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Abstract

This paper presents a geometrical approach to tackle the infamous Collatz conjecture. In this
approach, we represent odd natural numbers as points in 2-D space. We then define a iterative
geometrical algorithm and prove that this algorithm is equivalent to the Collatz function (more
precisely, Syracuse function). Using the monotone convergence theorem, we prove the sequence
generated by this algorithm always converges to 1. Since, this is same as saying Collatz (Syracuse)
sequence converges to 1, we prove that the Collatz conjecture is true.

1 Introduction

The Collatz conjecture, also known as 3n+1 problem, was conjectured in 1937 by mathematician
Lothar Collatz. This is one of the most famous unsolved problems in mathematics. The conjecture
states that if we apply Collatz funtion to positive integer, and continuously iterate this function with
previous result, we will eventually reach 1.

1.1 Collatz, Syracuse sequence, and Collatz conjecture

Collatz sequence for N > 0, N ∈ N can be generated by iterating following function:

T (N) =


3N + 1, if N is odd.

N

2
, if N is even.

Example Find the Collatz sequence for number 9.
We begin with 9 as first element of the sequence. Since, its an odd number, the second element is,

T (9) = 3 ∗ 9 + 1 = 28

Since, 28 is an even number, next element is

T (T (9)) = T 2(9) = T (28) =
28

2
= 14

If we iterate this process of 3N + 1 for odd N and dividing by 2 for even, we get following sequence
9→ 28 → 14 → 7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 →
2 → 1 → 4 → 2 → 1

We can see that T19(9) = 1,and after 19th iteration, the sequence enters into to a loop of
1 → 4 → 2 → 1.

Conjecture 1.1 Collatz conjecture states that ∀N ∈ N, N > 0, T θ(N) = 1.
θ ∈ N and denotes minimum number of iterations of Collatz function to enter the loop 1 → 4 → 2 → 1.
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Syracuse sequence is the sequence of odd elements of the Collatz sequence. For n ∈ 2N + 1, the
next element in the sequence can be calculated using following function

S(n) =
3n+ 1

2β
, β > 0, β ∈ N (1)

For example, Syracuse sequence of 9 is as following:
9 → 7 → 11 → 17 → 13 → 5 → 1 → 1

We find that, S6(9) = 1. and notice that any more iterarations will only generate 1.

Conjecture 1.2 Syracuse formulation of Collatz conjecture states that ∀n ∈ 2N+ 1, Sθ(n) = 1.
θ ∈ N and denotes minimum number of iterations of Syracuse function to reach 1.

2 Geometrical Algorithm equivalent to Syracuse Function

2.1 Construction of P: Positive odd integers in 2-D space

Definition 1.1 Let Z be the set of integers, N := {0, 1, 2, ...} be the natural numbers, and 2N+ 1 :=
{1, 3, 5, ...} be the positive odd integers. In a 2-D Cartesian plane, let us plot all points (x, y) =
(n ∗ 2α, 2α), where n ∈ 2N + 1 and, α ∈ Z.We define this infinite collection of points as P and label
each point Pi = (n ∗ 2α, 2α) as n, as shown in Figure 1. In this paper, whenever Pi corresponds to
n, or Pi = n is mentioned, we mean point Pi is labeled as n.

Figure 1: Odd positive intergers represented as points on 2-D plane.

In each horizontal line at y = 2α, α ∈ Z, the points (positive odd integers) are evenly spaced and
increases as we move right. Each of these horizontal lines at y = 2α is equivalent to a number line
with unit length 2α. Hence, we can think of P as the collection of postitive odd integers on number
lines that are positioned at y = 2α, and scaled by 2α.
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2.2 Properties of P

Property 1.1 All points that correspond to n, lie on the line y = 1
nx.

The coordinates (x, y) for any point Pi that corresponds to n is defined as (n ∗ 2α, 2α), which always
satisfies the equation y = 1

nx. In Figure 2, we demostrate this property with some examples. We can
also see that when n > 1, all points are located below the line y = x.

Figure 2: Example of y = 1
nx passing through all n in P

Property 1.2 A straight line with slope(m)= -3 that passes through point n in P, also passes through
4n+ 1.
Let us consider two points: (x1, y1) = (n ∗ 2α, 2α) and (x2, y2) = ((4n+1) ∗ 2α−2, 2α−2). These points
correspond to n and 4n+ 1 respectively in P. We can calculate the slope using the formula,

m =
y2 − y1
x2 − x1

m =
2α−2 − 2α

(4n+ 1) ∗ 2α−2 − n ∗ 2α
= −3

Using point-slope line equation formula, we can write the equation of this line with slope(m) = −3,
and passing through (n ∗ 2α, 2α) as:

y − 2α = −3(x− n ∗ 2α)

Simplifying the equation we get,
y + 3x = (3n+ 1) ∗ 2α (2)

The y-intercept part in Equation 2 is (3n + 1) and powers of 2. We shall utilize this fact to connect
with Collatz conjecture.
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2.3 Syracuse algorithm Syralgo : P → P

We have a point, Pi ∈ P that corresponds to n, that is located in coordinates (n ∗ 2α, 2α), α ∈ Z.
To find a point that corresponds to next element in Syracuse sequence S(n), we need to follow the
algorithm defined below.

Definition 2.1
We define following 2-step geometrical algorithm Syralgo : P → P, that maps Pi to Pi+1.

Step 1. From the point Pi, draw a line with slope(m) = -3, until it meets y = x. We define
this intersection point as Ai

Step 2. Draw a verticle line (perpendicular to X-axis) from pointAi, until it meets Pi+1. Pi+1 is the
next point/element in the sequence.

This 2-step algorithm is demonstrated on Figure 3. Here, Syralgo maps point P1 = 9 to point P2 = 7

Figure 3: Algorithm steps to find next element in the Syracuse sequence

In order to generate a sequence of points, we need to iterate Syralgo from the new point. Demonstra-
tion of iteration is shown in Figure 4, where red lines represent Step 1, and blue lines represent Step
2 of the algorithm. In this example we apply this algorithm iteratively starting from point P1 that
corresponds to 9. We see that the sequence reaches P7 which corresponds to 1.
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Figure 4: Example of iterations of algorithm defined above

The sequence of points in Figure 4 is
9 → 7 → 11 → 17 → 13 → 5 → 1

This sequence is exactly same as the sequence generated by the Syracuse function for number 9.
In next section we prove that this Syracuse algorithm in P is equivalent to Syracuse function for all
positive odd integers.
Remark: In the figure we stop at P7 = 1, but we can keep going. However, when we apply the
algorithm at Pi = 1, we get Pi = Ai=Pi+1 =1. This is because point correspoinding to 1 lies on the
line y = x. This means after a sequence reaches 1, just like Syracuse function, further iterations of
this algorithm only generate 1 (or in this case, it stays on the same point).

2.4 Proving equivalence between Syralgo and Syracuse functionS(n)

Proposition 1.1 Syralgo is equivalent to Syracuse function S(n).

Proof. In Step 1 of the Syralgo we draw a line slope(m) = −3 passing through point Pi located in
(n ∗ 2α, 2α). Using point and slope, we find the line equation, which is shown in Equation 2:

y + 3x = (3n+ 1) ∗ 2α (2)

To find the intersection point Ai, we substitute y = x in Equation 2

x+ 3x = (3n+ 1) ∗ 2α

4x = (3n+ 1) ∗ 2α

x = (3n+ 1) ∗ 2α−2

Since, n ∈ 2N+ 1, 3n+ 1 is always even, i.e. it shall always have a factor 2β, where β > 0, β ∈ N.

x =
3n+ 1

2β
∗ 2β ∗ 2α−2 (3)
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Substituting, Equation 1, Syracuse function, S(n) =
3n+ 1

2β
, β > 0, β ∈ N into Equation 3, we get,

x = S(n) ∗ 2α−2+β (4)

For Ai, y = x

∴Coordinates of the pointAi, (x, y) = (S(n) ∗ 2α−2+β, S(n) ∗ 2α−2+β) (5)

In Step 2 of the Syralgo, we draw a line from Ai perpendicular to the X-axis. This step identifies the
next point Pi+1 in the sequence. For this step to be valid, following conditions must be met.
(1) There must be a point in P with same x-coordinate as Ai, and
(2) The point must correspond to S(n).

From Equation 4, we have,

x-coordinate of Ai, x = S(n) ∗ 2α−2+β , S(n) ∈ 2N+ 1 and α− 2 + β ∈ Z

By definition, P contains all points in 2-D cartesian space that is of form (x, y) = ((2N + 1) ∗ 2Z , 2Z),
where 2N + 1 ∈ 2N+ 1, and Z ∈ Z.

Therefore, Point Pi+1 with same x-coordinate as Ai exists, and is located in

Pi+1 : (x, y) = (S(n) ∗ 2α−2+β, 2α−2+β) (6)

Similarly we have, from Property1.1 of P, that all points that correspond to 2N + 1, lie on the line
y = 1

2N+1x.

Point (S(n) ∗ 2α−2+β, 2α−2+β) corresponds to S(n), because this point satisfies y = 1
S(n)x.

Thus, we have proved that ∀n ∈ 2N + 1, Syralgo : P → P maps point that corresponds to n to
point that corresponds to S(n).

Hence, the Syracuse algorithm Syralgo(n) defined in P is equivalent to the Syracuse func-
tion S(n)

As a consequence, we can reformulate Collatz conjecture using the Syracuse Algorithm as :

Conjecture 1.3 For any point that correspond to n in P, n ∈ 2N+ 1, Syrθalgo(n) = 1.

θ ∈ N and denotes minimum number of iterations of Syracuse algorithm to reach a point that
corresponds to 1.

Since we have established equivalence between Syracuse (and thus Collatz) function and the Syra-
cuse algorithm in P, in next section we will study convergence of this algorithm.
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3 Convergence of Syracuse Algorithm Syralgo(n) in P

Figure 5 shows the geometry of the Syracuse Algorithm, with red lines representing Step 1 and blue
lines representing Step 2 of the algorithm. Black dots are the points in P, and dot on the line y = x
corresponds to 1.

Figure 5: Example of iterations of algorithm defined above

In Figure 5, we notice that, the red line shifts towards left by some distance δ as we iterate the al-
gorithm, (e.g. Pi+1Ai+1 is left of PiAi ), and when the red line passes through point 1∈ P, it stops
shifting and halts.

Proposition 1.2 The red line halts if and only if the line passes through 1.

Proof. Let Pi = 1 and δi be distance (shift) between consecutive red lines, PiAi and line Pi+1Ai+1. and

From Figure 5, following holds true for any i: δi ∝ length (AiAi+1) ∝ length (AiPi+1)

Point Pi = 1 in P lies on y = x, So the length (PiAi) = length (AiPi+1) = 0, therefore, δi = 0. Hence,
the red line stops shifting if it passes through 1.

Similarly, if the red line does not shift after an iteration (δi = 0), then the length (AiPi+1) = 0, which
means point lies on y = x. Therefore, the point Pi must be 1. Hence, Proposition 1.2 is proved.
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Conversely, we can also say following is always true.
Corollary1.1 The red line shifts left by some distance δ if and only if it does not pass through point
that corresponds to 1 in P.

Therefore, to prove Conjecture 1.3, Reformulated Collatz conjecture using the Syracuse alogrithm,
we need to prove that all δ converges to 0 (i.e. length of line segment AiPi+1 converges to 0.)

3.1 Proof of convergence

Theorem 1.1 ∀n ∈ 2N+ 1 Syrθalgo(n) : P → P always converges, and converges to 1.

Proof. Let us consider a sequence of lengths of line segments, Li, Li+1, Li+2....., generated by the
Syracuse algorithm.

Where, Li = Ai−1Pi, Li+1 = AiPi+1, Li+2 = Ai+1Pi+2, and so on. Pi corresponds to n, Pi+1 corre-
sponds to S(n) and so on.

We have, coordinates of Pi and Ai−1:

Pi = (n ∗ 2α, 2α)
Ai−1 = (n ∗ 2α, n ∗ 2α)

∴ Li = Ai−1Pi = n ∗ 2α − 2α = 2α ∗ (n− 1) (7)

For Li+1, from Equation 5 and 6 we have

Ai = (S(n) ∗ 2α−2+β, S(n) ∗ 2α−2+β)

Pi+1 = (S(n) ∗ 2α−2+β, 2α−2+β)

∴ Li+1 = Ai+1Pi+2 = S(n) ∗ 2α−2+β − ∗2α−2+β = 2α−2+β ∗ (S(n)− 1) (8)

Substutuing Equation 1 in Equation 8, S(n) =
3n+ 1

2β
, β >= 1, β ∈ N

Li+1 = 2α−2+β ∗ (3n+ 1

2β
− 1)

Li+1 = 2α−2+β ∗ (3n+ 1− 2β

2β
)

Li+1 = 2α ∗ (3n− 3 + 4− 2β

22
)

Li+1 = 2α ∗ (3
4
(n− 1) +

4− 2β

22
)

Li+1 =
3

4
∗ 2α ∗ (n− 1) + 2α ∗ (1− 2β−2)

Substituting Equation 7, Li+1 =
3

4
∗ Li + 2α ∗ (1− 2β−2) (9)

We have, β >= 1, β ∈ N

Case1: When β > 1, 2α ∗ (1− 2β−2) <= 0 Therefore, from Equation 9 we get, Li+1 < Li

Case 2:When β = 1, 2α ∗ (1− 2β−2) = 2α−1

Substituting in Equation 9 we get, Li+1 =
3

4
∗ Li + 2α−1
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Lets check for the condition, when Li+1 =< Li

3

4
∗ Li + 2α−1 =< Li

2α−1 =<
1

4
∗ Li

From Equation 7, 2α−1 =<
1

4
∗ 2α ∗ (n− 1)

2 =< n− 1

3 =< n (10)

from Case 1 and Case 2, when n >= 3, then, Li+1 =< Li

Also, we have from Proposition 1.2, when n = 1, Li+1 = Li = 0

Therefore, Li+1 =< Li, is true ∀n ∈ 2N+ 1, where, Li = length(Ai−1Pi), Li+1 = length(AiPi+1)
This means the sequence, Li, Li+1, Li+2..... is a Monotone non-increasing sequence, with a lower bound
(infimum) of 0.

According to the Monotone convergence theorem, If a sequence of real numbers is decreasing and
bounded below, then it will converge to the infimum.

Since the lengths, Li, Li+1, Li+2..... converges to 0, this means the distance between red lines(Step 1)
will also converge to 0, meaning, stop shifting any further left.
From Proposition 1.2 we have, distance between two consecutive red lines, δ = 0, if and only if it
passes through Point 1.

Therefore, ∀n ∈ 2N+ 1 Syrθalgo(n) : P → P always converges, and converges to 1.

3.2 Proof of Collatz Conjecture

Proof. We have,
1) Syracuse algorithm Syralgo(n) defined in P is equivalent to the Syracuse function S(n), which is
equivalent to Collatz function.
2) ∀n ∈ 2N+ 1 Syrθalgo(n) : P → P always converges to 1.
Hence, Collatz conjecture is true.
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