Why the Nuclear Drip Line Skews

John Caywood Independent Researcher john caywood@hotmail.com

Abstract

Helium-4 nucleus is shown with the six attachment points for added neutrons and four attachment points for added protons, which matches the known isotopes of helium.

Contents

Claims of Novelty	1
Chapter 2 Introduction	2
Chapter 3 Planar Configuration of Bound Nucleons	2
The Strong Force	3
Chapter 4 Nucleons	3
Particle Pairs	4
Nucleon Matter and Antimatter Pairs	7
Chapter 5 Nucleus	7
Nuclear Isotopes	7
Chapter 6 Summary	24

Claims of Novelty

• Helium-4 nucleus has six specific attachment points for added neutrons and four specific attachment points for added protons.

Chapter 2 Introduction

Dedication

This work is dedicated to Ginger

Previous Work

The text and diagrams are substantially the same as my paper posted on the physics archive <u>https://vixra.org/abs/2209.0057</u>. In particular, the paper about tetrons <u>Tetrons, viXra.org e-Print</u> <u>archive, viXra:2307.0050</u> is essential to understand the tetron references throughout this paper.

Chapter 3 Planar Configuration of Bound Nucleons

The planar configuration of bound nucleons is due to sharing gluons with neighboring particles. In particular, the 2 vertices available for attachment of the neutron compared to the 1 vertex available for attachment of the proton is responsible for the mass difference of the neutron and proton. This can be calculated.

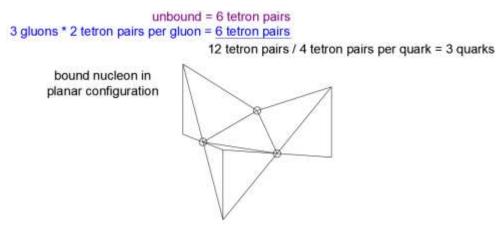


Figure 1 - Bound Nucleon in Planar Configuration

```
Proton mass = 938.27208816 MeV/c<sup>2</sup><sup>1</sup>
Neutron mass = 939.56542052 MeV/c<sup>2</sup><sup>2</sup>
Difference = 1.29333 MeV/c<sup>2</sup>
Neutron mass = 3*quark mass + 3* internal gluon mass + 2* inter-particle gluon mass
Proton mass = 3*quark mass + 3* internal gluon mass + 1* inter- particle gluon mass
Assume internal gluon mass = inter-particle gluon mass
Neutron mass = 3*quark mass + 5* gluon mass
Proton mass = 3*quark mass + 4* gluon mass
Difference = 1 gluon mass
```

¹ Proton - Wikipedia

² <u>Neutron - Wikipedia</u>

Free neutron mass = free proton mass = bound proton mass - gluon mass = $938.27208816 - 1.29333 = 936.97876 \text{ MeV/}c^2$

The Strong Force

In a high energy state, a gluon is simply extra mass added to a quark's spine tetrons via E=mc². The secondary gluon or gluons formed between particles is the strong force. That means the strong force between two particles will be 1, 2 or 3 units of strength, depending on how many tetrons form a gluon bond.

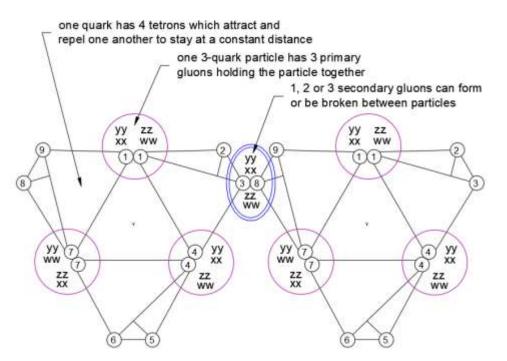


Figure 2 - Comparing Forces Within a Quark, Particle and Between Particles

Chapter 4 Nucleons

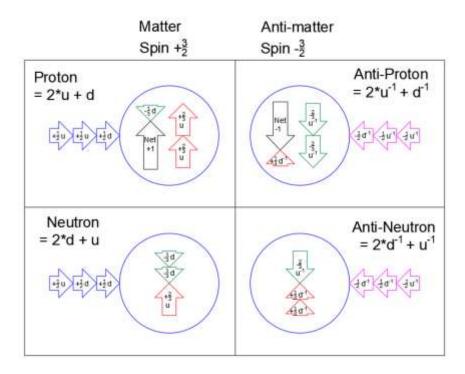


Figure 3 - Nucleons

Particle Pairs

Matter particles and their antimatter mirrors are permanently in a congruent particle pair, and do not collide in an annihilation event. Head-on annihilation does not occur if particles in a pair are congruent.

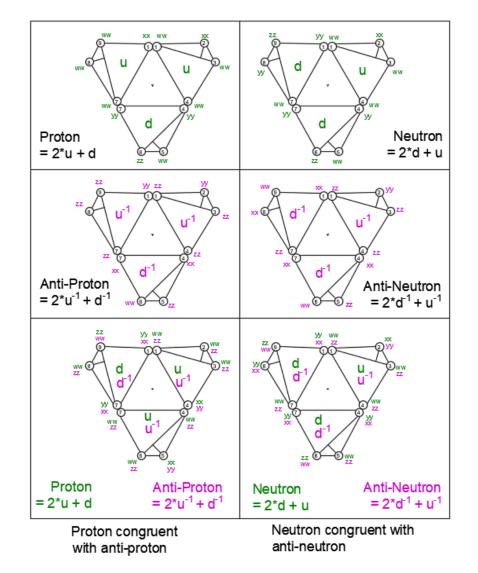


Figure 4 - Particle Pairs

Nucleons Pictorial

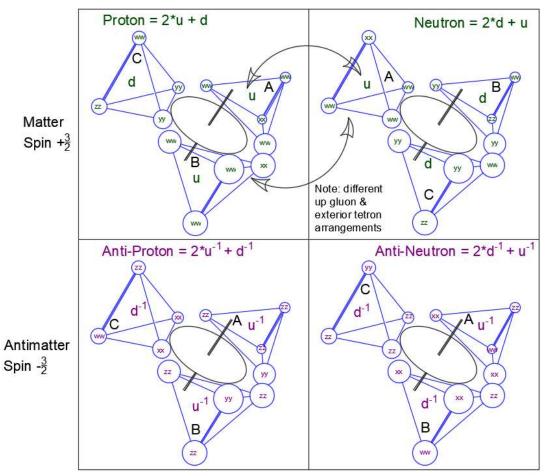


Figure 5 - Nucleons Pictorial

Nucleon Matter and Antimatter Pairs

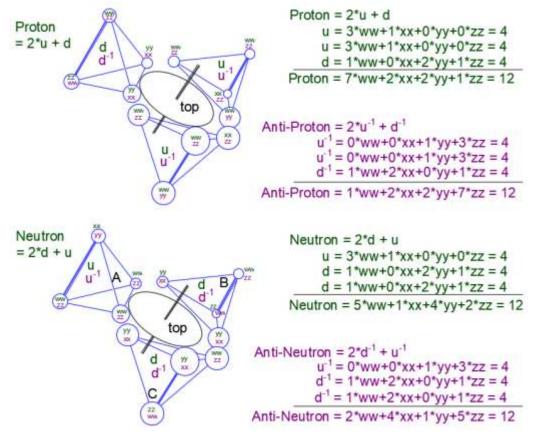


Figure 6 - Nucleon Matter and Antimatter Pairs

Chapter 5 Nucleus

Nuclear Isotopes

Postulate the deviation of the proton - neutron ratio from 1 to 1 is due to neutrons having more potential gluon points than protons, explained in the following few diagrams.

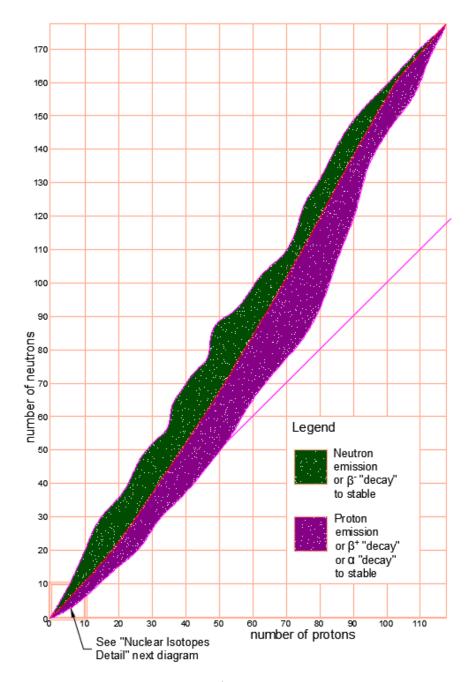


Figure 7 - Nuclear Isotopes

neutrons	10				¹³ Li	¹⁴ Be	¹⁵ B	¹⁶ C	¹⁷ N	¹⁸ O	¹⁹ F	²⁰ Ne		
	9				¹² Li	¹³ Be	¹⁴ B	¹⁵ C	¹⁶ N	¹⁷ 0	¹⁸ F	¹⁹ Ne		
	8			¹⁰ He	¹¹ Li	¹² Be	¹³ B	¹⁴ C	¹⁵ N	¹⁶ O	¹⁷ F	¹⁸ Ne		
	7			⁹ He	¹⁰ Li	¹¹ Be	¹² B	¹³ C	¹⁴ N	¹⁵ O	¹⁶ F	¹⁷ Ne		
	6		⁷ H	⁸ He	⁹ Li	¹⁰ Be	¹¹ B	¹² C	¹³ N	¹⁴ O	¹⁵ F	¹⁶ Ne	"Deca	y" Types Stable Beta plus Beta
	5		⁶ H	⁷ He	⁸ Li	⁹ Be	¹⁰ B	¹¹ C	¹² N	¹³ O	¹⁴ F	¹⁵ Ne	β ⁺	
	4		⁵H	⁶ He	⁷ Li	⁸ Be	⁹ B	¹⁰ C	¹¹ N	¹² O	¹³ F		β [_]	
	3		⁴H	⁵He	⁶ Li	⁷ Be	⁸ B	°C	¹⁰ N	¹¹ O				minus
	2		^з Н	⁴He	⁵ Li	⁶ Be	⁷ B	⁸ C					α	Alpha Proton
	1	Н-	² H	^з Не	⁴ Li	⁵Be ?	⁶ B ?						p	emission Neutron emission
	0		¹Н	² He	³ Li								n	
		0	1	2	3	4	5	6	7	8	9	10		Fission
protons											y-occurrin n or neutr	ig nuclei on emission		

Figure 8 - Nuclear Isotopes Detail

Nuclides Drip Line "Decay"

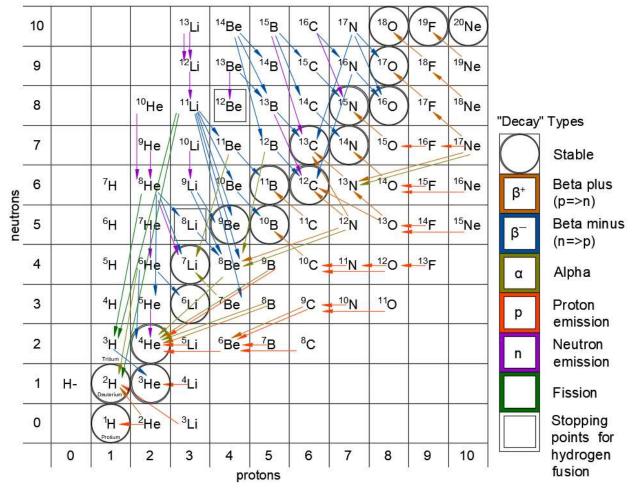


Figure 9 - Nuclides Drip Line "Decay" Paths

Common Properties in Particle State Diagrams

In a proton or electron, vertex 8 is ww//zz and is available to form an apex bond with vertex 2, which is xx//yy. This will leave the proton or electron with only ww//zz vertices and able to bond only with a particle with a free xx//yy vertex, such as a neutron or electron neutrino. In the nucleus, protons and neutrons have an abundance of ww//zz valence tetrons. Protons have only ww//zz valence tetrons left if an apex (fourth) gluon is formed. Neutrons have one remaining xx//yy valence tetron left after forming an apex (fourth) gluon. This leaves neutrons in the nucleus with more inter-particle gluon possibilities than protons.

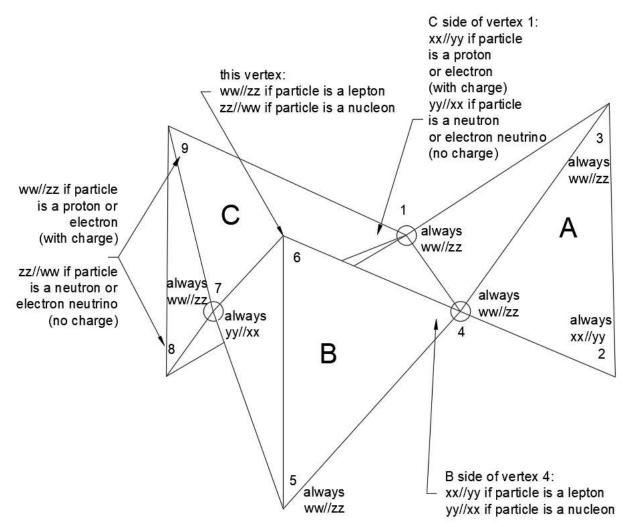


Figure 10 - Common Properties in Particle State Diagrams

Apex (Fourth) Gluon Formation Between Quarks A & B

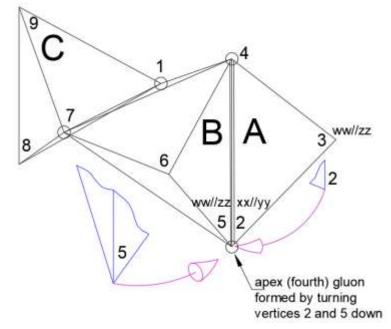
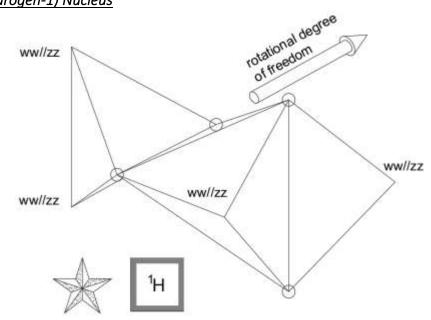



Figure 11 - Apex (Fourth) Gluon Formation Between Quarks A & B

Figure 12 - Protium (Hydrogen-1) Nucleus

Protium (Hydrogen-1) Nucleus

Internal Tetrahedron in Apex Gluon Particle

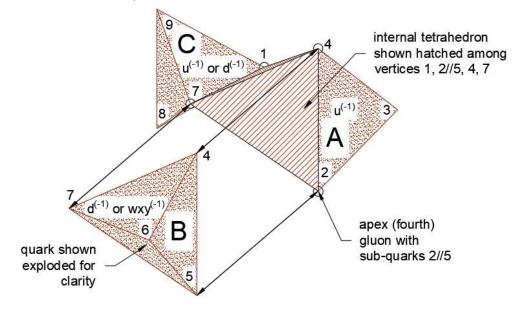


Figure 13 - Internal Tetrahedron in Apex Gluon Particle

Orthogonal Views of 3 Gluon Particle

Example is single proton nucleus of hydrogen-1 (protium)

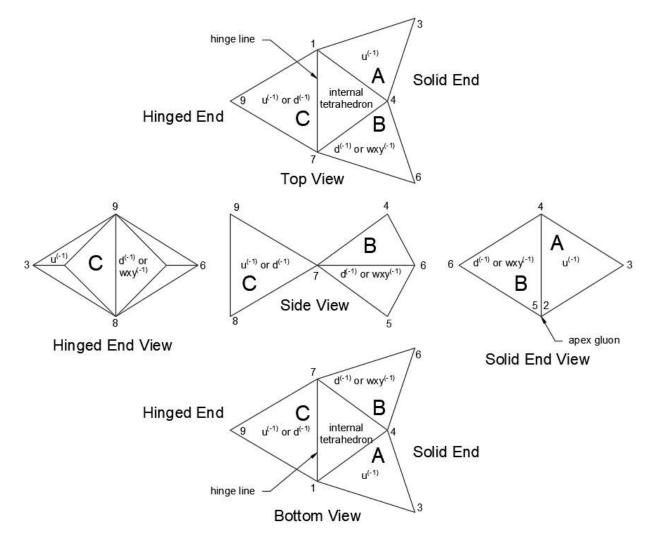


Figure 14 - Orthogonal Views of 3 Gluon Particle

<u>Deuterium</u>

9 gluons and 6 ww//zz tetrons (exposed vertices) that are non-reactive with ww//zz vertices of other particles. This is the most likely isomer.

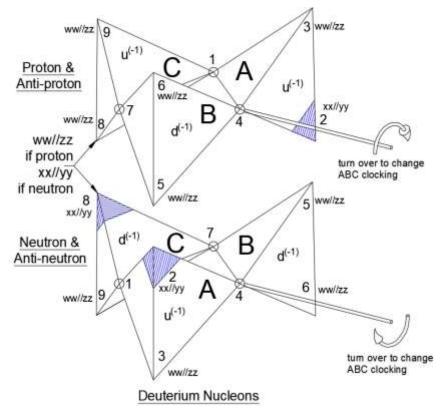


Figure 15- Deuterium Nucleons

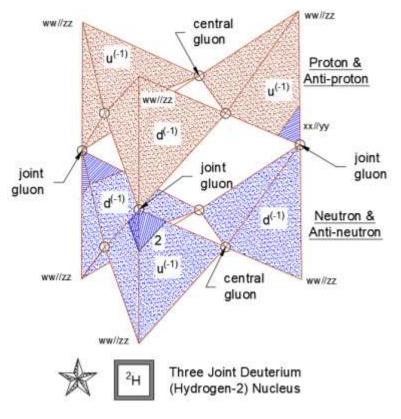


Figure 16 - Three Joint Deuterium (Hydrogen-2) Nucleus

<u>Tritium</u>

- 1 reactive xx//yy vertex
- This is the most likely isomer

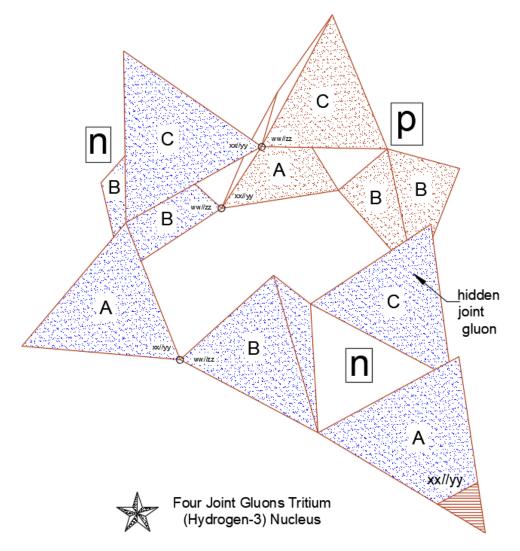


Figure 17 - Four Joint Gluons Tritium (Hydrogen-3) Nucleus

Helium-2 Nucleus

- 2 protons
- 0 neutrons
- no reactive xx//yy vertex
- no apex gluons
- geometric symmetry about center
- hinge lines

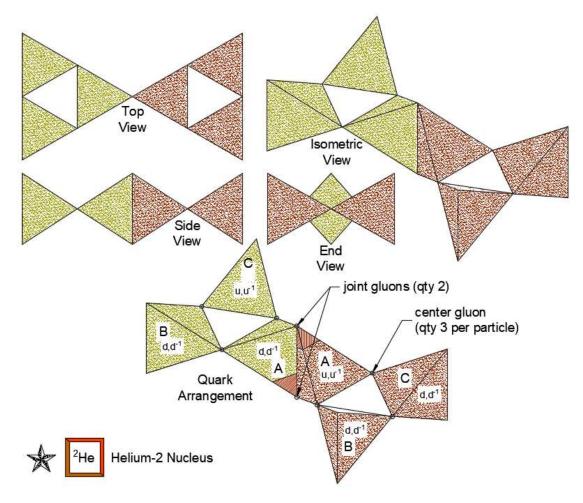


Figure 18 - Helium-2 Nucleus

Helium-4 Model

- 2 protons
- 2 neutrons
- 6 joint gluons
- no reactive xx//yy vertex
- no apex gluons
- geometric symmetry about center
- hinge lines

Selected for helium-4 nucleus because:

- even though there are 2 hinge lines and 2 pivot points between the 4 particles, the amount of rotation is limited by the ring nature of the structure
- one of the degrees of freedom between the neutron side and the proton side is at right angles with the remaining 2 degrees of freedom about the same particle types (2 neutrons hinge about their 2 connecting vertices and 2 protons do likewise)

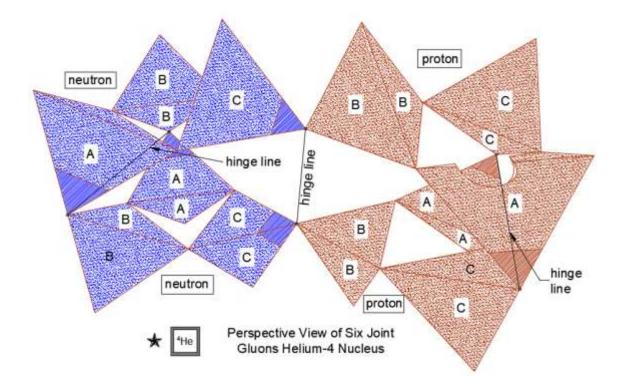


Figure 19 - Perspective View of the Helium-4 Nucleus

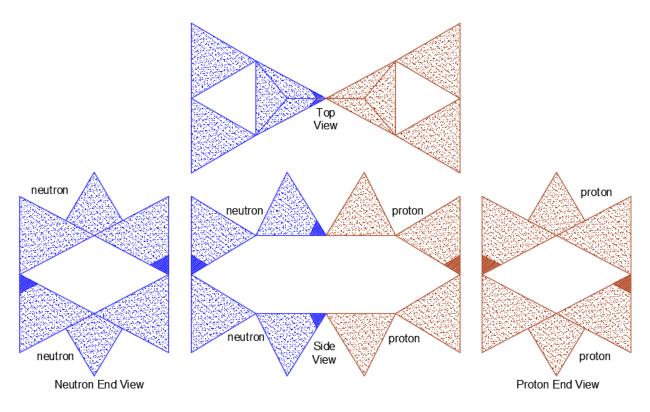


Figure 20 - Orthogonal Views of the Helium-4 Nucleus

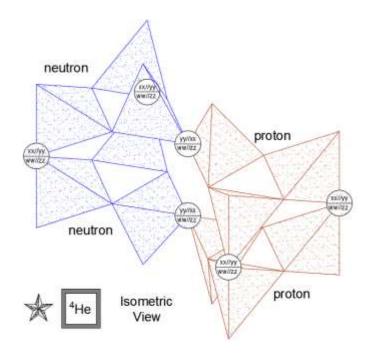


Figure 21- Orthogonal Views of Six Joint Gluons Helium-4 Nucleus

Helium-4 Attachment Positions for Free Neutron // Anti-neutron Pairs

For background on the beta reaction referenced in the following sections, see <u>The Weak Reaction</u>, <u>viXra.org e-Print archive</u>, <u>viXra:2307.0076</u>

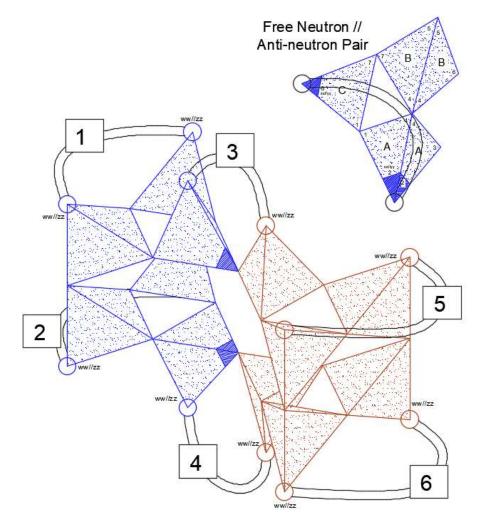


Figure 22 – Six Helium-4 Attachment Positions for Free Neutron // Anti-neutron Pairs

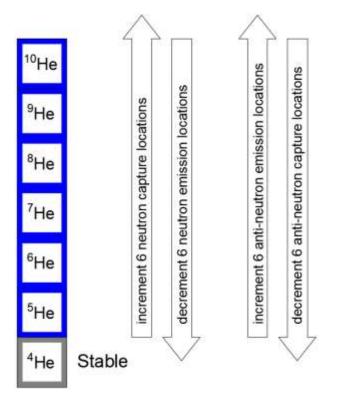


Figure 23 - Helium-4 Increments of Free Neutron Addition

Summary:

- A neutron emission is an anti-neutron capture
- A neutron capture is an anti-neutron emission

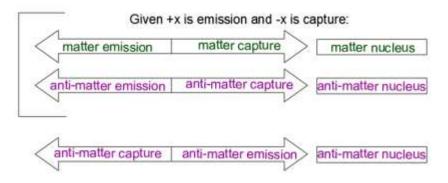
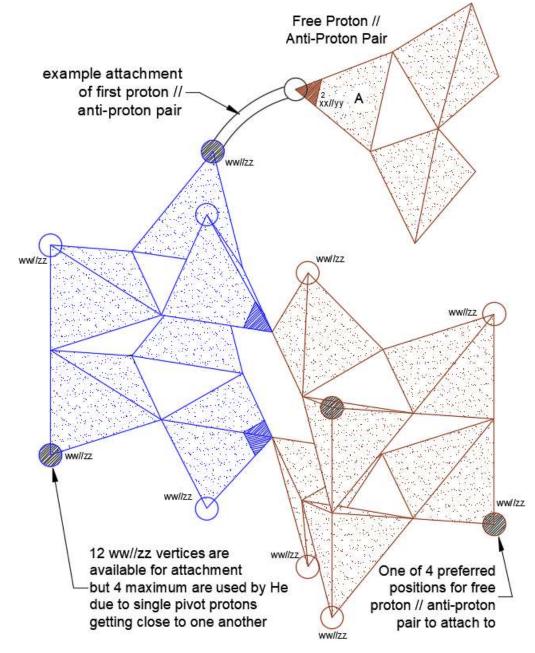



Figure 24 - Emission and Capture are Mirror Reactions

Findings from beta minus reaction extended to neutron emission & capture:

To matter observer:

- Matter velocity direction is the same as matter cause-effect direction
- Antimatter velocity direction is opposite of cause-effect direction

Four Helium-4 Attachment Positions for Free Proton // Anti-proton Pairs

Figure 25 - Helium-4 Attachment Positions for Free Proton // Anti-proton Pairs

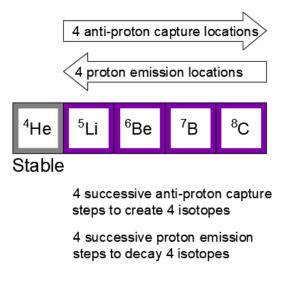


Figure 26 - Helium-4 Increments of Free Proton Addition

Chapter 6 Summary

Chapter 3 introduced planar configuration of bound nucleons, which is bound by 3 gluons per particle. Chapter 4 introduced matter particles and their antimatter mirrors, which are permanently in a congruent particle pair. Chapter 5 claims the deviation of the proton to neutron ratio from 1 to 1 is due to neutrons having more potential gluon points than protons. Specifically, the Helium 4 nucleus is an example where six sites for a free neutron exceeds the four sites for a free proton.

The neutron has two xx//yy tetrons whereas the proton only has one xx//yy tetron. This may be visualized as a highly reactive free xx//yy tetron in an environment of available ww//zz tetrons. The neutron has two of these highly reactive tetrons, and the proton only has one. In addition to having more binding sites, a free neutron will likely bond both xx//yy tetrons, creating a more stable resultant nucleus. The proton has only one xx//yy tetron to bond, leaving this newly bonded nucleon with many more degrees of freedom to rotate around.