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Abstract

We analyze the signi�cance of supersymmetry in two topological models and
the standard model (SM). We conclude that the two topological �eld theory
models favor hidden supersymmetry. The SM superpartners, instead, have not
been found.

Keywords: Topological �eld theory, Supersymmetry, Chern-Simons model

*E-mail: risto.raitio@helsinki.�

1



Contents

1 Introduction 2

2 The phases of the evolving universe 2

3 Topological models in phase I 4

3.1 General properties of topological models . . . . . . . . . . . . . . 4

3.2 Fang and Gu's topological gravity . . . . . . . . . . . . . . . . . . 6

3.3 Chern-Simons model in phase O . . . . . . . . . . . . . . . . . . . 8

4 Topological early phases versus in�ation 10

5 Conclusions 10

A Chernon-particle correspondence 12

1 Introduction

Matter in two topological �eld theory scenarios goes through one or two phase
transitions between Planck time and the present time. We analyze these two
models to determine what happens to supersymmetry (SUSY) at laboratory
energies provided it is valid, say, at the grand uni�ed (GUT) scale. The point
of this note is to provide evidence that two attitudes, no supersymmetry and
very heavy superpartners, are not justi�able in the light of present experimental
measurements. For the standard model our argument is based on improved
coupling constant behavior in grand uni�ed theories.

The article is organized as follows. In section 2 we consider some general
features, like the three di�erent phases of the universe, the phase transitions and
motivation for preons (called here chernons). To indicate the nature of problem
of phase I matter, two models of topological gravity are brie�y reviewed in
section 3. Comparison of the present scenario and standard model in�ation is
made in section 4. Conclusions and outlook are given in section 5. An appendix
with table 2 of CS particle - SM particle correspondence is provided.

2 The phases of the evolving universe

The common view is that as we go far enough back in time in the contracting
universe we will reach a point, de�ned here as time t = t0, or just t = 0, (see
�gure 1) where the degrees of freedom that our universe is made of may get
replaced by other degrees of freedom [1]. Somewhat di�erent kind of transition
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appears in the scenario of [2, 3]. At energy scale Λcr ∼ 1010 − 1016 GeV new
topological degrees of freedom replace the standard model particles.

Figure 1: Transition from phase I to II in the universe proceeds by the
conversion of matter made up from the degrees of freedom of frame (blue)
to those of our T-dual frame (red). In our model the time t = 0 corre-
sponds to energy scale Λcr. The small green area around t ∼ 0 is the
new second topological phase O, to be discussed in subsection 3.3. In the
other topological model the point t = 0 is near Planck scale. In the SM
t = 0 corresponds the GUT scale. (Figures 1, 2, and 4 are from [1] with
permission.)

We start with supersymmetric topological matter in the early phase I and
to move towards phase II, where SUSY is a priori not guaranteed to exist. The
fate of SUSY is determined at t ∼ 0 when both time derivatives of ρIm and ρIIm
are non-zero, as in �gure 1 green area.

We assume no observables of the topological phase I will distinguish posi-
tions, so the metric should be homogeneous, i.e. a constant curvature metric.
The time direction is picked out as an invariant concept in both phases. We
would like to determine the consequences of this for the geometry in phase I
as viewed from the frame II perspective. The most general metric with these
symmetries is

ds2 = −dt2 + a2(t)

[
dr2

(1− kr2)
+ r2dΩ2

]
(2.1)

where k = +1, 0,−1 for positive, �at or negative curvature spaces. As discussed
in subsection 3.1, the solutions to BRST [4, 5] invariant con�gurations in 4D
topological gravity are conformally �at, self-dual geometries, which have zero
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Weyl tensor
WABCD = 0 (2.2)

This condition by itself allows all three possibilities for k. We will view time as
a continuous element between phase I and phase II. Thus, a natural assumption
is that the metric can be expressed as a �at metric up to a conformal factor
that is only dependent on time, which is the only duality invariant coordinate.
This is equivalent to having an FLRW metric (2.1) with k = 0

ds2 = a2(η)(−dη2 + dxidxi) (2.3)

Physics in phase II after reheating is well described by a thermal distribution
of SM matter (and the dark components). The notion of time is common to
both phases of the universe. This leads to energy being common to both phases.
In addition there are weak long range correlations that originate from phase I
modes that are non-local in phase II.

3 Topological models in phase I

3.1 General properties of topological models

In topological models, the horizon problem is solved simply because the locality,
relevant in our universe in phase II, is not natural in phase I [1]. The light
modes of phase I are non-local as viewed from phase II. A known example are
the winding modes of the string gas cosmology [6]. Fluctuations visible in phase
II are not part of the degrees of freedom of phase I.

Figure 2: The degrees of freedom making up phase I are absent in a low
energy description of phase II. Therefore the former appears topological
from the point of view of the latter. This relation is also true with the
roles of phase I and II interchanged.

How does phase I look from the perspective of phase II [1]? In phase I there
should not be any position dependent observables. Let us assume the state
in phase I is given by |I⟩. We would expect n-point correlations of physical
observables in this state

⟨I|Oi1(x1) . . .Oin(xn)|I⟩ = Ai1,...,in (3.1)

to be position independent when all ∂jA
i1,...,in = 0. This is a key feature of a

topological quantum �eld theory. While we view phase I as a topological phase
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from the perspective of frame II it is curious that the reverse is also true: phase
II can be viewed from the perspective of frame I as a topological theory [1].
This is illustrated in �gure 2.

In topological �eld theories observables must be a measure of global features.
Consequently, there are no propagating signals. This property is achieved in
the Becchi-Rouet-Stora-Tyutin (BRST) [4, 5] formalism by the presence of a
Grassmann odd charge operator Q.

This operator Q is nilpotent, hermitian, and it commutes with the Hamil-
tonian, [H,Q] = 0. The action of the charge operator on �elds Φ is given
by

δΦ = iϵ[Q,Φ] (3.2)

where ϵ is a Grassmann parameter, a supernumber that anticommutes with
all other Grassmann variables. Q is also the Noether charge for the BRST
symmetry. The action combines together bosonic and fermionic �elds in a way
similar to the pairing in supersymmetric theories. Physical states in the Hilbert
space are Q-cohomology classes: these states are Q-closed (i.e. |ψ⟩ satisfying
Q|ψ⟩ = 0) modulo Q-exact (i.e. |ψ⟩ such that |ψ⟩ = Q|χ⟩ for some |χ⟩). This
latter requirement implies that the fermionic partners of bosonic �elds are in
fact ghosts so that all degrees of freedom cancel in the BRST sense.

If we assume that the vacuum is Q-invariant, then Q-exact operators have
a vanishing expectation value ⟨[Q,O]⟩ = 0. In topological �eld theories, the
energy-momentum tensor (given by the variation of the action with respect to
the metric) is Q-exact, i.e. Tαβ = {Q,λαβ} for some λ. This implies that the
partition function is invariant under metric variations

δZ =

∫
DΦe−S (−δS) = −

∫
DΦe−S{Q,

∫
√
gδgαβλαβ}

= −⟨{Q,
∫

√
gδgαβλαβ}⟩ = 0

provided the integration measure is BRST invariant.

Another way to illuminate background independence in a topological theory
in general is based on calculating Wilson loops in 3D Chern-Simons (CS) theory
[7].1 Wilson loops give a natural class of gauge invariant observables that do not
require a choice of metric. Let C be an oriented closed curve in M. Intrinsically
C is simply a circle, but the topological classi�cation of embeddings of a circle
in M may be complicated, as we can imagine in �gure 3. Let R be an irreducible
representation of G. One then de�nes the Wilson loopWR(C) to be the following
functional of the connection Ai. One computes the holonomy of Ai around C,
getting an element of G that is well-de�ned up to conjugacy, and then one takes
the trace of this element in the representation R. Thus, the de�nition is

WR(C) = TrRPexp

∫
C
Aidx

i (3.3)

1 CS theory is discussd later in section 3.3
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Figure 3: A trefoil knot in 3D space. The curve has orientation, clockwise
or anticlockwise.

The crucial property of this de�nition is that there is no need to introduce a
metric, so general covariance is maintained. Consider the partition function Z,
de�ned as

Z =

∫
DA exp(iL)

∏
i

WRi(Ci) (3.4)

where DA represents Feynman integral over all gauge orbits, the Ci are non-
intersecting knots and Ri representation assigned to Ci. The partition function
Z is thus automatically independent of any background metric. However, there
is still a question of whether the theory contains local excitations.

3.2 Fang and Gu's topological gravity

We consider the topological theory by Fang and Gu [8, 9, 10]. The topological
quantum �eld theory (TQFT) approach can not be easily generalized into 3+1D
because consistency with Einstein's gravity in 3+1D contains propagating a
mode, the graviton. Therefore it is obviously not a case for TQFT in the usual
sense. Secondly, there is no Chern-Simons like action in 3+1D. Fang and Gu
have shown that Einstein gravity might emerge by adding a topological mass
term of the 2-form gauge �eld. Physically, such a phenomenological theory
might describe a loop condensing phase, i.e. �ux lines in the context of gauge
theory.

Due to the recent developments in the classi�cation of topological phases of
quantum matter in higher dimensions [11, 12, 13, 14, 15], new types of TQFT
have been discovered in 3+1D to describe the three-loop-braiding statistics. It
is argued that such types of TQFT are closely related to Einstein gravity and
that gravitational �eld will disappear at extremely high energy scale. 3+1D
quantum gravity would be controlled by a TQFT renormalization group �xed
point. At intermediate energy scales, Einstein gravity and classical spacetime
would emerge via loop (�ux lines) condensation of the underlying TQFT. The
uncondensed loop-like excitation are a natural candidate of dark matter. Such
kind of dark matter will not contribute scalar curvature but will be a direct
source of torsion. Normal matter, like Dirac fermions, will not contribute to
torsion.

Let us begin with the topological gravity theory in 3+1D [16]. Consider the
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following topological invariant action

Stop =
k1
4π

∫
εabcdR

ab ∧ ec ∧ ed + k2
2π

∫
Bab ∧Rab

+
k3
2π

∫
B̃a ∧ T a (3.5)

where e is the tetrad �eld, R is the curvature tensor, T is the torsion tensor
and B, B̃ are 2-form gauge �elds. Like in the CS theory, the values of ki are
quantized. Without loss of generality, the following values can be chosen k1 =
k2 = 2 and k3 = 1 for convenience. The above action is invariant under the
following (twisted) 1-form and 2-form gauge transformations, respectively:

ea → ea +Dfa

Bab → Bab −
k3
2k2

(
B̃afb − B̃bfa

)
B̃a → B̃a −

k1
k3
εabcdf

bRcd, (3.6)

and

Bab → Bab +Dξab, (3.7)

B̃a → B̃a +Dξ̃a

Bab → Bab −
k3
2k2

(
ξ̃a ∧ eb − ξ̃b ∧ ea

)
. (3.8)

Such an action can be regarded as the non-Abelian generalization of AAdA +
BF type TQFT [17, 18, 19] of the Poincare gauge group. Physically, it has
been shown that such kind of TQFT describes the three-loop-braiding statistics
[20, 21]. As a TQFT, the action Eq. (3.5) is a super-renormalizable theory.
The coe�cient quantization and canonical quantization of such a theory are
discussed in [9].

SUSY generalization of 3 + 1D topological gravity is discussed in [8]. One
needs to introduce the gauge connection of super Poincare group and write the
action as

∫
sTr[A ∧ A ∧ (dA + A ∧ A)] +

∫
sTr(B ∧ F ). For the N = 1 case,

one can express A, B and F as follows

Aµ ≡ 1

2
ωab
µ Mab + eaµPa + ψ̄µαQ

α

Bµν ≡ 1

2
Bµν

abMab + B̃a
µνPa +BµναQ

α

Fµν ≡ 1

2
Rµν

abMab + T a
µνPa + R̄µναQ

α (3.9)

Here R̄µνα is the super curvature tensor de�ned as R̄µνα = Dµψ̄να − Dνψ̄µα

where Dµ is the covariant derivative for spinor �elds. Fermionic loops (�ux
lines) cannot be condensed. Therefore supersymmetry breaking happens at
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very high energy scale when bosonic loops condense and classical space-time
emerges. More details are presented in [10].

Although the total action S is super-renormalizable, it does not imply UV-
complete quantum gravity theory due to explicit breaking of 2-form gauge sym-
metries by the Sθ = − θ

2π

∫
Bab ∧ Bab term. The algebraic tensor 2-category

theory [22, 23] may provide an equivalent UV-complete description for a topo-
logical quantum gravity theory in 3+1D.

In [10] the authors give a more profound treatment. It includes a deformation
parameter λ which represents the bare cosmological constant term. It plays
a crucial role in this scenario. λ = 0 corresponds to a trivial universe with
vanishing Riemann curvature, while λ ̸= 0 corresponds to a non-trivial universe
where Einstein gravity arises at low energy. In this scenario SUSY does not
survive at energy scale below Planck energy.

3.3 Chern-Simons model in phase O

We disclose arguments for preons. The distinctive feature of our preons (called
here chernons) is the treatment of SUSY as unbroken global symmetry with
the particles in supermultiplets. The chiral and vector supermultiplets for three
colors are given in table 1 [2].

Multiplet Particle, Sparticle
chiral multiplets spins 0, 1/2 s−, m−; a, n
vector multiplets spins 1/2, 1 m0, γ; mC , gC

Table 1: The particle s− is a neutral scalar particle. The particles m−,m0

are charged and neutral, respectively, Weyl spinors. The a is axion and
n axino. m0 is color singlet particle and γ is the photon. mC and gC
(C=R,G,B) are zero charge color triplet fermion and boson, respectively.

Chernon interactions are 2+1 dimensional inside a 3+1D world. Chern-
Simons-Maxwell (CSM) interaction models have been studied in condensed mat-
ter physics, e.g. [25, 26, 27]. In this note we extrapolate the CSM model a long
way to particle physics phenomenology at high energy in the early universe.

We construct the visible matter of two fermionic chernons: one charged
m−, one neutral m0, and the photon. The Wess-Zumino [28] type action [2] is
supersymmetric as well as C symmetric. The chernons have zero (or very small)
mass. The chernon baryon (B) and lepton (L) numbers are zero. Given these
quantum numbers, quarks consist of three chernons, as indicated in table 3.2

In [27] a 2+1 dimensional Chern-Simons (CS) action [29, 7] was used to
derive chernon-chernon interaction, which turns out to trigger the �st phase

2There are more combinations of states like those containing an m+m− pair. This state annihi-
lates immediately into other chernons, which form later leptons and quarks.
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transition between O and II. In 2+1 dimensions, a fermionic �eld has its spin
polarization �xed up by the sign of mass [30, 31, 32, 33]. The model includes
two positive-energy spinors (two spinor families) and a complex scalar φ. The
fermions obey Dirac equation, each one with one polarization state according
to the sign of the mass parameter.

The chernon-chernon scattering amplitude in the non-relativistic approxi-
mation is obtained by calculating the t-channel exchange diagrams of the Higgs
scalar and the massive gauge �eld. The propagators of the two exchanged par-
ticles and the vertex factors are calculated from the action [27].

The gauge invariant e�ective potential for the scattering considered is ob-
tained in [34, 35]

VMCS(r) =
e2

2π

[
1− θ

mch

]
K0(θr) +

1

mchr2

{
l − e2

2πθ
[1− θrK1(θr)]

}2

(3.10)

where K0(x) and K1(x) are the modi�ed Bessel functions and l is the angular
momentum (l = 0 in this note). In (3.10) the �rst term [ ] corresponds to the
electromagnetic potential, the second one { }2 contains the centrifugal barrier(
l/mr2

)
, the Aharonov-Bohm term and the two photon exchange term.

One sees from (3.10) the �rst term may be positive or negative while the
second term is always positive. The function K0(x) diverges as x → 0 and
approaches zero for x → ∞ and K1(x) has qualitatively similar behavior. For
our scenario we need negative potential between equal charge chernons. Being
embarrassed of having no data points for several parameters in (3.10) we can
give one relation between these parameter values for a binding potential. We
must require the condition3

θ ≫ mch (3.11)

The potential (3.10) also depends on v2, the vacuum expectation value, and
on y, the parameter that measures the coupling between fermions and Higgs
scalar. Being a free parameter, v2 indicates the energy scale of the spontaneous
breakdown of the U(1) local symmetry.

A summary of the three phases and their properties is given in table 2.

3For applications to condensed matter physics, one must require θ ≪ me, and the scattering
potential given by (3.10) then comes out positive [27].
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Ph. HE particles HE symm. Low energy symm.
I F&G theory SUSY ����SUSY
O chernons SUSY SM; ����SUSY
II SM particles SUSY GUT SM; ����SUSY?

Table 2: Development of the universe from phase I to phase O and �-
nally to phase II. The phase O's role is to hide supersymmetry, create
SM matter, spacetime metric and baryon asymmetry in the universe. In
the rightmost column SM stands for SU(3)[×SU(2)] × U(1). The term
[×SU(2)] indicates appearance of weak interaction "automatically" be-
tween u- and d-quarks as well as between e and ν.

4 Topological early phases versus in�ation

In this section we compare and contrast the topological scenarios with the in�a-
tionary scenario. There are a number of common features in the two approaches
as can be seen in Fig. 4.

The end result for both is the FLRW scenario. Both of them involve a kind
of phase transition. In the case of in�ation the transition is marked by the end
of the early expansion and beginning of reheating as the in�aton settles to the
minimum of the potential. In the case of the topological scenario the phase
transition takes place by a topology and symmetry change process [36, 37].
In both scenarios we have a nearly homogeneous thermal initial condition for
FLRW in phase II. In both scenarios the homogeneity of space is described by a
novel phenomenon: in the in�ationary scenario by the exponential expansion of
the space and in the topological phase by the fact that gravity is described by a
topological theory. In the in�ationary scenario the �uctuations of the in�aton
�eld leads to scalar �uctuation, whereas in the topological phase which involves
only global/zero modes and only through scale anomalies do we get �uctuations
in the otherwise thermal background. Detailed properties and predictions of the
topological in�ation are presented in [1]. Brie�y said, processes take place as
well as in other successful models. After reheating everything goes as in the
standard model of cosmology.

5 Conclusions

There are three possibilities for the fate of low energy supersymmetry: no SUSY
at all, highly broken SM SUSY, and hidden SUSY (in chernons or in some other
way). We consider the �rst case unlikely. The second case has been studied
thoroughly with certain success but the SM superpartners are still missing. The
third case, described above, agrees with the standard model particle spectrum
and provides an answer to matter-antimatter asymmetry by the mechanism
presented in [3].
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Figure 4: Comparison between the in�ationary and topological paradigms
for the early universe. The topological scenarios replaces the period of
accelerated expansion by a topological phase to explain homogeneity,
isotropy, �atness and near scale invariance. In both paradigms, the uni-
verse for t > 0 is well described by the standard Big Bang cosmology.

We conclude it is premature to consider supersymmetry a dream. Instead,
a rich spectrum of light, laboratory observable bosonic and fermionic states are
predicted by the supermultiplet table 1 as colored constituents making singlet
composites.
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A Chernon-particle correspondence

The matter-chernon correspondence for the two �rst �avors is indicated in table
3.

SM Matter 1st gen. Chernon state
νe m0

Rm
0
Gm

0
B

uR m+m+m0
R

uG m+m+m0
G

uB m+m+m0
B

e− m−m−m−

dR m−m0
Gm

0
B

dG m−m0
Bm

0
R

dB m−m0
Rm

0
G

W-Z Dark Matter Particle
boson (or BC) s0r, axion(s)
e′ axino n
meson, baryon o nn̄, 3n
nuclei (atoms with γ′) multi n
celestial bodies any dark stu�
black holes anything (neutral)

Table 3: Visible and Dark Matter with corresponding particles and cher-
non composites. e′ and γ′ refer to dark electron and dark photon, respec-
tively. BC stands for Bose condensate. Chernons obey anyon statistics.
The binding of chernon composites is described in section 3.3.
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