of mass, then
you’ll just be left with flat space-time. Of course, a formal mathematical proof
of this reasoning is necessary to be sure of this, but the reasoning makes sense.
Since the momentum energy tensor cannot be fully defined negatively, we also
avoid the problem of the infinitely positive Ricci tensor which gives exactly the
singularity at which every geodesic ends. This model, however, conflicts with
quantum physics, and only time and experimentation can show which approach
is true.
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1.14 Fully covariant field equation
The field equation can be converted to a fully covariant form. To do this, just
use the metric tensor to lower the index ρ, such an equation can be written as:

Rρ
µσν − 1

2
Rσκg

κρgµν = κTµκg
κρgσν (1.40)

gϕρR
ρ
µσν − 1

2
gϕρRσκg

κρgµν = κgϕρTµκg
κρgσν (1.41)

Rϕµσν − 1

2
Rσκδ

κ
ϕgµν = κTµκδ

κ
ϕgσν (1.42)

Rϕµσν − 1

2
Rσϕgµν = κTµϕgσν (1.43)

This form of the field equation may in many cases be more useful than the
previous one, it may simplify calculations. Of course, since this is a tensor
equation, the form of this equation doesn’t matter. For example, I can derive
the field equations for all diagonal elements simply by zeroing the Riemann
tensor, making all diagonal elements zero:

−1

2
Rϕϕgϕϕ = κTϕϕgϕϕ (1.44)

I omit the metric tensor because its values are identical on both sides of the
equation, which gives exactly the same result as before:

Rϕϕ = −2κTϕϕ (1.45)

From fully covariant form i can write whole field equation for simplest case:

Rσµσµ − 1

2
Rσσgµµ = κTσµgσµ (1.46)

Rσσσσ − 1

2
Rσσgσσ = κTσσgσσ (1.47)

−1

2
Rσσgσσ = κTσσgσσ (1.48)

Rσσ = −2κTσσ (1.49)
Rσµσµ = −κTσσgµµ (1.50)

Rσµσµ =
1

2
Rσσgµµ (1.51)

So field equation in full form for simplest case is more complex than just free
fall equation. It consists of sixteen equations, and first i need to solve it for
Ricci tensor then for those twelve equations with Ricci tensor or energy tensor
as they differ only by constant. Where it should be remembered that the last
two equations are the twelve equations and the last three are the remaining four.

16



1.15 Summary of classical part
In this short paper, I presented the hypothesis of extending Einstein’s field
equations while maintaining the simple principle of stationarity of each frame
of reference. Relative to the light ray emitted from a given point in space at a
given moment of time, each observer remains motionless, the same applies to
the gravitational field, so it moves at any speed. When the field of matter moves
then space-time moves in time with this field, which makes any movement com-
pensated in some sense by changes in space-time.

However, the work lacks mathematical solutions of the field equations which,
despite the simple notation, are quite complicated to solve. It should also be re-
membered that this hypothesis is still a classical theory, which makes it opposed
to the quantum approach to the problem of space-time. However, the motiva-
tion is the mathematical consistency of the model and that the conclusions of
this theory may be a solution to the current problems observed in cosmology.

However, in order to obtain better technical results from this model, it is nec-
essary to solve the field equations even for a simple dust situation. A rather
controversial assumption of this model is that the momentum energy tensor
never vanish, otherwise we get a locally flat space-time. This means that mat-
ter is treated as a continuous field that never vanish, but its intensity can vary
freely depending on the type of field. The same applies to the trajectory, which
is no longer a line, but the change of the whole manifold under the influence of
the field of matter.

Mathematically, the equation is quite complex, but the reasoning behind the
equation is not contradictory, so it is a model that makes sense from a physical
point of view, and is able to describe physical observations in a consistent way.
The big success is that it predicts the existence of four-dimensional space-time,
so you don’t have to assume the existence of four-dimensional space-time, it’s a
consequence of the equation.

The open question remains whether this model is needed at all or is it just
an interesting mathematical fact? Well, without solving the field equations and
checking how these equations work in relation to observations, it is impossible
to answer this question. From a theoretical point of view, this model is an in-
teresting alternative to inflation, dark energy, and possibly dark matter, as all
phenomena implied by this model are not additional assumptions necessary to
make this model work.
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2 Quantum part

2.1 Extending idea to quantum physics
Key question is there a way to extend this idea to quantum physics? Short
answer it yes, but it has key problem. That problem is that there is need to
use complex spacetime rather than real one. Still there is a way to make out
a probability function out of this complex spacetime. It means that there still
can be defined a real physical implication of that complex spacetime, or saying
otherwise from complex spacetime there is a way to extract information about
real observer particle in gravity field. This extraction will use all information
about physical systems from section before so it will be a lot simpler than trying
to figure it all out form start. Goal is to apply same principles but this time to
complex spacetime not a real one, so nothing really changes other than use of
complex spacetime.

Field equation is turned into complex field equation and it has a complex conju-
gate, but I will use both complex conjugate and contravariant forms of all tensors
in complex spacetime. Basics are that to mark change from real tensors to a
complex one I will denote a complex tensor as Rµν where this is representation
of Ricci tensor, all tensors will be written this way and additionally i will write
complex conjugate as a bar over a tensor so for example complex conjugate of
covariant Ricci tensor is written Rµν . Both covariant and contravariant tensors
will have complex conjugate, I will start by definition of complex metric tensor
and its action on complex vectors and from it will build rest of curvature tensors.

By building this model from start its easy to follow general rules and how really
simple is going from real spacetime to a complex one. Goal is to find a complex
scalar field and it’s complex conjugate to get probability of finding particle in
given region of spacetime. In general there are two ways to do it from fact that
field equation has on one side energy part that never vanishes and on other side
it has curvature part that never vanishes too if spacetime is curved or there
is presence of matter that both are same thing, stated in two possible ways.
Simpler way is to use energy part but still there is need to solve field equation
first to find a working solutions. It’s key that energy momentum tensor has to
be complex like rest of tensors.
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2.2 Complex spacetime
Flat complex spacetime is just spacetime defined as light signals that propagate
in complex spacetime so spacetime interval can be written in two possible ways,
first way is using normal complex numbers z and second one using it’s complex
conjugate z. I will write those two spacetime intervals in flat spacetime:

ds2 (z) = ηµνdz
µ (z) dzν (z) (2.1)

ds2 (z) = ηµνdz
µ (z) dzν (z) (2.2)

Now its definition in flat spacetime, for complex spacetime I need to define met-
ric tensor first, I will define both complex and it’s complex conjugate. Definition
is straight forward:

Gµν (z) =
∂ξα

∂zµ
∂ξβ

∂zν
ηαβ (2.3)

Gµν (z) =
∂ξ

α

∂zµ
∂ξ

β

∂zν
ηαβ (2.4)

When in first case they depend on complex field, in second case on complex
conjugate field. It means that now form metric tensors I can define another key
component that is Christoffel symbols of second kind, where as rule follows I
will use both complex and it’s complex conjugate parts. Those te definitions
are where I will use letter C not letter Γ:

Cµ
αβ =

1

2
Gµκ

(
∂Gκα

∂zβ
+

∂Gκβ

∂zα
− ∂Gαβ

∂zκ

)
(2.5)

Cµ

αβ =
1

2
Gµκ

(
∂Gκα

∂zβ
+

∂Gκβ

∂zα
− ∂Gαβ

∂zκ

)
(2.6)

Where for saving notation space i did skip writing that it’s a field that depends
on complex number or on complex conjugate of numbers. Now last part i want
to write before moving forward is geodesic equations for complex spacetime and
it’s complex conjugate that is same equation but just with complex numbers
that means complex Christoffel symbols of second kind:

d2zµ

ds2
+ Cµ

αβ

dzα

ds

dzβ

ds
= 0 (2.7)

d2zµ

ds2
+ Cµ

αβ

dzα

ds

dzβ

ds
= 0 (2.8)
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2.3 Riemann, Ricci tensors in complex spacetime
Before I just write definition of those tensor in title, want to start by simple
rules for index raising and contraction. If i have two vectors one covariant and
contravariant so zµ and zµ I still need their complex conjugate , then I need to
match metric tensor with complex form or it’s complex conjugate. I can do it
by writing four equations for each possible part:

zαGαµ = zµ (2.9)
Gµαz

α = zµ (2.10)

zαG
αµ

= zµ (2.11)

Gµαz
α = zµ (2.12)

Where i switch indexes from fact that metric tensor is symmetric, its not only
symmetric it’s contraction with itself gives Knocker delta:

GµαGαν = δµν (2.13)

GµαGαν = δµν (2.14)

Now when I have basic identities of complex metric tensor that are same as
like in real spacetime I can move to defining curvature tensors. I will start by
Riemann curvature tensor , form fact that I only change Christoffel symbols
from real to complex one like rest of equations it stays same:

Rρ
µσν = ∂σCρ

νµ − ∂νCρ
σµ + Cρ

σκCκ
νµ − Cρ

νκCκ
σµ (2.15)

Rρ

µσν = ∂σC
ρ

νµ − ∂νC
ρ

σµ + Cρ

σκC
κ

νµ − Cρ

νκC
κ

σµ (2.16)

Where I did use notation for complex conjugate derivative ∂σ = ∂
∂zσ and for

normal complex derivative it’s same notation ∂σ = ∂
∂zσ . Now i can move to

Ricci tensor taht is just contraction of Riemann tensor:

Rµν = ∂ρCρ
νµ − ∂νCρ

ρµ + Cρ
ρκCκ

νµ − Cρ
νκCκ

ρµ (2.17)

Rµν = ∂ρC
ρ

νµ − ∂νC
ρ

ρµ + Cρ

ρκC
κ

νµ − Cρ

νκC
κ

ρµ (2.18)

Important part is Riemann tensor in fully covariant form that is just mixed form
with metric tensor:

Rϕµσν = Gϕρ∂σCρ
νµ − Gϕρ∂νCρ

σµ + GϕρCρ
σκCκ

νµ − GϕρCρ
νκCκ

σµ (2.19)

Rϕµσν = Gϕρ∂σC
ρ

νµ − Gϕρ∂νC
ρ

σµ + GϕρC
ρ

σκC
κ

νµ − GϕρC
ρ

νκC
κ

σµ (2.20)

Now I have all formal things can move to complex field equation.
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2.4 Complex field equation
I will start by writing complex field equation in two possible ways:

Rϕµσν − 1

2
RϕσGµν = κTϕµGσν (2.21)

Rϕµσν − 1

2
RϕσGµν = κT ϕµGσν (2.22)

Now from this two field equations I can create two scalars, from fact that both
sides are equal I can use both complex extended Einstein tensor or complex
energy momentum part with complex metric tensor:

Eϕµσν = Rϕµσν − 1

2
RϕσGµν (2.23)

Ψ(z) = EϕµσνEϕµσν (2.24)

Eϕµσν = Rϕµσν − 1

2
RϕσGµν (2.25)

Ψ(z) = EϕµσνE
ϕµσν

(2.26)

Now for energy momentum tensor part:

Ψ(z) = κ2TϕµGσνT ϕµGσν = 4κ2TϕµT ϕµ (2.27)

Ψ(z) = κ2T ϕµGσνT
ϕµGσν

= 4κ2T ϕµT
ϕµ

(2.28)

That gives final field equation when I replace scalar field with energy momentum
part and extended complex Einstein tensor:

EϕµσνEϕµσνEϕµσνE
ϕµσν

= 16κ4TϕµT ϕµT ϕµT
ϕµ

(2.29)

Where from fact of equality between both sides I can write that both are equal
to complex scalar field with it’s complex conjugate:

Ψ(z)Ψ (z) = EϕµσνEϕµσνEϕµσνE
ϕµσν

(2.30)

Ψ(z)Ψ (z) = 16κ4TϕµT ϕµT ϕµT
ϕµ

(2.31)

That follows form all equations before.
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2.5 Probability as a scalar of field
Probability of finding particle in some given location of spacetime is given by
an integral of spacetime volume, where whole integral over manifold is equal to
some constant that is needed to make that scalar field normalized. So I can
define that scalar field has this property that integral over whole manifold is
equal to some constant:∫

C4

∫
C

4

√
|detGµν |

√∣∣detGµν

∣∣Ψ(z)Ψ (z) d4zd4z = η2 (2.32)

Now I can rewrite this equation as normalized equation so it will be equal to
one:

1

η2

∫
C4

∫
C

4

√
|detGµν |

√∣∣detGµν

∣∣Ψ(z)Ψ (z) d4zd4z = 1 (2.33)

Where I did denote complex manifold C4, that means I take whole manifold as
a spacetime volume. That leads to principle that any volume of spacetime that
is subset of whole manifold will be always equal to less than one. So probability
of finding particle in given spacetime volume V4 is equal to:

1

η2

∫
V4

∫
V

4

√
|detGµν |

√∣∣detGµν

∣∣Ψ(z)Ψ (z) d4zd4z = ρ
(
V,V

)
(2.34)

This equation can be written in two other ways where I do replace probability
functions with scalar field equations parts, units of scalar field are meters to
power minus fourth. Volume of spacetime will be written then in units of meters
to power fourth so probability is a dimensionless number as it should be, meters
cancel out. It’s easy to see that its true by writing scalar field with energy
momentum tensor part:

16κ4

η2

∫
C4

∫
C

4

√
|detGµν |

√∣∣detGµν

∣∣TϕµT ϕµT ϕµT
ϕµ

d4zd4z = ρ
(
V,V

)
(2.35)

Metric tensor is dimensionless and energy momentum tensor times Einstein
constant is in units of meters to power minus two, so if I have two metric
tensors and two energy tensors units are meters to power minus forth. It is
same for extended Einstein tensor part that normally Einstein tensor is written
in units of meter to power minus two same with it’s extension so combining two
of them will give meter to power minus forth:

1

η2

∫
C4

∫
C

4

√
|detGµν |

√∣∣detGµν

∣∣EϕµσνEϕµσνEϕµσνE
ϕµσν

d4zd4z = ρ
(
V,V

)
(2.36)
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2.6 Solving the singularity problem?
In previous subsection need for probability to be normalized gives an important
constrain on possible solutions to field equation. If any part of field equation
will lead to infinities it can’t be normalized so both extended Einstein tensor
and energy momentum tensor part will have to give finite values. It means
that there are no solutions with infinities when using correct solutions that are
physical in sense of well defined probability.

Next important question is how measurement changes field, there is a way to
calculate probability of finding particle at some region of spacetime, but what
happens to that particle when measured? If particle will be localized only in
that one point of spacetime it gravity field would be gone and need that energy
momentum tensor never vanishes would be broken. So to conserve gravity field
there is need to do something else. I need to shift whole manifold to position
where I did find particle, let’s say that have a particle that energy momentum
tensor is starting at some point of spacetime z0 where it’s a complex coordinate.
Where that point is where energy is mostly present. If I do find particle at loca-
tion in point z1 I need to move whole field to that point. It gives a big problem
if energy momentum tensor does not have a focus point but when dealing with
one particle need is that it always has a focus point , there is need to have it’s
rest mass in some volume of spacetime. Then that rest mass extends creating
gravity field. So whole process can be written as writing a scalar field before
measurement and after:

Ψ(z)Ψ (z) → Ψ(z+ z10)Ψ (z+ z10) (2.37)

ρ
(
V,V

)
→ ρ

(
V + z10,V + z10

)
(2.38)

Where those two displacement complex vectors are just final position vector
change from focus point of a field:

z10 = z1 − z0 (2.39)
z10 = z1 − z0 (2.40)

So focus point is point where there is center of rest mass of particle or it’s
energy that are equivalent. So when measurement is done whole manifold with
one particle shifts to another location in spacetime. This process should happen
by instant when particle is measured. It means that scalar field itself has to stay
invariant and do not change only it’s position does change under measurement.
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2.7 Rotation symmetry of a field
It’s a complex spacetime so it has not normal rotation symmetry. First I will
start by flat spacetime symmetry, and I will start by rotation symmetry of only
space part of metric that will give just SU (3) symmetry. This can be written
as taking a space only vector and rotating it by matrix, If I take only space
parts of metric tensor will get just Knocker delta so whole equation is that after
rotation vector length is left unchanged that is definition of rotation:

δabdz
adzb = δcdU

c
adz

aUd
b dz

b (2.41)

This matrix is just SU (3) matrix. When now I go to complex spacetime, still
a flat one. Rule is same but for Minkowski metric in complex spacetime so it
yields complex Lorentz transformation in four dimensional spacetime:

ηµνdz
µdzν = ηαβU

α
µ dz

µUβ
ν dz

ν (2.42)

It is a rotation symmetry SU (1, 3) so base symmetry is that symmetry of a
field. I can write last two equations for complex conjugate, those matrix has to
obey this equation for both of them:

δabdz
adzb = δcdU

c

adz
aU

d

bdz
b (2.43)

ηµνdz
µdzν = ηαβU

α

µdz
µU

β

νdz
ν (2.44)
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2.8 Summary of quantum part
Extending field equations to complex spacetime gave a probability scalar field
that is key component to understood this equation in quantum way. Another
good result is that it gets rid of singularity problems by need of scalar field
normalization. But opposition is that it’s still a complex spacetime, if this idea
is correct it would mean that we live in complex spacetime not a real one. Still
physical interpretation is that complex spacetime has invariant property that is
scalar field and it’s a real scalar field and it connect world of quantum with real
world as there is measurement done.

If field equations are complicated to solve in classical way, there are even more
complicated to solve in quantum way, still all mathematical rules for this model
to work was defined. Field itself has a base rotation symmetry that is SU (1, 3).

New part about physical implications of field is measurement process. Instead
of collapsing scalar field and making particle localized in just one point of space-
time it makes field shift places to match particle rest energy or mass to a point
of measurement. It means that field itself does not change as it is expected from
invariant property it just changes it’s localization.

Still model misses any solutions to field equations, so in that sense it’s hard
to say is this idea of quantazation of field correct. It’s still possible that only
classical field of equation is possible to solve there is no way to get rid of sin-
gularity by using complex spacetime. Then it would mean that model is only
a classical model and can’t be quantize. Otherwise this model if possible to
solve could be solution to quantum gravity problem but it depends on clas-
sical part of field , on other hand if this method of quantization is correct it
apply just to normal general relativity. So there are two question this model ask:

1. Is extension of Einstein equations a correct way of how gravity works in
classical sense?

2. Is using complex spacetime and making it’s a scalar field out of invariant
property of field equation is a correct way to quantize gravity?

And those two questions are not answer by this work, but all reasoning and
framework in mathematical sense is given.
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