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Abstract: - For a homogeneous linear-recurrence fn with integer coefficients and integer starting points, we derive a
deterministic algorithm that finds the upper bound of the last non-periodic position n where fn=0, for a large family of
special cases. First, when θ is a given irrational constant, then we show that, an eventual lower bound of
minimum(absolute(cos(mπθ)), over positive integers m less than n), for large positive integers n, is (2θ / (sqrt(5) n)).
Our deterministic algorithm is based on the key concept that this lower bound decreases at a lower rate than the nth
power of the ratio of root-moduli since the ratio is lesser than 1. Our deterministic algorithm is developed for the
special cases where G(x), the characteristic polynomial of fn, has either equal absolute values of arguments or
commensurable arguments of those complex roots whose moduli are equal. In an attempt to extend this algorithm as a
general solution to Skolems problem, we obtain the lower bound of the distance between a zero and the next (2(m+1))th
zero, in the weighted sum of m continuous cosine functions, where the weights are given real-algebraic constants.

1. Introduction

Given integer constants {b1 , b2 , ... bL , a0 , a1 , a2 ... aL-1}, we denote our homogenous integer linear recurrence sequence fn as
follows:

1. fn = 0 , for integers n < 0
2. fn = an , for integers 0 < n < (L-1)
3. fn = b1 fn-1 + b2 fn-2 + ... + bL fn-L , for integers n > L
It is known from the Skolem-Mahler-Lech (SML) theorem that the set of zeros of fn is the union of an infinite periodic set

and a finite set. In other words, the set Z of n for which fn = 0, is such that Z = (P union Q), where P is an infinite set of
positive integers that is a finite set of infinite arithmetic progressions, and where Q is a finite set of positive integers. It is also
known how to describe P and to determine whether or not P is empty, but an upper bound on the largest integer in Q is still an
open problem. Consequently, it remains an open problem to determine whether or not Q is empty within finite time, and this
open problem may be simply reworded as determining whether or not fn = 0 for some integer n>0 [1][2][3][5][7].

A lot of research has gone into deterministically finding the last non-periodic zero in Q, for many special cases.
References [9] and [10] are some examples, and the reference [7] gives a good recent literature review of the special cases
covered.

In this paper, we discuss what constitutes the zeros in sets P and Q. We then derive a deterministic algorithm to describe
the set Z for a given fn, for some more special cases. We finally present a result that attempts to generalize the algorithm to
cover all cases.

2. Approach

2.1 Notations
Further to the notation of fn given in Section 1, we use the following additional notations:

1. A number x is said to be algebraic if it is the root of some polynomial with integer coefficients.
2. If x is a complex number = y + iz, where i=square_root(-1), then modulus(x) = square_root(y2 + z2). Also, real(x)=y

and imaginary(x)=z. Also, x = (modulus(x) eiθ) = modulus(x)(cos(θ) + i sin(θ)).
3. If x and y are two positive real numbers, then quotient(x/y)=floor(x/y) = the largest non-negative integer below x/y.

Also, fraction(x/y) = ((x/y) - quotient(x/y)).
4. If x is a real number, then absolute(x) = x if x > 0, and absolute(x) = -x if x < 0.
5. BODMAS (Brackets, Order of Powers or Roots, Division, Multiplication, Addition, Subtraction) order is followed

in all expressions where the order is not explicitly mentioned by brackets. For example, the expression ax + b0.5y -



z/d2 = ((ax) + ((b0.5)y) - (z/(d2))).
6. Given a function with integer domain, fn , where fn = 0 for integers n < 0, and where fn is a real for integers n > 0,

then F(z) = SUM((fn zn), over integers n > 0) = (f0 z0 + f1 z1 + f2 z2 + ...) is the generating function for fn.
7. ax = a*x both denote the product of a with x, and either notation is used wherever convenient.
8. ax = a^x both denote a to the power of x.
9. log(x) is the natural logarithm of x, i.e., log of x to the base of e.
10. remainder(x,y) = x - (y floor(x/y)) = (y fraction(x/y)), where x and y are both real positive numbers.
11. floor(x) is the largest integer < x, where x is a real positive number.
12. g is the golden ratio = (1+sqrt(5))/2, which is irrational, and approximately 1.618034.
13. π or PI is the irrational ratio between the lengths of the circumference and diameter of a circle, which is

approximately 3.14159.
14. sqrt(x) is the square root of x.
15. G(x) is the characteristic polynomial of fn. Basically, G(x) = (1 - b1 x - b2 x2 - b3 x3 - ... - bL xL).
16. (Zero of fn) = (n, such that fn=0, where integer n > 0). Similarly, zero of a function f(x), where x is a continuous real

variable, is x such that f(x)=0.
17. Two non-zero real numbers x and y are said to be commensurable, if and only if, x/y is rational, i.e. iff (x/y)=(p/q),

where p and q are both integers. If (x/y) is irrational, then x and y are said to be incommensurable.
18. If A and B are two boolean statements, then:

A→B denotes "If A is true, then B is true"
A↔B denotes "A is true, if and only if, B is true".

19. A variable indexed by an integer, is represented in either or both of two ways:- with underscore or with subscript.
For example, γi is used interchangeably with γ_i.

20. Let f(x) be a function of x. Then LowerBound(f(x)) is a function of x, using which one can get the minimum value
of f(x) for a given x. Similarly, for UpperBound(f(x)). But Maximum(x) or Max(x) is a real value that is the global
maximum of f(x) over the entire domain of x. Similarly, for Minimum(x) or Min(x).

Theorem 1 below is a reworded form of a known result, on the stateless expression of fn [6].

Theorem 1: For each integer n>0, fn = SUM( SUM( (nj rkn sn,j,k ), over all integers k in [1,L]), over all integers j in
[0,L-1]), where:

1. sn,j,k= SUM( (dj,k cos(nθk+βj,k)) , over all integers k in [1,L]).
2. Each of {dj,k, rk, cos(θk), sin(θk), cos(βj,k), sin(βj,k)} is a constant real algebraic number, and rk>0

Proof: It is well-known that fn = C1(n) r1n e^(inθ1) + C2(n) r2n e^(inθ2) + ... + CL(n) rLn e^(inθL), where for each integer k in
[1, L]:

1. Ck(n) is a constant univariate polynomial in n with degree = L-1, with constant algebraic coefficients. So Ck(n) =
(d0,k e^(iβ0,k)) + (d1,k e^(iβ1,k)) n + (d2,k e^(iβ2,k)) n2 + ... + (dL-1,k e^(iβL-1,k)) nL-1, where each of {dj,k , cos(βj,k), sin(βj,k)}
is a constant real algebraic number for each integer j in [0,L-1].

2. (rk e^(iθk)) is a constant algebraic root of G(x) and (rk e^(-iθk)) is its conjugate, where each of {rk , cos(θk), sin(θk)} is
a constant real algebraic number.

Since the imaginary parts of fn have to disappear, and since two or more roots may be of equal modulus, and of same or
different arguments, we can further group the expression of fn as a sum of product terms, where each product term is a
product between the term (nj rkn) and a weighted sum of trigonometric functions. Thus, fn can be expressed as follows:
fn = SUM( SUM( (nj rkn sn,j,k), over all integers k in [1,L]), over all integers j in [0,L-1]), where sn,j,k= SUM( (dj,k cos(nθk+βj,k)),
over all integers k in [1,L]).
Hence Proved Theorem 1.

Before proceeding further, let us remember that our aim is to describe the set Z of the zeros of fn, which we earlier mentioned
is the union of sets P and Q. Theorem 2 describes what constitutes the set of zeros in P and Q.

Theorem 2: Assuming the SML Theorem is true, the finite set of non-periodic zeros Q of fn is the set of zeros of the
expression fn = SUM( SUM( (nj rkn sn,j,k ), over all integers k in [1,L]), over all integers j in [0,L-1]), after removing
cosines of rational multiples of π that are common factors from every sn,j,k
Proof: If we take out the common cosine factors from all sn,j,k, then we may rewrite:
fn = (cos(π(nφrat,1+γrat,1)) cos(π(nφrat,2+γrat,2)) ... cos(π(nφrat,U+γrat,U))) (cos(π(nφreal,1+γreal,1)) cos(π(nφreal,2+γreal,2)) ...



cos(π(nφreal,V+γreal,V))) SUM( SUM( (nj rkn s'n,j,k), over all integers k in [1,L]), over all integers j in [0,L-1]), where U and V are
some positive integer constants, each of {φrat,i,γrat,i} is a rational constant, and each {φreal,i,γreal,i} is a real constant. It becomes
clear that the set P of zeros of fn is due to the first product (cos(π(nφrat,1+γrat,1)) cos(π(nφrat,1+γrat,1)) ... cos(π(nφrat,U+γrat,U)))
resulting in a finite union of infinite-sized arithmetic progressions. The second product (cos(π(nφreal,1+γreal,1))
cos(π(nφreal,2+γreal,2)) ... cos(π(nφreal,V+γreal,V))) might contribute to a maximum of V zeros to Q that are also easy to find. But it
is the third product SUM( SUM( (nj rkn s'n,j,k), over all integers k in [1,L]), over all integers j in [0,L-1]) that makes the most
interesting contribution to the finite set of zeros of Q assuming that the SML Theorem is true (i.e. assuming that the set of
non-periodic zeros if finite for a given fn).
Hence Proved Theorem 2.

Since it is already known how to define the set P of zeros of fn, we shall assume without loss of generality, that when we write
fn = SUM( SUM( (nj rkn sn,j,k), over all integers k in [1,L]), over all integers j in [0,L-1]), in the remaining part of this paper, all
common cosine factors have already been factored out and removed, and that the zeros of this expression of fn is what forms
the set of non-periodic zeros Q that we are trying to find..

We now make the next important Theorem 3, which serves as the foundation for the solution to many special cases in
Skolems problem to the upper bound of the largest non-periodic zero of fn.

Theorem 3: Let λA and λB be two positive incommensurable constants, where λA > λB. Consider the following
algorithm:
Algorithm description starts
i = 0;
nA = 0;
nB = 0;
p0 = λA;
REPEAT:
If (nAλA < nBλB)
{ nA = nA+1;}
Else
{ nB = nB+1;}
If ( absolute(nAλA - nBλB) < pi)
{ i = i+1;

pi = absolute(nAλA - nBλB);}
Goto REPEAT;
Algorithm description ends
Then the following statements are true:

1. The following recurrence sequence can be used to find pi :
p0 = λA
p1 = λB
pi+2 = remainder(pi , pi+1), for integers i>0.

2. When λB=(λA/g), then pi = (λA/gi) for all integers i>0.
3. pi > (λA/gi), for all values of λA and λB.
4. The ith term in the Fibonacci sequence, is the lower bound for both nA and nB. That is, everytime

(absolute(nAλA - nBλB) < pi) in the algorithm, each of {nA, nB} > ti , where ti+2 = ti+1 + ti , for integers i>0, and
t0=0 and t1=1.

Proof: The algorithm described in this Theorem can be viewed as finding how close a zero of sin(θAx) comes to a zero of
sin(θBx), where θA=2π/(2λA)=π/λA and θB=2π/(2λB)=π/λB, as the real variable x is increased continuously from 0, and where
the counter i is incremented by 1 each time the present absolute distance becomes lesser than the previous absolute distance,
between these zeros. Consider the recurrence sequence:
p0 = λA
p1 = λB
pi+2 = remainder(pi , pi+1), for integers i > 0.

Writing out the first few terms, we get:
p0= λA
p1= λB



p2= remainder( p0 , p1 )
p3= remainder( p1 , p2 )
p4= remainder( p2 , p3 )
p5= remainder( p3 , p4 )
... and so on.

Denoting floor(pi / pi+1) = Mi , we can write:
p0= λA - 0 λB
p1= λB - 0 λA
p2= p0 - M0 p1 = λA - M0 λB
p3= p1 - M1 p2 = λB(1 + M0M1) - λA(M1)
p4= p2 - M2 p3 = λA(1 + M1M2) - λB(M0 + M2 + M0M1M2)
p5= p3 - M3 p4 = λB(1 + M0M1 + M0M3 + M2M3 + M0M1M2M3) - λA(M1 + M3 + M1M2M3)
...
and so on.

It follows that if pi has xA,i product terms in the "sum of products" coefficient of λA and xB,i product terms in the "sum of
products" coefficient of λB, then xA,i+2 = xA,i+1 + xA,i , and xB,i+2 = xB,i+1 + xB,i. The following patterns are straightforward by
induction:

1. the number of product terms in the coefficient of λB follows the well-known Fibonacci sequence ti : 0, 1, 1, 2, 3, 5, 8,
13, etc, where ti+2 =ti+1 + ti , starting from p0.

2. the number of product terms in the coefficient of λA follows the Fibonacci sequence : 0, 1, 1, 2, 3, 5, 8, 13, etc,
starting from p1.

3. the coefficient of λB in pi has the product term M0M1M2...Mi-2.
4. the coefficient of λA in pi has the product term M1M2...Mi-2.
The exact formula for the nth term of the Fibonacci sequence is well-known to be tn = (1/sqrt(5))(((1+sqrt(5))/2)n -

((1-sqrt(5))/2)n). A well-known approximation formula for tn = gn/sqrt(5), and the exact formula tn = round( gn/sqrt(5) ) to the
nearest integer, is true for all integers n>2.

Plugging in the least possible values Mi = 1, for all positive integers i, one possible solution that allows this would be that
λB=(λA/r), and pi+1 = (pi / r) for all integers i>0,where r is a real > 1. We are now in a position to find the value of r that allows
this by writing these 3 equations:
pi+2 = (pi+1 / r)
pi+1 = (pi / r)
pi+2 + pi+1 = pi

From the first two equations, we get pi+2 = (pi / r2). From the second equation, we get pi+1 = (pi / r). Plugging these into the
third equation, and eliminating pi, we get (1/r)(1+(1/r))=1, which means r = (1+(1/r)), and the only solution for r that satisfies
this is the golden ratio g. Hence, pi = λA/gi when λB=(λA/r), for integers i>0. Since ti = ti-1 + ti-2 , we know that ti-2 = ti - ti-1 ,
implying that after every ti-2 consecutive values of nA in the algorithm, pi+1 = pi/g.

Another way of looking at why ensuring pi+1 = pi/g for all integers i>2 leads to the fastest possible reduction in pi, is to
consider these cases of the value of K, where pi+1= (pi/K) and pi+1< pi:
Case 1: K>=2. In this case, the coefficient of λB in pi would be atleast (ti - 1 + M0M1M2...Mi-2) that is (ti -1 + K(i-1)) by putting
each Mi=floor(K). Since our final aim is to look for n beyond which (ratio)^(tn -1 + K(n-2)) > (K^n), where "ratio" in the LHS
represents the ratio (>1) between the largest root modulus to the next largest root modulus. As the LHS grows at a faster rate
wrt n, the inequality is satisfied after a much smaller value of n, when K>=2. Note that the growth of the RHS represents the
rate at which pi decreases with respect to i.
Case 2: 1<K<2. In this case, pi+2= pi - pi+1 = pi+1(K-1). We can further consider three sub-cases:

Subcase 2.1: g<K<2. In this subcase, (g-1)<(K-1)<1, so pi+1(g-1) < pi+1(K-1) < pi+1, so pi+1/g < pi+2< pi+1, showing that
pi+2 has not reduced much compared to pi+1, and it also leads to Subcase 2.2.
Subcase 2.2: 1<K<g. In this subcase, 0<(K-1)<(g-1), so 0 < pi+2 < pi+1(g-1), which means 0 < pi+2< pi+1/g. If 0 < pi+2
<= pi+1/2, it would lead to Case 1. If pi+1/2 < pi+2< pi+1/g, it would lead to Subcase 2.1.
Subcase 2.3: K=g. In this subcase, pi+2 = pi+1(g-1) = pi+1/g, since it is known that 1/g = (g-1), and Mi=1 for every
integer i>2, and the value of pi has the fastest reduction for the RHS.

In summary, Case 1, subcase 2.1 and subcase 2.2 each have slower reduction of pi than subcase 2.3, with respect to i.
Hence Proved Theorem 3.

Theorem 4: Let λ be a given irrational constant. For every integer n>0, let LB(n) be a lower bound on the values of



both:
1. minimum(absolute(cos(2mπ/λ)), over positive integers m < n).
2. minimum(absolute(sin(2mπ/λ)), over positive integers m < n).

Then one choice for LB(n) is given by LB(tn) = 4/(λgn), where tn+2 = tn+1 + tn , and t0=0 and t1=1. This lower bound may
be approximated by the formula LB(n) = (4/(sqrt(5) λ n)) for large n.
Proof: It is clear that the distance of the zeros of sin(4πt/λ) from the nearest integer, decreases at a rate equal to or faster
than that of both sin(2πt/λ) or cos(2πt/λ), as t is continuously increased from a small positive quantity. This is because the
zeros of sin(2πt/λ) and the zeros of cos(2πt/λ), are each separately subsets of the zeros of sin(4πt/λ). The lower bound of the
distance of the tnth zero of sin(4πt/λ) from the nearest integer, is directly available from Theorem 3, by substituting λA=1 and
λB=fraction(λ), which gives a lower bound of 1/gn. A good choice for LB(tn) would therefore be the product of 1/gn and 4/λ,
the slope of the line joining the origin (0,0) to the point (λ/4,1). So LB(tn) = 4/(λgn), where tn+2 = tn+1 + tn , and t0=0 and t1=1.
Using the well-known result that tn=round(gn/sqrt(5)), or that tn = approximately (gn/sqrt(5)) for large n, we can say that
LB(tn)=4/(λgn)=approximately (4/(sqrt(5) λ tn)) for large n. So LB(n)=approximately (4/(sqrt(5) λ n)) for large n.
Hence Proved Theorem 4.

Theorem 5: Let λ be a given irrational constant. Let β be a real constant. For every integer n>0, let LC(n) be a lower
bound on the non-zero absolute value of minimum(absolute(sin(2π(m/λ + 1/β))), over positive integers m < n). Then
one choice for LC(n) is given by LC(tn) = 4/(λgn+c), where tn+2 = tn+1 + tn , and t0=0 and t1=1, and where c is a non-negative
constant integer dependent on β and λ. This lower bound may be approximated by the formula LC(n) = (4/(sqrt(5) λ gc
n)) for large n.
Proof: This Theorem is a more generalized version of Theorem 4. LC(n) for sin(2π(m/λ + 1/β)), can be < LB(n) for
sin(πm/λ). This is because sin(πm/λ)=0 when m=0, but then is situated at a distance of remainder(1/λ) from the subsequent
zero. Contrast this with the fact that sin(2π(m/λ + 1/β))>0 at m=0, but is situated at a distance of remainder((1+β),λ) or
remainder((1-β),λ) from the next closest 0, either of which can be lesser than remainder(1/λ). Note that in some cases, it can
be greater too, however, we are interested only in a worst-case scenario. So absolute(sin(2π(m/λ + 1/β))) can get an initial
constant advantage in being closer to a zero, over absolute(sin(2πm/λ)) for the same value of integer m>0. This has an effect
of LC(tn) = 4/(λgn+c), where integer constant c>0 depends on the values of β and λ. Using tn = approximately (gn/sqrt(5)) for
large n, we can say that LC(tn)=4/(λgn+c)=approximately (4/(sqrt(5) λ gc tn)) for large n. So LC(n)=approximately (4/(sqrt(5) λ
gc n)) for large n.
Hence Proved Theorem 5.

Having established the lower bounds of the absolute non-zero values of the cosine functions in sn,j,k, we are now in a position
to use them to develop our deterministic algorithms.

Theorem 6: Let G(x) be such that, for every pair of complex roots of G(x), (rk e^(iθk)) and (rk' e^(iθk')), this statement
is true: (rk=rk')→(absolute(θk)=absolute(θk'). Then there exists a deterministic algorithm to find the largest
non-periodic zero of fn.
Proof: This Theorem basically states that if the absolute values of arguments of every pair of complex roots of G(x) of equal
moduli, are equal, then there exists a deterministic algorithm for finding an upper bound of the largest non-periodic zero of fn.
The algorithm is described below:

1. From Theorem 1, write fn =
(r1n (d0,1 cos(nθ1+β0,1) + d1,1 cos(nθ1+β1,1) n + d2,1 cos(nθ1+β2,1) n2 + ... + dL-1,1 cos(nθ1+βL-1,1) nL-1)) +
(r2n (d0,2 cos(nθ2+β0,2) + d1,2 cos(nθ2+β1,2) n + d2,2 cos(nθ2+β2,2) n2 + ... + dL-1,2 cos(nθ2+βL-1,2) nL-1)) +
... +
(rLn (d0,L cos(nθL+β0,L) + d1,L cos(nθL+β1,L) n + d2,L cos(nθL+β2,L) n2 + ... + dL-1,L cos(nθL+βL-1,L) nL-1)),

such that r1 > r2 > ... > rL.
2. Set k=1, wirrational=0, wrational=0.
3. If (θk is a rational multiple of π)
4. { Set wrational = value of n, beyond which minimum non-zero absolute (rkn (d0,k cos(nθk+β0,k) + d1,k cos(nθk+β1,k) n +

d2,k cos(nθk+β2,k) n2 + ... + dL-1,k cos(nθk+βL-1,k) nL-1)) > SUM((rk’n (absolute(d0,k’) + absolute(d1,k’)n + absolute(d2,k’)n2 +
... + absolute(dL-1,k’)nL-1)), over integers k' in [k+1, L]). }

5. While ((θk is a rational multiple of π) and (k<L))
6. { k = k+1. }
7. If (θk is an irrational multiple of π)



8. { Set wirrational = value of n, beyond which minimum non-zero absolute (rkn (d0,k cos(nθk+β0,k) + d1,k cos(nθk+β1,k) n +
d2,k cos(nθk+β2,k) n2 + ... + dL-1,k cos(nθk+βL-1,k) nL-1)) > SUM((rk’n (absolute(d0,k’) + absolute(d1,k’)n + absolute(d2,k’)n2 +
... + absolute(dL-1,k’)nL-1)), over integers k' in [k+1, L]). }

9. OUTPUT maximum(wirrational, wrational).
The existence of wrational and wirrational in steps 4 and 8 respectively, of the above algorithm, is proved by dividing both sides of
the inequality by (rkn). On doing so, the inequality becomes absolute(d0,k cos(nθk+β0,k) + d1,k cos(nθk+β1,k) n + d2,k cos(nθk+β2,k)
n2 + ... + dL-1,k cos(nθk+βL-1,k) nL-1) > SUM(((rk’/rk)n (absolute(d0,k’) + absolute(d1,k’)n + absolute(d2,k’)n2 + ... +
absolute(dL-1,k’)nL-1)), over integers k' in [k+1, L]). The RHS will eventually tend to 0 faster due to the presence of nth powers
of positive reals less than 1. We are only left to prove that the LHS > RHS eventually. For this, we look for the value of n,
beyond which the lower bound of the LHS > RHS. It is clear that as n increases, the easiest way to reduce the value of the
LHS will tend to focus on minimizing the multiple of the most dominant power of n, i.e. nL-1, which is to minimize
cos(nθk+βL-1,k). Using Theorem 5, we get the function of LC(n)=Ω/n, the lower bound for cos(nθk+βL-1,k), where Ω is a constant
dependent on θk and βL-1,k. Rewrite each cos(nθk+βj,k) for each integer j in [0,L-2] as cos(nθk+βL-1,k+(βj,k-βL-1,k)) =
cos(nθk+βL-1,k)cos(βj,k-βL-1,k) - sin(nθk+βL-1,k)sin(βj,k-βL-1,k) = (Ω/n)(cos(βj,k-βL-1,k)) - sqrt(1-(Ω/n)2)sin(βj,k-βL-1,k), that tends to
approximate to -sin(βj,k-βL-1,k) for large n. With the approximation, we get a (L-2) degree univariate polynomial in necessary
condition for a sufficiently large value of n beyond which absolute(d0,k sin(βL-1,k-β0,k) + d1,k sin(βL-1,k-β1,k) n + d2,k sin(βL-1,k-β2,k)
n2 + ...+ dL-2,k sin(βL-1,k-β2,k) nL-2 + Ω dL-1,k nL-2) > 0. Even without this approximation, if we substitute the exact value of
cos(nθk+βj,k), we can collect the sqrt(1-(Ω/n)2) terms on one side, square them and get a univariate polynomial in n of a higher
degree. It is well known that the zeros of a univariate polynomial equation can be isolated efficiently. So we basically look
for the last zero, beyond which the absolute value of this polynomial > RHS.
Hence Proved Theorem 6.

Theorem 7: Let G(x) be such that, for every pair of complex roots of G(x), (rk e^(iθk)) and (rk' e^(iθk')), this statement
is true: (rk=rk')→(There exist non-zero integers qk and qk' such that (qkθk=qk'θk')). Then there exists a deterministic
algorithm to find an upper bound of the largest non-periodic zero of fn.
Proof: This Theorem basically states that if the absolute values of arguments of every pair of complex roots of G(x) of equal
moduli, are commensurable, then there exists an algorithm for finding an upper bound of the largest non-periodic zero of fn.
In such a situation, we proceed in a similar manner as in the previous proof, except that now from Theorem 1, we can write fn
= SUM(rV'n (nj sn,j,V' ), over all integers j in [0,L-1]), over all subsets V'={k1, k2 ... , kv} of integers belonging to [1,L] such that
rk_1 = rk_2 = ... = rk_v = rV' ). Here, v denotes the cardinality of subset V'. Also, the expression of each sn,j,V' will be more
complicated and will be = SUM((dj,k_h cos(nθk_h+βj,k_h)), over integers h in [1,v]), over integers h in [1,v]). Since there exist
non-zero integers {q1, q2, ... , qv} such that (q1θk1=q2θk2=...=qvθv), we can denote LCM(q1, q2, ... , qv)=y. Then let θV' be such
that (q1θk1=q2θk2=...=qvθv=yθV'). Then write cos(nθk1)=cos(nyθV'/q1), cos(nθk2)=cos(nyθV'/q2), ... , cos(nθkv)=cos(nyθV'/qv).
Similarly, write sin(nθk1)=sin(nyθV'/q1), sin(nθk2)=sin(nyθV'/q2), ... , sin(nθkv)=sin(nyθV'/qv). Next, write each sin(x)=sqrt(1 -
cos(x)2). Note that each (y/qi) evaluates to an integer, for each integer i in [1,v]. Use the cosine expansion formula of
expressing cos(mx) as a univariate polynomial of cos(x), where m is an integer, to express each sn,j,V' as a univariate
expression in cos(nθV') and with real-algebraic coefficients, which is not yet a univariate polynomial in cos(nθV') due to the
presence of nested sqrt functions of cos(nθV'). We shall now directly describe our deterministic algorithm below:

1. From Theorem 1, and as described in this theorem, we can write fn =
(rV'_1n (sn,0,V'_1 + sn,1,V'_1 n + sn,2,V'_1 n2 + ... + sn,L-1,V'_1 nL-1)) +
(rV'_2n (sn,0,V'_2 + sn,1,V'_2 n + sn,2,V'_2 n2 + ... + sn,L-1,V'_2 nL-1)) +
... +
(rV'_Ln (sn,0,V'_1 + sn,1,V'_1 n + sn,2,V'_1 n2 + ... + sn,L-1,V'_1 nL-1)),
such that rV’_1 > rV’_2 > ... > rV’_L.

2. Set k=1, wirrational=0, wrational=0.
3. If (θV’_k is a rational multiple of π)
4. { Set wrational = value of n, beyond which minimum non-zero absolute(rV'_kn (sn,0,V’_k + sn,1,V’_k n + sn,2,V’_k n2 + ... +

sn,L-1,V’_k nL-1)) > SUM( rV'_k’n (max(sn,0,V'_k’) + max(sn,1,V'_k’) n + max(sn,2,V'_k’) n2 + ... + max(sn,L-1,V'_k’) nL-1), over
integers k' in [k+1, L]). }

5. While ((θV’_k is a rational multiple of π) and (k<L))
6. { k = k+1.}
7. If (θV'_k is an irrational multiple of π)
8. { Set wirrational = value of n, beyond which minimum non-zero absolute(rV'_kn (sn,0,V’_k + sn,1,V’_k n + sn,2,V’_k n2 + ... +



sn,L-1,V’_k nL-1)) > SUM( rV'_k’n (max(sn,0,V'_k’) + max(sn,1,V'_k’) n + max(sn,2,V'_k’) n2 + ... + max(sn,L-1,V'_k’) nL-1), over
integers k' in [k+1, L]). }

9. OUTPUT maximum(wirrational, wrational).

The existence of wrational and wirrational in steps 4 and 8 respectively, of the above algorithm, is proved by dividing both sides
of the inequality by (rV'_kn), and the RHS quickly tends to 0 due to the presence of nth powers of positive reals less than 1. We
are only left to prove that the LHS > RHS eventually. For this, we look for the value of n, beyond which the lower bound of
the LHS > RHS. It is clear that as n increases, the easiest way to reduce the absolute value of the LHS will tend to focus on
minimizing the multiple of the most dominant powers of n, i.e. from nL-1 to n, which is to minimize sn,L-1,V’_k, since it has both
an upper bound and lower bound being an expression of cos(nθV’) that is itself bounded. To obtain the roots of this
expression, put this expression to 0, iteratively get rid of all the nested sqrt() terms inside by repeatedly moving the the sqrt()
terms to one side and then squaring. We finally get a real-algebraic univariate polynomial in cos(nθV’). Factorize this
polynomial to obtain all its roots. Assume that the factorized polynomial is
K((cos(nθV')-r1)(cos(nθV')-r2)...(cos(nθV')-rd_V')(cos(nθV')-c1)(cos(nθV')-c2)...(cos(nθV')-ce_V')), where each of {r1, r2, ... , rd_V'} is a
real-algebraic constant, and where each of {c1, c2, ... , ce_V'} is a complex-algebraic constant, and K is real-algebraic. Note that
(cos(nθV')-c1)(cos(nθV')-c2)...(cos(nθV')-ce_V')) will itself evaluate to an eV' degree univariate polynomial in cos(nθV') with
real-algebraic coefficients, without a real root. The minimum absolute value of a rootless univariate polynomial with
real-algebraic coefficients, will be a real-algebraic constant, hence we may denote the minimum absolute value of
(cos(nθV')-c1)(cos(nθV')-c2)...(cos(nθV')-ce_V')) as Kc, which is a real-algebraic constant. We can now say that
LowerBound(sn,j,V') > (K Kc PRODUCT(LowerBound(absolute((cos(nθV')-ri))), over integers i in [1,dV']). We know from
Theorem 5, that a good choice for LowerBound(absolute((cos(nθV')-ri))) is (4/(sqrt(5) λV' gc_i n)) = (2θV'/(sqrt(5) πgc_in)),
where γi,V' is a constant positive integer, and where λV'=2π/θV'. Therefore, LowerBound(sn,L-1,V') > (K Kc

PRODUCT((2θV'/(sqrt(5) πgc_in)), over integers i in [1,dV’])), which can be written as (ΩL-1/nd_V’_L-1), where ΩL-1 is a
real-algebraic constant. Similarly, find the LowerBound(sn,j,V')=(Ωj/nd_V’_j) for each integer j in [1,L-2]. Substitute all these
lower bound expressions.

Now write our expression in n as (Ω0/nd_V’_0) ± n(Ω1/nd_V’_1) ± n2(Ω2/nd_V’_2) ± ... ± nL-1(ΩL-1/nd_V’_L-1). Notice the use of the
± because we are not yet sure whether to use + or minus to get minimum value. Simplify this expression of n, eliminating
common factors or common powers of n and write as a real-algebraic univariate polynomial (C0 - nC1 + n2C2 - n3C3 + ... +
nL-2CL-2 - nL-1CL-1. Notice that now the ± has been replaced with alternate + and - signs for the coefficients of 1, n, n2, ... nL-1 to
achieve minimum value. It is well known that the zeros of a univariate polynomial equation can be isolated efficiently. So we
basically look for the last zero, beyond which the absolute value of this polynomial > RHS.
Hence Proved Theorem 7.

For our algorithms to be truly deterministic, one important criterion is that they can run on finite precision computers, and
also be made to consume only finite-sized input data. So it is worth noting here that each of the cosines of arguments
described so far are actually algebraic, i.e. each of {cos(θk), cos(πφrat,i), cos(πγrat,i), cos(πφreal,i), cos(πφreal,i)} is actually
algebraic after factoring them from the characteristic polynomial G(x). However their respective arguments need not be
algebraic, i.e., each of {θk, φrat,i, γrat,i, φreal,i, φreal,i} need not be algebraic and can be only described as being real. And the
formulae described in this paper for the lower bounds involve the arguments and not the cosines of the arguments. Still, one
can approximate the argument to some desired accuracy, since our aim is to finally obtain a lower bound, and not an exact
value. For example, in the lower bound formula of step 10 in Theorem 6, we have LB,k,n = (4θk/(sqrt(5) πn)), where
non-algebraic numerator terms need to be rounded down and denominator terms need to be rounded up. So if θk=1.56784...
and π=3.14159..., simply choose a desired accuracy of 3 significant figures by approximating down θk=1.56 and
approximating up π=3.15 to get a final lower bound figure that is algebraic. The only thing to keep in mind is the more the
number of significant figures considered, one is likely to develop a lower bound that is as high as possible, so that the upper
bound to the largest non-periodic zero is as low as possible.

Now that we have described deterministic algorithms for the special cases of G(x), our next task will be to attempt to
generalize the same for all cases of G(x). As should be evident now, the key concept on which our paper is based to obtain the
upper bound of the largest zero in set Q of fn, is the determination of an effective lower bound for the absolute non-zero value
of the summation of weighted cosines of arguments of roots, and then using the fact that the ratio (any ratio lesser than 1) of
root moduli raised to the power of n eventually decreases at a much faster rate. In an attempt to get an effective lower bound
of this weighted sum of m cosines (m>2), where the arguments of the functions may or may not be commensurable, the next
Theorem 8 finds the lower bound of the distance between every xth zero.



Theorem 8: Let m be a given positive integer constant. Let dk and θk each be a given real constant, for each integer k
in [1,m]. Let st = SUM( (dk cos(tθk)) , over all integers k in [1,m]), for real variable t>0. Let θmax = maximum(θk, over
all integers k in [1,m]). There exists a lower bound Lm,t = (π / (θmax sqrt(5) t) between every (2m+1)th zero of st.
Proof: For each (dk cos(tθk)), divide the domain of t>0 into alternating convex and concave spaces with period of tθk equal
to 2π, for integers n>0:

1. concave spaces in tθk∈ [2nπ - π/2, 2nπ + π/2[.
2. convex spaces in tθk∈ [2nπ + π/2, 2nπ + 3π/2[.
Now divide the domain of t>0 into blocks, not necessarily periodic, such that each block is bounded by a zero of cos(tθk)

for some integer k in [1,m]. So the lower bound of the width of a block is the lower bound of the distance of a zero of cos(tθk)
from a zero of cos(tθk'), where integers k and k' are not equal. Denote θmax=maximum(θk, over all integers k in [1,m]), since
cos(tθmax) would have the least wavelength. Applying the result of Theorem 3, we get the lower bound of a block's width Lm,t

to approximately be (2π / (2θmax sqrt(5) t)) = (π / (θmax sqrt(5) t)).
It is obvious that each block will contain either a convex space or a concave space of (dk cos(tθk)), but not both, for each

integer k in [1,m]. This means that there are 2m types of space combinations in each block.
An inductive argument will prove that there can be no more than (2m+1) zeros inside a block. Consider the SUM( (dk

cos(tθk)) , over all integers k in [1,1]) within a block. It has a single piecewise function that is either concave or convex with
not more than 2 zeros. Now consider the SUM( (dk cos(tθk)) , over all integers k in [1,2]) within a block. If both cos(tθ1) and
cos(tθ2) are convex, then the resulting sum is also convex, and the maximum number of zeros remains 2. Similarly, if both
cos(tθ1) and cos(tθ2) are concave, then the resulting sum is also concave, and the maximum number of zeros remains 2. But
when one is convex and the other is concave, then the maximum number of piecewise concave functions in the sum is
doubled, and so is the maximum number of concave functions and so is the maximum number of zeros in the sum. Now
consider the SUM( (dk cos(tθk)) , over all integers k in [1,q]) where q<m within a block, and assume that it has a maximum of
2q+1 piecewise functions, that are alternatingly convex and concave, with a maximum of 2q+1 zeros. When we now add a
convex or concave part of (dq+1 cos(tθq+1)) to the sum, each of {maximum number of piecewise concave functions, maximum
number of piecewise convex functions, maximum number of zeros} is doubled. Therefore, the maximum number of zeros in
st within a block, becomes 2m+1. Since we have not established a lower bound on the distance between each of these zeros
within a block, we can only safely say that Lm,t = (π / (θmax sqrt(5) t)) is the lower bound of the distance between every (2m+1)th
zero of st.
Hence Proved Theorem 8.

We now discuss some areas for future work.

3. Future Work

Though Theorem 8 establishes the lower bound of the horizontal distance between every xth zero, where x is an integer
constant, we are yet to find the lower bound of the non-zero value of (d1 cos(nθ1) + d2 cos(nθ2) + ... + dm cos(nθm)), since:

1. We have not yet identified a lower bound of the distance between successive zeros of st.
2. We have not yet identified a lower bound to the absolute value of the slope of st near a zero, unlike in the case of

m=1 where the slope at a point close to a zero of (d1 cos(nθ1)) tends to (d1θ1).
Let us conveniently assume that st is equivalent to a series of cosine waves, placed serially one after the other, each of
progressively lower wavelength equal to the lower bound of Theorem 8. Though this assumption is obviously false, we can
use this to make a conjecture. Applying the Theorem 3 to the current wavelength at n yields (π / (2θmax gn sqrt(5) n)), which
could be used as the lower bound of the absolute horizontal distance of st from the nearest 0. Another idea would be to
evaluate the SUM((π / (2θmax gn sqrt(5) n)), over integers n in [1,T]), which is approximately ((π/(2θmax sqrt(5))) ln(T)), where
ln(T) denotes the natural logarithm of T. The fraction of this value could be the absolute lower bound of the horizontal
distance of (d1 cos(nθ1) + d2 cos(nθ2) + ... + dm cos(nθm)) from the nearest zero. That horizontal distance multiplied by the
lower bound of the absolute non-zero slope would be a lower bound on the absolute non-zero value of (d1 cos(nθ1) + d2
cos(nθ2) + ... + dm cos(nθm)), using which an algorithm can be then developed on the similar lines of Theorems 6 and 7, to
find the largest non-periodic zero of the generic fn.

The study of zeros of a weighted sum of three or more trigonometric functions, is already a well known topic [8] under the
study of zeros of the Riemann Zeta Function, so ideas from there could be applied here.

Finally, it has been highlighted by multiple authors [0] that all known proofs of the SML Theorem use a non-constructive



proof that we understand to be something like a proof by contradiction. One line of future work will be to therefore,
re-examine the conditions on which those theorems or axioms on which the SML Theorem is based, especially when the
arguments of roots of equal moduli, are incommensurable.

4. Conclusion

We presented a deterministic algorithm to determine an upper bound for the largest non-periodic zero for an integer linear
homogeneous recurrence fn, when the absolute values of arguments of every pair of complex roots of its characteristic
polynomial G(x) of equal moduli, are either equal or commensurable. Our algorithm is based on the concept that a ratio of
reals raised to the power of n, as long as the ratio is lesser than 1, decreases at a faster rate than the rate at which the eventual
lower bound decreases for the absolute non-zero value of cos(πan) where a is an irrational constant. We then discussed the
difficulty in extending this concept to the generic case of G(x) since one needs to calculate the lower bound of the absolute
value of a weighted sum of m cosine terms, which is more challenging. We were able to only develop a lower bound between
a zero and the xth successive zero for the weighted sum of m cosines. We finally presented some directions for future work.
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