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Abstract 
 
A simple gedanken experiment was proposed that imagines an observer shrinking down and 
entering the inner space of the atom.  This led to five postulates which was justified 
mathematically using a quantum potential-modified spacetime structure within the atom.  The 
new spacetime structure demonstrated that space was expanded within the atom, time was 
slowed down and inertial mass was increased.   The paper also demonstrated that the 
uncertainty principle may have its origins in the modification of spacetime within the atom.  
Application of general relativity to the intraatomic space showed that charge emerges in a 
natural way from the changes in the spacetime structure.  Within the atom, the term  8πG 

could be replaced with 
!" !"#

#

$$
  in the gravitational field equation.    The absence of nuclear 

radiations could be attributed to the presence of a black-hole-like horizon around the nucleus, 
which also could explain the extraordinary stability of the electron within the atom that 
contains a positively charged nucleus.  The spacetime transformation would appear to make 
the atomic world self-similar to, or symmetric with, the macroscopic world.  The product of the 
space and time intervals in spacetime was invariant, which is in effect a law of conservation of 
spacetime. Thus, it appeared that spacetime may not be just a field of coordinate points, but a 
real entity that could be associated with both mass and energy.  Inertial mass could be directly 
related to the proportion of space and time within spacetime. 
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1. Introduction and the Gedanken experiment 
 
Unlike within the atom, wherein forces are described by the standard model, which is a 
quantum field theory model, in the macroscopic world, gravitational forces are described by the 
effect of mass on spacetime curvature as in Einstein’s theory of general relativity.  These 
mathematical approaches, in the two domains of the very small and the very large, are so 
radically different that attempts to reconcile them have afflicted us for at least seven decades 
with still no clear end in sight.  Quantum gravity refers to heroic, and no doubt brilliant, 
attempts to bridge the two domains [1].  In AIP Publishing alone there are over 20,000 papers in 
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quantum gravity, and a full list may run well over 100,000 papers.  Yet the consensus is that we 
are not even close to bringing together the quantum and gravitational domains.  I feel it is time 
for a disruptive concept, a simple idea that has somehow been overlooked.  In 1905, when 
Einstein proposed his Special Theory of Relativity (STR) which derived the Lorentz formulations 
from a gedanken (thought) experiment, the world could finally agree with the intuitive truth of 
that thought experiment, transform physics as we knew it then, and extricate us finally from 
Newton’s constraints.  The disruptive idea was not, in my opinion, the constancy of the speed 
of light per se, though of course that is what led to the rest, but the idea of observer 
dependence, that no two observers need to agree on measurements of mass, space and time.  
In 1996 , Rovelli [2] first advocated observer dependence in quantum measurements spawning 
the field of relational quantum mechanics, but it was still not disruptive enough and still did not 
go into the heart of the conflict.  I wish to propose a new disruptive gedanken experiment that 
has not so far been considered and which has potential to intuitively integrate both domains in 
a natural way.  There are some profound consequences of this gedanken experiment, that can 
be mathematically established and is done so in this paper, and of considerable philosophical 
significance, that are likely as transformative as the mass-energy equivalence that arose from 
the STR.   
 
The gedanken experiment is as follows.  Imagine that a macroscopic observer shrinks down in 
size continuously.  At first the room will appear very large and extremely massive.   As this 
shrinking continues imagine that eventually the observer finds himself/herself inside an atom.  
It stands to reason that an atom will appear vaster and much more massive than it would to a 
normal observer at our scale.  The important point is this.  It is intuitively reasonable to think 
that the atom is now no longer a quantum object, but a normal macroscopic object behaving as 
normal objects do in the macrocosm. Simply by reducing the size of the observer we have 
potentially transformed the quantum world into a macroscopic world.   I will later show that 
distances and masses are larger, and time slows down for this lilliputian when compared to a 
macroscopic normal human observer.  Clearly there must be a spacetime transformation that 
transforms the quantum world into the macrocosm and vice versa.  In fact, Rovelli [3] has said 
that there is no fundamental flaw in considering observers as anything that interacts with the 
environment.  Fundamental particles are also observers, and there is nothing to stop us from 
attaching a reference system to any random observer of any size scale. 
 

1.1 The Postulates 
 
The following postulates are made based on the gedanken experiment, and this paper will 
develop the mathematical foundation for each of these postulates. 
 
Postulate 1:   A microscopic observer within the atom does not see the atom as quantum in 
nature, but rather macroscopic and classical in nature. 
 
Postulate 2:  There is a spacetime transformation that can map the microcosm into the 
macrocosm and hence transform electromagnetism into gravity; or vice versa. 
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Postulate 3:  Mass, space and time are not absolute and is dependent on the size scale of the 
observer. 
 
Postulate 4:  The general relativistic field equation can be rederived to include charge so that 
electromagnetism becomes a form of gravity. 
 
Postulate 5:  Charge is a manifestation of gravity at quantum scales. 
 
 
To address this mathematically what is required is a parameter that can influence spacetime 
structure, and one candidate is the potential energy of a particle that applies in the quantum 
regime whose negative gradient multiplied by its mass is equal to the force experienced by the 
particle.  A proper choice is the quantum potential energy, derived in the 1950s by David Bohm 
[3].   
 
This paper only considers the simplest case of a single electron in a hydrogen atom in the 1s 
state and demonstrates how the electromagnetic force is a manifestation of gravity at quantum 
scales.  
 

2. Validating the postulates 
 

2.1 Postulate 1 
This is a restatement of the gedanken experiment as a postulate and hence does not 
require proof.  One could say that validation of the rest of the postulates would provide 
a validation of the first postulate. 
 

2.2   Postulate 2 
There are two parts to validating this postulate.  One is selecting a suitable spacetime 
metric and the second is obtaining a form for the quantum potential that enters into 
this metric.  From this, one needs to demonstrate that the electromagnetic force can be 
obtained from general relativity considerations alone. 

 
2.2.1 Quantum potential energy field and quantum forces 

 
The quantum potential energy associated with a quantum state was shown by Bohm [3] to be 
of the form: 
 

𝑉%%𝑚%' = −
ℏ!

2𝑚%

∇!𝜓
𝜓 														(1) 

 
wherein 𝜓 is the electron wave function and 𝑚% is the quantum particle mass, which can be 
defined as the inertia associated with the quantum wavefunction for the particle. A detailed 
treatise about the quantum potential can be found in the book by Robert Carroll [4].   
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For the ground state of the electron in the hydrogen atom, 𝜓 is only r-dependent and is given 
by [5] 
 

𝜓(𝑟) =
1

√𝜋𝑏&
𝑒'

(
)												(2) 

 
where b is a characteristic distance, namely the most probable distance of the electron from 
the nucleus in its ground state.   Combining Eq. (1) and Eq. (2) it is straightforward to show that: 
 

𝑉%%𝑚%, 𝑟' =
ℏ!

𝑚%𝑏𝑟
−	

ℏ!

2𝑚%𝑏!
						(3) 

 
Because the second term is a constant the potential energy change required to bring an 
electron from infinity to the point, r is then: 
 

V%𝑚%, 𝑟' =
ℏ!

𝑚%𝑏𝑟
						(4) 

 
We next define the parameter 𝜙*%𝑚%, 𝑟' as the quantum confinement potential field, namely, 

the potential energy per unit mass <= +,-%,(/
-%

=, so that:  

 

𝜙*%𝑚%, 𝑟' =
ℏ!

𝑚%
! 𝑏𝑟

						(5)						 

 
In Eq. (3) to Eq. (5), 𝑚% refers to the electron rest mass.  For the purely gravitational case:  
 

𝑚0𝑎 = −𝑚1∇𝜙1																				(6) 
 
where, 𝑚0  is the inertial mass, 𝑚1 is the gravitational mass and 𝜙1 is the gravitational potential 
(total gravitational potential energy per unit mass); then the statement of the equivalence 
principle is 𝑚0 = 𝑚1 which has been verified by all experiments to date.   Hence acceleration of 
the mass is the same as the gradient of the gravitational potential which allowed Einstein to 
develop a geometric law of gravity whereby it is spacetime that is curved, and bodies take the 
shortest, or straightest, path (geodesic paths) in this curved space which manifests as 
gravitational acceleration.   
 
 In analogy with Eq. (6) we can write for the quantum case: 
 

𝑚0𝑎 = −𝑚%∇𝜙*(𝑚, 𝑟)																				(7) 
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Here 𝑚0  is the inertial mass.  We apply a new equivalence principle in the quantum regime, like 
that used by Einstein, namely: 
 

𝑚0 = 𝑚% = 𝑚									(8) 
 
If we accept this as a hypothesis one gets: 
 

a = −∇𝜙*(𝑚, 𝑟) =
ℏ!

𝑚!𝑏𝑟! 			(9) 
  
The quantum confinement force is then:  
 

𝐹 = 𝑚𝑎 = −𝑚∇𝜙*%𝑚%, 𝑟' =
ℏ!

𝑚𝑏𝑟! 		(10) 
 
F is a Heisenberg force which follows from the uncertainty principle and associated with the 
repulsion experienced by a particle that is confined to a radius, r.  Because of the following 
equality: 
 

ℏ!

𝑚𝑏 =
𝑒!

4𝜋𝜖2
										(11)	 

 
the quantum Heisenberg force is equal in magnitude to the electrostatic force, that is: 
 

𝐹 =
ℏ!

𝑚𝑏𝑟! =
𝑒!

4𝜋𝜖2𝑟!
						(11𝑎) 

 
An observer inside the atom does not experience any quantum confinement as per the 
gedanken experiment, and hence there would not be a quantum forces present for this 
observer.  The attractive force for such an observer would only be a gravitational attraction 
between two massive particles balanced by a centrifugal force.   In contrast, the macroscopic 
observer interprets this as an electromagnetic attraction balanced by the quantum force of 
repulsion (Eq. (11a). They are both equivalent descriptions of the same reality.   
 
From Eq. (11), the energy levels of the hydrogen atom can be given by 
 

𝐸3 = −
< ℏ!
2𝑚𝑏!=

𝑛! = −
𝑅
𝑛! 										(12) 

 
with R as the Rydberg Constant.   Thus, one can write:  
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𝑒 = J
4𝜋𝜖2ℏ!

𝑚%𝑏
									(13)	 

 
as a derived quantity from b.  The Bohr radius, b, is a form of space quantization which Eq. (12) 
suggests could be more fundamental than charge.  For the macroscopic observer, the perceived 
charge, e, is a derived quantity from b based on eq. (13).      
 
Taking the negative potential energy to simulate attractive gravity, from Eq. (5) and Eq. (12), 
the kinetic energy term is: 
 

𝐸45 = <
1
2=

ℏ!

𝑚𝑏! 						(14) 
 
 Letting the kinetic energy be of the order K6

!
L𝑚𝑣!, Eq. (14) results in 𝑝𝑏 = ℏ (p is the 

momentum) which is a statement of the uncertainty principle.  The quantum potential is 
consistent with the uncertainty principle. 
 
 
Based on Eq. (5), a mass- potential energy equation in the quantum regime can be obtained as 
follows:  
	

𝑚𝜙*(𝑚, 𝑟) = 𝑉(𝑚, 𝑟)												(15) 
 

𝑉(𝑚, 𝑟) = 𝑉2(𝑚) <
𝑏
𝑟=			(16) 

	

𝑉2(𝑚) =
ℏ!

𝑚𝑏! = 𝑅								(17) 
 

𝑚𝜙*(𝑚, 𝑏) = 𝑉2(𝑚) = 𝑅												(18) 
 
We define 𝑉2 here as a fundamental quantum energy associated with the quantum confined 
ground state, neglecting all kinetic energy effects.  The inverse relationship of energy to mass, 
Eq. (17), has significance in relativistic models of the atom (see following section).   
 
The total energy content of the mass (based on the equivalence principle, 𝑚0 = 𝑚% = 𝑚) can 
be written for the ground state using Eq. (17) as: 
 

𝐸 =
ℏ!

𝑚𝑏! +𝑚𝑐
! = 𝑅 +𝑚𝑐!					(19) 

 
The first term is the quantum contribution from the Heisenberg energy, Eq. (17), and the 
second term is the Einstein term.  Clearly as mass goes to zero rest energy does not go to zero 
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but to a value equals the Rydberg constant, which is essentially a quantum ground state for the 
rest energy.   
 
The fundamental equation of quantum particle dynamics recognized by Bohm [3] was: 
 

𝑚𝑎 = −∇[𝑉7 + 𝑉]												(20) 
 
wherein, for the electron,  𝑉7  is the classical electromagnetic potential (V is the quantum 
potential): 
 

𝑉7(𝑟) = −
𝑒!

4𝜋𝜖2𝑟
							(21) 

 
Differentiating the one-dimensional Schrödinger equation with respect to x on both sides and 
multiplying by 𝜓∗ one gets 
 

𝑖ℏ𝜓∗ 𝜕
𝜕𝑥
𝜕𝜓
𝜕𝑡 = −

ℏ!

2𝑚𝜓∗ 𝜕
𝜕𝑥
𝜕!𝜓
𝜕𝑥! + 𝜓

∗ 𝜕𝑉7
𝜕𝑥 𝜓.						(22) 

 
Integrating both sides over all space with respect to x the result is  
 

〈
𝜕𝑝
𝜕𝑡
〉 = −∇[〈𝑇〉 + 〈𝑉7〉]									(23) 

 

knowing that 〈𝑝〉 = ∫𝜓∗ Kℏ
0
:
:;
L𝜓𝑑𝑥 and 〈𝑇〉 = − ℏ#

!- ∫𝜓
∗ :

#%
:;#

	𝑑𝑥, wherein 〈 〉 refer to the 
expectation value of the parameter between the brackets and T is the translational kinetic 
energy.  Comparing with Eq. (20) and Eq. (23):   
 

ℏ!

𝑚𝑏𝑟 =
〈𝑇〉 = (1/2)𝑚〈𝑣〉!						(24) 

 
Thus, we find that the lower limiting value of r, or 𝑟<, corresponding to a lower quantum 
horizon for r is, by the principle of special relativity, at 〈𝑣〉 = 𝑐: 
 

𝑟< =
2ℏ!

𝑚!𝑏𝑐! 								(25) 
 
The electron can never occupy positions 𝑟 < 𝑟<.   At this point, though the electron rest mass is 
unaffected, its inertial mass should tend to infinity by the special theory of relativity.  This 
limiting condition prevents atomic instability.  The value of 𝑟< is 5.64 X 10-15 m is only three 
orders of magnitude smaller than the Bohr radius and should be well outside the nucleus. 
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Based on special relativity, the inertial mass, 𝑚, compared to the rest mass, 𝑚2 should be given 
by (using Eq. (24) and Eq. (25)): 
 

𝑚 =
𝑚2

J1 − <〈𝑣〉𝑐 =
!
=

𝑚2

J1 − 2ℏ!
𝑚2
!𝑏𝑟𝑐!

=	
𝑚2

_1 − 𝑟<𝑟

					(26) 

 
    The singularity in mass at 𝑟 = 𝑟< is also predicted by the uncertainty relation when special 
relativity applies‡.  
 
  The quantum potential energy value in Eq. (16) allows one to write the classical 
electromagnetic potential energy as: 
 

𝑉7 = −V%							(27) 
 
Since the potential is the same as the potential energy per unit mass one can write from Eq. 
(14): 
 

𝜙7 = −𝜙% =	−			
ℏ!

𝑚!𝑏𝑟			(28) 
  
and the acceleration as: 
 

𝑎 = −∇𝜙7 = +∇𝜙%													(29) 
 
     

2.2.2  Deriving the spacetime field structure at quantum scales  
 
A spacetime structure can be defined by a spacetime metric.  It is well known that a potential of 
mass would create a curvature in this field.  The quantum potential is indeed a potential of 
mass because the mass times the negative gradient of the potential is a force.  The   
Schwarzschild metric is an ideal spacetime structure to start with as it is a black hole metric and 

 
‡ The usual momentum-position uncertainty relation is:  

∆(𝑚𝑣)∆𝑟 ≥
ℏ
2 

yielding 

(𝑣∆𝑚 +𝑚∆𝑣)∆𝑟 ≥
ℏ
2 

As the electron approaches the horizon, 𝑣 → 𝑐 and hence by special relativity constraint it follows that ∆𝑣 → 0.  
This gives: 

∆𝑚∆𝑟 ≥
ℏ
2𝑐 

Further, at the horizon, special relativity constrains ∆𝑟 to be tending to zero also or else the velocity can exceed c.  
This means the inertial mass must tend to infinity though its rest mass is said to remain constant.   
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exhibits strong quantum effects.  I start with this structure as illustrative of the intra-atomic 
situation.  This metric defines a spacetime field, 𝜙=, represented as a spacetime interval, 𝑑𝑠: 
 

𝜙=! = 𝑑𝑠! = −(𝑐𝑑𝑡)! <1 +
2𝜙
𝑐! = + 𝑑𝑟

! <1 +
2𝜙
𝑐! =

'6

+ 𝑟!(𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜑!)					(30𝑎) 
 
If we replace the potential, 𝜙, by the negative of the quantum potential one gets: 

𝜙=! = 𝑑𝑠! =			−(𝑐𝑑𝑡)! c1 −
2ℏ!

𝑚!𝑏𝑟𝑐!d + 𝑑𝑟
! c1 −

2ℏ!

𝑚!𝑏𝑟𝑐!d
'6

+ 𝑟!(𝑑𝜃! + 𝑠𝑖𝑛!𝜃𝑑𝜑!)									(30𝑏) 
 
This is justified as the quantum force is equal and opposite to the attractive force (Eq. (11a).  
The real question is whether the attractive force can emerge as a gravitational force from the 
spacetime structure and be of equal magnitude to the electrostatic force of attraction using Eq. 
(30b).  Appendix 1 shows that this is indeed the case based on the mathematical formalism of 
general relativity and predicts accelerations and forces from the spacetime geodesic that 
exactly match the electrostatic accelerations and forces of Eq. (9) and Eq. (10).  This approach is 
different from the approach taken by Tavernelli [6,7] earlier who derived a geometric model for 
spacetime based on the Finsler geometry wherein the geometry is a function of both position 
and momentum.   
 
The above analysis validates postulate 2.   
 
2.3  Postulate 3 
 
2.3.1  Relativity of space and, time 
 
A fundamental consequence of proposing curved spacetime within the atom is the result that 
there would be a relativity of space, time and mass compared to the yardsticks in the 
macroscopic world we live in.  The metric of Eq. (30b) clearly indicates that time moves slower 
and space is expanded from a perspective within the quantum spacetime field, compared to 
what would be measured by a remote macroscopic human observer outside this field.  This is 
consistent with the finding that muons have longer decay lifetimes [8].  These equations are 
given below: 
 
 

𝑑𝜏 = 𝑑𝑡Jc1 −
2ℏ!

𝑚!𝑏𝑟𝑐!d															
(31) 

 

𝑑𝑟> = 𝑑𝑟 c1 −
2ℏ!

𝑚!𝑏𝑟𝑐!d
'6/!

						(32) 
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A larger value of 𝑑𝜏 means that time is speeded up inside the atom.  Eq. (31) shows the 
opposite, that is, time is slowed down inside the atom.   
 
    
2.3.2 Relativity of mass 
 
In special relativity, the concept of relativistic mass is accepted in contrast to the rest mass.  If 
m0   is the rest mass, then from special relativity, the total energy of mass is given by [9]: 
 

𝐸 = 𝑝@ = 𝑚2𝑐!
𝑑𝑡
𝑑𝜏 = 	

𝑚2𝑐!

_<1 − 𝑣
!

𝑐!=
						(33𝑎) 

 
wherein here the velocity, v, refers to the velocity of the mass relative to that of the observer.  
Hence the relativistic mass, m, is: 
 

𝑚 =	
𝑚2

_<1 − 𝑣
!

𝑐!=
						(33𝑏) 

 
The relativistic mass is the true inertia of the particle.  To say that the inertial mass is different 
from the actual mass appears to be against the equivalence principle.  Why have we insisted on 
this separation between inertial and rest mass?  Primarily because we did not wish to abandon 
the basic notion of the conservation of mass.  If relativistic inertial mass is the actual mass, then 
mass is not conserved.  We show below that what is conserved is not actually mass but 
spacetime itself at a more fundamental level.  Mass is observer dependent.  If we use the same 
approach as in Eq. (33a), then for general relativity also: 
 

𝐸 = 𝑝@ = 𝑚2𝑐!
𝑑𝑡
𝑑𝜏 = 	

𝑚2𝑐!

J<1 −
2𝜙1
𝑐! =

						(33𝑐) 

 
wherein here 𝜙1 is the gravitational potential.  This equation has the same form as Eq. (25b) 
and one can say that this is a definition of relativistic mass in general relativity.  However, in 
general relativity the concept of relativistic mass is not used and, instead, mass is considered 
absolute and treated only as the “rest” mass, which is basically the mass at zero gravitational 
potential.  This is because the equations of general relativity only has zero-potential rest mass 
in it and the equations of motion of the mass in general relativity are determined by this “rest” 
mass.  This is certainly correct, but the fact remains that there is still an “effective” inertial mass 
that is larger than the so-called zero-potential rest mass because of the gravitational field.   I 
define mass as the inertial mass at a particular location and state of motion of the mass.  In this 
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definition, mass is not conserved in general but is conserved only at constant velocity and 
potential.  I will show that spacetime is conserved in general, and that mass is conserved only 
when the ratio of proper time to proper distance (space) is constant. 
 
In the case of the quantum potential the relativistic mass is: 
 

𝑚 =	
𝑚2

J1 − 2ℏ!
𝑚2
!𝑏𝑟𝑐!

						(34) 

 
where 𝑚2 refers to the electron mass technically at 𝑟 → ∞ where the quantum potential is 
zero.   Eq. (34) is identical to Eq. (26) from a quantum potential analysis.  Hence a curved 
spacetime within the atom appears to be a justifiable postulate. 
 
The above analysis validates postulate 3. 
 
2.4. Postulate 4 
 
2.4.1 Gravity as electromagnetism: the new field equation 
 
The Einstein field equation is the well-known: 
 

𝐆 = k𝐓					(35) 
 
Where, G is the Einstein tensor, T is the stress-energy-momentum tensor and the constant, k, 
for the macroscopic gravitational case is given by  
 

𝑘 = <
8πG
cA =						(36) 

 
wherein G is the gravitational constant.  This constant, k, was obtained by comparing the weak 
field case with the Newtonian gravitational limit, namely, the gravitational Poisson’s equation.  
Clearly, this constant, k, would not apply to the quantum or electromagnetic case within the 
atom, hence the original Einstein’s equation cannot be the correct relativistic field equation for 
the atomistic case. We need to establish the value of the constant k for the quantum case; in 
particular, we shall evaluate it for the case of the electron in the ground state of the hydrogen 
atom.  Once again, we need to compare the quantum weak field equation with the electrostatic 
Poisson’s equation and reevaluate the new constant k for the quantum case.  The Newtonian 
electrostatic Poisson’s equation is 
 

∇!𝜑 =
𝜌B
𝜖2
								(37) 
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where 𝜑 is the electrostatic potential of charge, 𝜌B  is the charge density and 𝜖2 is the vacuum 
permittivity.   
 
Starting with Eq. (4) we can write the quantum potential as  
 

𝜙%(𝑚) =
ℏ!

𝑚!𝑏𝑟 = <
1
𝑚=

ℏ!

𝑚𝑏𝑟									
(38)			 

 
Then using Eq. (9) one obtains 
 

𝜙%(𝑚) = <
1
𝑚=

𝑒!

4𝜋𝜖2𝑟
= K

𝑒
𝑚L

𝑒
4𝜋𝜖2𝑟

= K
𝑒
𝑚L𝜑.					(39) 

 
Now to evaluate the static weak field we use the static weak field geometry given by [11] 
 

𝑑𝑠! = <1 −
2𝜙%
𝑐! =

(𝑑𝑥! + 𝑑𝑦! + 𝑑𝑧!) − <1 +
2𝜙%
𝑐! =

(𝑐𝑑𝑡)!								(40) 
 
For this geometry, it is already established [8] that in an orthonormal basis, in the weak field 
limit to a linear order in 𝜙% the time component of the Einstein tensor is 
 

𝐺@@ = <
2
𝑐!= ∇

!𝜙%					(41) 
 
We know that the time component of the stress energy momentum tensor is  
 

𝑇@@ = 𝜌𝑐!						(42) 
 
This equation is still valid because the mass of the electron is still very much larger than 𝑚B((Eq. 
18).  We thus obtain from Eq. (35), Eq. (41) and Eq. (42): 
 

<
2
𝑐!= ∇

!𝜙% = 𝑘(𝜌𝑐!)							(43) 
 
Because 𝜌B = 𝜌 K 7

-
L, one obtains using Eq. (43) 

 

<
2
𝑐!= K

𝑒
𝑚L∇

!𝜑 = 𝑘
𝜌B
K 𝑒𝑚L

𝑐!							(44) 

 
Inserting Eq. (35) into Eq. (44) we get the result that: 
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𝑘 =
2 K 𝑒𝑚L

!

𝜖2𝑐A
									(45) 

 
so that the final modified Einstein field equation for the quantum case of a single electron in 
the ground state of the hydrogen atom is 
 

𝑮 =
2K 𝑒𝑚L

!

𝜖2𝑐A
𝑻												(46) 

 
Here e/m is the charge to mass ratio for the electron.  Eq. (46) is the general relativistic field 
equation within the atom at least for the 1s orbital case of the hydrogen atom.  It directly 
demonstrates that the electrostatic force is a gravitational force thus validating postulate 4.   
If we compare Eq. (45) with the corresponding gravitational case, Eq. (36), one can see that the 

value of 
!" !"#

#

$$
 is over 40 orders of magnitude larger than 8𝜋𝐺 for the case of the electron.  This 

explains why electromagnetic forces are so high in the atom; indeed, these forces are known to 
be exactly that much higher than conventional gravitational forces inside the atom. 
 
The above validates postulate 4. 
 
2.5. Postulate 5 

The analysis given in 2.4 also validates postulate 5 as we have shown that 
!" !"#

#

$$
 can replace  

8πG in the field equation.   
 

3.  Other consequences and inferences from the gedanken experiment 
 
 
3.1 Conservation of spacetime and space-like and time-like universes 
 
Eq. (31) and Eq. (32) suggest another important result: 
 

𝑑𝜏	𝑑𝑟> = 𝑑𝑡	𝑑𝑟						(47) 
 
Thus, the product of space and time intervals are an invariant, that is, spacetime is conserved.  
When space expands time intervals contract, or vice-versa.  Space and time intervals convert 
into each other in spacetime but maintaining their product as a constant.  In fact, this universal 
constancy of the product, reflecting conservation of spacetime, is not limited to this gedanken 
or to quantum gravity effects, but is also true for special relativity and for general relativity.  
When proper time intervals tend to zero, and space-intervals tend to infinity, we have a space-
like universe, where there is no time (that is, time does not advance), only space exists.  In a 
time-like universe the space-intervals tend to zero and time intervals expand towards infinity.  
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Only time moves at a single point in space and there are no other points in space.  It is clear 
from the previous discussion that the atom is a more space-like universe compared to our 
human macroscopic world because time moves more slowly inside the atom.  When spacetime 
is purely space-like, this represents quantum entanglement, or perfect non-locality, 
represented by the fact that a photon can be everywhere at the same time [12].  In fact, Bell’s 
inequality [13] and its proven experimental validation [14,15], proves non-locality at the 
quantum level.    Perhaps the spacetime fabric is itself the hidden variable referred to in the 
famous EPR paper [16] and also by Bohm [3].   
 
It also follows, combining Eq. (31), Eq. (32) and Eq. (34) that: 
 

𝑑𝜏	𝑚> = 𝑑𝑡	𝑚						(48) 
 
And likewise: 
 

𝑚>

𝑑𝑟>
=
𝑚
𝑑𝑟										(49) 

 
Eq. (48) shows that it is time that converts into mass as we enter a more space-like universe (𝑑𝜏 
decreases).  Thus, conservation of mass applies only when the ratio of space interval to the 
time interval, 𝑑𝑟>/𝑑𝜏, is constant.  In fact from Eq. (48) and Eq. (49) it follows that: 
 

𝑚>

𝑚 = s
<
𝑑𝑟>
𝑑𝜏 =

K𝑑𝑟𝑑𝑡L
				(50) 

 
If we consider units where m = dr = dt = 1 (the reference macroscopic world is taken as the 
unity reference) then 
 

𝑚> = J𝑑𝑟>
𝑑𝜏 							(50𝑎)			 

 
and hence the mass is conserved when the ratio of proper space interval to proper time interval 
is a constant. 
 
 
3.2 Origin of uncertainty and the uncertainty principle 
 
We discussed above that within the atom proper time moves slower relative that for the 
macroscopic observer.  This means that proper time for the macroscopic observer is faster than 
the proper time for the atom.  In the same manner proper distance is smaller for the 
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macroscopic observer corresponding to the same proper distance for the atomic observer.  
Space is contracted for the macroscopic observer.   The macroscopic observer sees a much 
larger space contracted into the small space of the atom and time is also speeded up from his 
perspective.  Thus, particles will appear to move considerably faster inside the atom thereby 
creating a larger uncertainty of position.   As an analogy, if we fast forward a movie at high 
rates, the characters will become blurred or lose physical appearance and the positional 
location of the character become more uncertain.  Vice versa, within the atom, wherein space 
is expanded, and time slows down, velocities will appear to be slower for the observer within 
the atom.   
 
The uncertainty principle therefore appears to have its origin in the spacetime structure and 
the transformation of this structure between the atomic and macroscopic domains.  From a 
perspective within the atom, on the other hand, uncertainty disappears because time slows 
down and masses are larger and thereby positional uncertainty is diminished.  What is quantum 
for a macroscopic observer is not quantum in nature from a perspective within the atom. 
 
 
2  Summary and Conclusions      
 
All the five postulates of the gedanken experiment have been shown to have mathematical 
validation and the explanations draw on the understanding that the quantum potential can 
curve spacetime within the atom.  This enhances forces and energies within the atom.  From 
the perspective within the atom, the atomic universe is vast and considerably slowed down, 
and is in fact not a quantum world at all.  Quantum behavior appears to arise directly from a 
Schwarzschild-like spacetime within the atom such that the nucleus is at the center of an 
incredibly miniature atomic-sized “black hole”.  This is consistent with the fact that we are 
screened from powerful nuclear radiations.   
 
Spacetime, it appears, is not a coordinate system, or just the “arena” in which masses and 
events interact, but itself is a real entity obeying conservation laws.  The fundamental law of 
spacetime conservation applies to special relativity, general relativity and to quantum gravity, 
namely, that the product of the space interval and the time interval is a constant.  Mass is 
conserved only when the relative proportion of space and time within spacetime is fixed, or a 
constant.  Thus, mass conservation law is only a special case of the law of spacetime 
conservation for the particular case wherein the relative proportion of space and time in 
spacetime is a constant.    
 

The replacement of the term  8πG with 
!" !"#

#

$$
  in the gravitational field equation within the 

atom demonstrates that charge arises from the spacetime transformation between the 
macroscopic and atomic realms.   
 
These findings will open enormous new experimental opportunities in quantum gravity.  These 
may include minute changes in the wavelength of light emitted from the atom, or minute 
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changes in the electron mass because of the spacetime perturbations.  Future work will require 
considering higher quantum states, multiple electrons and electromagnetic behavior to include 
consistency with all of Maxwell’s equations. 
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Appendix 1: Geodesic Accelerations and Forces Calculated from the Quantum Spacetime Metric 

 
 
The geodesic acceleration from the new metric of Eq. (29) is obtained using  
 

𝑎(( = −Γ@@( <
𝜕𝑡
𝜕𝜏=

!

													(𝐴1)				 
 

https://en.wikipedia.org/wiki/Physical_Review
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Here, 𝑑𝜏 in Eq. (A1) is the proper time given by -CD
#

B#
 so that K:@

:E
L
!
is just K1 − !ℏ#

-#)(B#
L
'6
	from Eq. 

(30).    Γ@@(  is the Christoffel symbol defined in the general theory of relativity.  Eq. (47) can be 
written as 
 

𝑎(( =	−Γ@@( 	c1 −
2ℏ!

𝑚!𝑏𝑟𝑐!d
'6

						(𝐴2) 

 
By deriving the Christoffel symbol from the metric (see below) one can show that  
 

Γ@@( =	−
ℏ!

𝑚𝑏𝑟! 	c1 −
2ℏ!

𝑚!𝑏𝑟𝑐!d								(𝐴3)					 

 
Thus, it follows that, combining Eq. (A2) and Eq. (A3), 
  

𝑎(( =	−
ℏ!

𝑚!𝑏𝑟! = −	
𝑒!

4𝜋𝜖2𝑚𝑟!
		(𝐴4) 

 
which is which the required electron acceleration, Eq. (9), (since we changed the sign of the 
potential).   The force is then  
 

𝐹(( = 𝑚𝑎(( =	−
ℏ!

𝑚𝑏𝑟! =	−	
𝑒!

4𝜋𝜖2𝑟!
		(𝐴5) 

 
which is an attractive electromagnetic force.    These equalities support the equivalence 
principle and the notion of curved spacetime inside the atom.  It appears that accelerations can 
be erased locally and replaced by geometric considerations when the spacetime metric is given 
by Eq. (29).  This consistency is a validation of the Schwarzschild spacetime metric in Eq. (29) for 
the spacetime within atoms. 
 
Christoffel symbols 
 
The metric, 𝑔FG based on Eq. (29) in the text is  
 

𝑔FG =

⎣
⎢
⎢
⎢
⎢
⎡<1 −

2𝜙
𝑐! =

'6

0 0 0

0 𝑟! 0 0
0 0 𝑟!𝑠𝑖𝑛!𝜃 0

0 0 0 −𝑐! <1 −
2𝜙
𝑐!
=⎦
⎥
⎥
⎥
⎥
⎤

						(𝐴6) 

 
 
The Christoffel symbols,  ΓHIJ , are obtained from the metric using  
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𝑔KJΓHIJ =
1
2c
𝜕𝑔KH
𝜕𝑥I +

𝜕𝑔KI
𝜕𝑥H

−
𝜕𝑔HI
𝜕𝑥K d									(𝐴7) 

 
Using the above equation, one readily obtains Eq. (A3). 
 
The Christoffel symbols can also be readily obtained from the metric using a software such as 
Maple®.   
 
 
 


