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Abstract

Class-conditional GAN is a conditional GAN that can generate class-conditional distribution.
Among class-conditional GANs, InfoGAN with categorical latent distribution can generate class-
conditional data through a self-supervised (unsupervised) method without labeled data. Instead,
InfoGAN requires optimal categorical latent distribution to train the model.

In this paper, we propose a novel GAN that allows the model to perform self-supervised class-
conditional data generation and clustering. The proposed method uses Bayesian inference to
estimate optimal categorical latent distribution from the classifier output distribution. In the
proposed method, based on the classifier output distribution of the fake data and the current cate-
gorical latent distribution, the categorical latent distribution is updated to fit the classifier output
distribution of the real data. As training progresses, the entropy of the categorical latent distri-
bution gradually decreases and converges to the appropriate value. The approximated categorical
latent distribution becomes appropriate to represent the discrete part of the data distribution.

The proposed method does not require labeled data, optimal categorical latent distribution,
and a good metric to calculate the distance between data. Also, a classifier used in training can
be used for clustering.

1 Introduction

Class-conditional GAN is a conditional GAN [2] that can generate class-conditional distribution when a
labeled dataset is given. In general, class-conditional GAN takes a latent distribution and a categorical
distribution as inputs and generates class-conditional distribution. ACGAN [3] and CAGAN [4] are
examples of class-conditional GANs. However, these class-conditional GANs can only be trained given
labels, which is the conditional categorical distribution of the dataset. Therefore, these methods cannot
be utilized for unlabeled datasets.

Unlike ACGAN or CAGAN, InfoGAN [5] with categorical latent distribution can train a class-
conditional GAN even if the data is not labeled. However, InfoGAN requires optimal categorical latent
distribution. It includes the number of categories and the probability for each category. For example,
to perform class-conditional generation with InfoGAN on the MNIST handwritten digits dataset [9]
without labels, we need to know the number of categories (10 categories) and the probability of each
category (0.1 for each category) for categorical latent distribution.

In this paper, we introduce a self-supervised (unsupervised) class-conditional GAN (SCGAN) that
is capable of generating class-conditional data without being given labels and optimal categorical latent
distribution.

SCGAN uses only adversarial loss and classification loss, the same as InfoGAN with the categorical
latent distribution. In other words, the generator takes a continuous latent distribution and categorical
latent distribution as inputs and is trained so that the generated data is correctly classified by the
classifier. The discriminator can share all hidden layers with the classifier, and the classifier is trained
to predict the categorical latent distribution of the generated data.

The difference between InfoGAN and SCGAN is that SCGAN gradually changes the categorical
latent distribution during training. Given a classifier output distribution and a categorical latent distri-
bution, SCGAN uses Bayesian inference to predict the optimal categorical latent distribution through
the classifier output distribution of real data distribution. During the training, SCGAN incrementally
changes the current categorical latent distribution based on the predicted optimal categorical latent
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Figure 1: Left part: Two-dimensional dataset consisting of three Gaussian clusters. The centers
and probabilities of each cluster are (−2.0, 2.0), (2.0, 1.0), (0.0,−2.0) and 0.2, 0.3, 0.5, respectively. The
standard deviation for all clusters is 0.3. Right part: The data distribution generated by a GAN
trained with a continuous latent distribution to generate the data distribution on the left part.

distribution. If the categorical latent distribution is optimal and the model is converged, SCGAN can
generate class-conditional distribution and can perform clustering through the classifiers.

Therefore, unlike InfoGAN, SCGAN can be trained even if the optimal categorical latent distribu-
tion is not known. Also, same as InfoGAN, SCGAN does not require labeled data or a good metric
to calculate the distance between data. Furthermore, SCGAN can perform clustering through the
classifier which was used during the training.

2 Class-conditional data generation

Typically, when training a GAN, everything is assumed to be continuous. This means that the data
distribution and latent distribution are assumed to be continuous, and the generator and discriminator
of GAN are assumed to be continuous functions (deep learning models must be differentiable continuous
functions in order to be trained).

However, the data distribution is not necessarily continuous. When data distribution includes a
discrete part and latent distribution is continuous, a sufficiently complex deep generative model can
approximate the discrete part of the data distribution. However, still, approximating the discrete part
of the data distribution is not easy for most deep generative models, which is a continuous function.

The left part of Fig. 1 shows a data distribution example consisting of three Gaussian clusters.
There is no discrete part in this data distribution, but one can see that it is easier to represent this
data distribution with a discrete (categorical) latent distribution.

The right part of Fig. 1 shows generated data with GAN and continuous latent distribution. One
can see that the model generates lines connecting each cluster. This is because the latent distribution
is continuous and the generator is a continuous function, making it difficult to represent the discrete
part of the data distribution. As training progresses, the probability density of the line connecting
the clusters decreases, but it requires a long training period, and it is hard to say that the continuous
latent distribution correctly represents the real data distribution.

For datasets with discrete parts, such as the example in Fig. 1, using a discrete latent distribution
is more appropriate for model training and data representation. Class-conditional generative models,
such as ACGAN [3] and CAGAN [4], take both continuous latent distribution and discrete categorical
latent distribution as inputs and generate class-conditional distribution. It makes them appropriate
for representing datasets with discrete parts. However, ACGAN and CAGAN cannot be trained if
there is no label for data.

InfoGAN [5] can perform class-conditional data generation and inversion (clustering) by maximizing
mutual information of generator input categorical latent distribution and classifier output distribution,
even if the data is not labeled. Following equations show losses for InfoGAN with the categorical latent
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distribution.
Lcls = cross entropy(C,Q(G(Z,C))) (1)

Ld = Ld
adv + λclsLcls (2)

Lg = Lg
adv + λclsLcls (3)

Eq. 2 and Eq. 3 show the discriminator loss and generator loss of InfoGAN, respectively. In Eqs.
2 and 3, Ld

adv and Lg
adv represent adversarial losses [6] for GAN training. Lcls and λcls represent

classification loss and classification loss weight, respectively. In Eq. 1, Lcls is cross entropy between
categorical latent distribution C and predicted label of generated data G(Z,C). Q and G represent
the classifier and generator, respectively. Z represents continuous latent distribution. In general, a
classifier Q shares all its layers with a discriminator D for efficiency.

From the above equations, one can see that a discriminator (more precisely, a classifier integrated
with a discriminator) and a generator are trained to minimize classification loss. InfoGAN has shown
that, given an appropriate categorical latent distribution C, it can perform class-conditional data
generation and clustering (inversion) even when the data is unlabeled.

However, InfoGAN still needs insight into the categorical latent distribution C. Without knowing
the appropriate categorical latent distribution C, InfoGAN still cannot perform class-conditional data
generation and clustering (inversion).

In this paper, we introduce SCGAN, which performs class-conditional data generation and cluster-
ing under more general conditions than InfoGAN. We assume the following general conditions:

1. All data is unknown to which cluster it belongs (i.e., there are no labels for all data).

2. Optimal categorical latent distribution is unknown.

3. Metric to measure the distance between the data is unknown.

Under these conditions, ACGAN and CAGAN cannot be used due to condition 1. InfoGAN cannot
be used due to condition 2, and recent methods utilizing the K-means algorithm cannot be used due
to condition 3. On the other hand, SCGAN can still perform class-conditional data generation and
clustering (inversion) even under these conditions.

3 Using Categorical latent random variable for GAN

SCGAN uses the same loss as InfoGAN with the categorical latent distribution. The difference be-
tween InfoGAN and SCGAN is that SCGAN gradually changes the categorical latent distribution
during training. SCGAN uses Bayesian inference to predict the optimal categorical latent distribu-
tion. The Bayesian inference is based on the current categorical latent distribution and classifier output
distribution of fake data. Given the classifier output distribution of real data, SCGAN updates the
categorical latent distribution to be optimal.

Algo. 1 shows the training steps for SCGAN. The training step of SCGAN requires X (data
random variable), Z (continuous latent random variable), C (categorical latent random variable),
P (C ′|C) (dc × dc shape conditional probability table), D (discriminator integrated with classifier), G
(generator), and k (categorical latent distribution entropy threshold).

In lines 1-3, the sample function represents the sampling function from a random variable. x (real
data point), z (continuous latent code), and cf (fake categorical latent code) are sampled from X, Z,
and C, respectively.

In line 4, G generates fake data x′ with z and cf . In line 5, D takes a fake data point x′ as input and
outputs two values af (fake adversarial value) and c′f (fake categorical latent code prediction). Since
the discriminator and classifier are integrated, the discriminator D outputs a 1-dimensional adversarial
value and dc-dimensional categorical latent code prediction. af and c′f represent fake adversarial value
and predicted label of cf , respectively Similarly, on line 6, D takes a real data point x as input and
outputs adversarial value ar and real data categorical latent code prediction c′.

In line 7, Lcls represents classification loss. crossentropy is a function that calculates cross-entropy
loss. In lines 8 and 9, Ld and Lg represent discriminator loss and generator loss, respectively. fd and
fg represent adversarial functions for GAN. λcls is classification loss weight.
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Algorithm 1 Training step of SCGAN

Require: X,Z,C, P (C ′|C), D,G, k
1: x← sample(X)
2: z ← sample(Z)
3: cf ← sample(C)

4: x′ ← G(z, cf )
5: af , c

′
f ← D(x′)

6: ar, c
′ ← D(x)

7: Lcls ← cross entropy(cf , c
′
f )

8: Ld ← fd(ar, af ) + λclsLcls

9: Lg ← fg(af ) + λclsLcls

10: c← Σdc
i=1c

′
i · P (C|C ′ = ci)

11: if k < Σdc
i=1 − ci · log ci then

12: P (C)← update(P (C), c)
13: else
14: P (C)← update(P (C), [1/dc, 1/dc, ..., 1/dc])
15: end if

16: P (C ′|C = cf )← update(P (C ′|C = cf ), c
′
f )

17: return Ld, Lg, C, P (C ′|C)

In line 10, c is expected probability vector of P (C|C ′ = c′). c′i represents i-th element of real data
categorical latent code prediction c′. dc represents a dimension of categorical latent distribution. Since
P (C ′|C) (dc × dc shape conditional probability table) and P (C) are already given, we can calculate
expectation of P (C|C ′ = c′r). P (C) is initialized to have maximum entropy ([1/dc, 1/dc, ..., 1/dc]),
then gradually decrease with updates. In line 11, compare entropy threshold k and entropy of c (ci
represents i-th element of c). The entropy threshold k serves to determine the minimum entropy of the
categorical latent distribution. In line 12, if the entropy of c is greater than k, update the categorical
probability of C with c. The update function can be a simple moving average, an exponential moving
average, or others. If the entropy of c is not greater than k, this means that the entropy of C can be
less than k after the update. To avoid this, in line 14, update the categorical probability of C with
[1/dc, 1/dc, ..., 1/dc], which has maximum entropy, instead of c.

In line 16, P (C ′|C), which is dc × dc shape conditional probability table, is updated with c′f
Specifically, the row corresponding to class cf in the dc × dc shape matrix is updated to be closer to
c′f . As before, the update function can be a simple moving average, an exponential moving average,
etc.

In Algo. 1, one can see that SCGAN uses the same loss as InfoGAN. The difference between
SCGAN and InfoGAN is that in SCGAN, P (C) changes as the training progresses. The entropy of
the categorical latent distribution C converges to an appropriate value as the model is trained. The
conditional probability table P (C ′|C) is used to compute P (C|C ′) in the process of updating P (C).

4 Experiments

We trained the models to generate two-dimensional Gaussian clusters distribution and the MNIST
dataset [9]. In Gaussian clusters experiments, we compare the performance of Vanilla GAN [1], Info-
GAN [5], and our proposed SCGAN. In MNIST experiments, we compared the clustering of SCGANs
according to an entropy threshold k.

The following hyperparameters were used for experiments.

λr1 = 1.0
Z ∼ N(0, Idz

)
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Figure 2: A two-dimensional dataset consisting of three Gaussian clusters. The centers and proba-
bilities of each cluster are (−2.0, 2.0), (2.0, 1.0), (0.0,−2.0) and 0.2, 0.3, 0.5, respectively. The standard
deviation for all clusters is 0.3.

Figure 3: Vanilla GAN (trained only with adversarial loss) training with the categorical latent
distribution. Left: 3-dimensional categorical latent distribution. Right: 5-dimensional categorical
latent distribution. Each category has the same probability.

optimizer = Adam

learning rate = 0.001

β1 = 0.0

β2 = 0.99


batch size = 32

train step per epoch = 2000

λr1 represents R1 regularization [7] loss weight. Classification loss weight λcls = 1.0 was used
for InfoGAN and SCGAN. We used exponential moving average with decay rate = 0.999 as update
function for SCGAN. Equalized learning rate [8] was used for all weights.

4.1 Gaussian clusters experiments

In this experiment, we used the dataset consisting of three 2-dimensioanl Gaussian clusters as a training
dataset. A generator and discriminator consisting of four fully connected layers with 512 units were
used for training. We used epoch = 50 and dz = 8 (continuous latent distribution dimension) for model
training. Entropy threshold k for SCGAN was not used in this experiment (i.e., k = 0).

Fig. 2 shows training data distribution. One can see that there are three Gaussian clusters in data
distribution.
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Figure 4: InfoGAN training with the categorical latent distribution. Left: 3-dimensional categorical
latent distribution. Right: 5-dimensional categorical latent distribution. Each category has the same
probability.

Fig. 3 shows samples generated with vanilla GAN (trained only with adversarial loss). GAN in the
left part of Fig. 3 used dz-dimensional i.i.d. normal latent distribution and 3-dimensional categorical
distribution for training. The right part used a 5-dimensional categorical distribution. Each category
in a categorical distribution has the same probability.

One can see that a categorical latent distribution that does not maximize mutual information via
a classifier was not meaningful in data generation. In addition, since Vanilla GAN did not mean-
ingfully use discrete categorical latent distributions, training was practically exclusively performed by
continuous latent distributions. Therefore the output space was also continuous, which caused a line
generation between each cluster.

Fig. 4 shows samples generated with InfoGAN. Unlike the Vanilla GAN, one can see that the model
generates class-conditional distribution with the categorical latent distribution. However, the class-
conditional distribution was not correct. First, in the left part of Fig. 4 (3-dimensional categorical
latent distribution), one can see that category 2 is split between a cluster centered at (-2, 2) and a
cluster centered at (0, -2). For a cluster with a center of (-2, 2), the probability is 0.2, which is less than
the probability of category 2, which is 0.333. Thus, the left portion of category 2 is also distributed in
the cluster with center (0, -2) with a probability of 0.5. Also, in the cluster with the center at (0, -2),
one can see that no data was generated between category 1 and category 2. This is because the model
was trained to correctly classify category 1 and category 2 within the same cluster. Furthermore, since
there are no other discrete latent distributions within the same category, one can see line generation
like a vanilla GAN. Similar problems are occurring in the right part of Fig. 4 (5-dimensional categorical
latent distribution).

Fig. 5 shows samples generated with SCGAN. Unlike InfoGAN, one can see that SCGAN creates
three Gaussian clusters almost perfectly. There are no lines between clusters like in Vanilla GAN
or InfoGAN, and the probability of each cluster is almost the same as in the original dataset. In
particular, for the right part in Fig. 5, which used a 5-dimensional categorical latent distribution, the
probability of the two unnecessary categories became very close to zero, so they did not participate
in the training. This shows that SCGAN can perform correct class-conditional data generation and
clustering without knowing the optimal categorical latent distribution.

4.2 MNIST experiments

In this section, we trained SCGAN to generate the MNIST handwritten digits dataset. dz = 64,
dc = 17, epoch = 100 were used for the experiments.

Figs. 6, 7, and 8 show the difference in clustering of SCGAN according to the entropy threshold
k. If there are 10 categories, each with a probability of 0.1, the entropy is about 2.3. Thus, the closer
the entropy of the categorical distribution of SCGAN is to 2.3, the more likely it is that each category
will have only one kind of number.
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Figure 5: SCGAN training with the categorical latent distribution. Left: 3-dimensional categorical
latent distribution. P (C) = [0.2975, 0.5007, 0.2018] Right: 5-dimensional categorical latent distribu-
tion. P (C) = [0.0000, 0.0000, 0.3000, 0.5022, 0.1978]

Fig. 6 shows the clustering of SCGAN when k = 0. The entropy of the categorical latent distribu-
tion was 1.2671, which is smaller than 2.3. This means that several different numbers can be clustered
into the same category. In Fig. 6, the first category has a probability of about 0.5. One can see
that numbers 0, 2, 3, 5, 8 were classified as the first category. The second category has a probability
of about 0.2. Numbers 7, 9 were classified as the second category. This means that the model has
determined that the numbers 7 and 9 are closer than the other numbers. The third category has a
probability of about 0.1. Only the number 4 was classified as the third category. The fourth category
has a probability of about 0.2. Numbers 1, 6 were classified as the third category.

If this clustering is not useful, one can increase the entropy threshold k to make SCGAN perform
more detailed clustering. In Fig. 7, since the entropy threshold k is larger than in Fig. 6, each
category was further refined. Except for the third category, which contains numbers 5, 8, the rest of
the categories are all single digits, and one can see that the probability of each category is about 0.1.

By further increasing the entropy threshold k, each category was further refined. In Fig. 8, some
numbers were divided into multiple categories. For example, the number 3 is divided into the first
category and the 12-th category. One can also see that numbers other than 3 are also divided into
different categories.

5 Conclusion

In this paper, we introduced SCGAN, a self-supervised class-conditional GAN. SCGAN uses Bayesian
inference to estimate optimal categorical latent distribution from the classifier output distribution.
The entropy of the categorical latent distribution gradually decreases until SCGAN becomes stable.
SCGAN does not require a label of data, optimal categorical latent distribution, and a good metric
to calculate the distance between data. This means that SCGAN can be used in most situations
regardless of the data domain. Also, SCGAN can perform clustering through the classifier used during
training.

SCGAN showed the best performance compared to Vanilla GAN or InfoGAN with categorical
latent distribution in Gaussian clusters generation experiments. SCGAN was also able to perform
self-supervised class-conditional data generation on the MNIST experiment, a slightly more complex
dataset.
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