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Abstract

The valuation of financial derivatives, particularly options, has long
been a topic of interest in finance. Among the various methods devel-
oped for option pricing, the Monte Carlo simulation stands out due to its
versatility and capability to model complex financial instruments. In this
article, we apply the Monte Carlo method to price European options using
two prominent models: the Geometric Brownian Motion (GBM) and the
Heston model. While the GBM model assumes constant volatility and
offers simplicity, it often falls short in capturing real market dynamics.
Conversely, the Heston model introduces stochastic volatility, providing a
more nuanced representation of market behaviors. Leveraging the compu-
tational efficiency of C++, our simulations reveal distinct price paths for
each model. The GBM paths exhibit smooth trajectories, while the Hes-
ton paths are more varied, reflecting its allowance for stochastic volatility.
Statistical analyses further underscore a significant difference in the final
stock prices generated by the two models. The Heston model’s prices
display a broader distribution, capturing the model’s inherent variability.
Additionally, autocorrelation analyses suggest a more intricate autore-
gressive structure for the Heston model. In conclusion, while the GBM
model provides simplicity and predictability, the Heston model offers a
richer, albeit more complex, representation, especially in volatile market
scenarios. This article offers a comparative study of the GBM and Heston
models, shedding light on their utility under varying market conditions.

1 Introduction

The Monte Carlo simulation is a powerful method for option pricing [12]. It
enables the modeling of complex financial instruments that may be challenging
to solve using closed-form or numerical solutions. In this project, we use the
Monte Carlo method to price a European option, specifically, a call option.

The Geometric Brownian Motion (GBM) and Heston model [5] are two mod-
els commonly used in financial mathematics for the modeling of stock prices and
other financial derivatives.
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The GBM model assumes that the logarithmic returns of a stock price are
normally distributed [9] and that the volatility of the returns is constant over
time. This model has been very popular because of its simplicity and the exis-
tence of an analytical solution for European options.

On the other hand, the Heston model, named after Steve Heston [8] , is a type
of stochastic volatility model, which directly addresses one of the limitations of
the GBM model. In reality, financial markets often exhibit periods of low and
high volatility [6]. That is, volatility itself can be volatile and is not constant
over time. The Heston model takes this into account by modeling volatility as
a stochastic process, separate from the process under consideration (such as a
stock’s price).

The results from these models can potentially be quite different. Under the
GBM model [2], where volatility is assumed to be constant, the price paths of
an asset tend to follow a ”smooth” path. In contrast, under the Heston model,
the paths could show more erratic behavior, mimicking periods of low and high
volatility.

The differences between these models would be particularly noticeable in the
pricing of options and other derivatives where the payoff is dependent on the
path of the underlying asset. Here, the additional variability in the price paths
modeled by the Heston model could lead to higher option prices compared to
the GBM model. It is also worth noting that GBM tends to underestimate the
prices of out-of-the-money options, a fact that is known as the volatility smile
or smirk, a pattern that the Heston model can reproduce.

In general, the GBM model might be a good choice if you believe the market
is relatively stable and will remain so, while the Heston model might be a better
choice in more volatile markets.

2 Method

Our project leverages the Monte Carlo method for pricing European options
[7] by simulating the paths of the underlying asset price following a Geometric
Brownian Motion (GBM) model and the Heston model.

The GBM model is one of the simplest and most widely used models in
finance for generating future price scenarios. It assumes that the log-returns
of asset prices follow a normal distribution and are independent of each other.
The initial price (S0 = 100.0), strike price (K = 100.0), risk-free rate (r =
0.05), volatility (sigma = 0.2), and the time to expiry (T = 1.0) are the main
parameters for this model. The payoff for each simulation at expiry is calculated
and averaged over a large number of scenarios (N = 10000).

On the other hand, the Heston model is a more sophisticated option pricing
model that considers volatility as a random process, dependent on the asset price
itself. It is especially useful when dealing with options that have a significant
amount of time until expiry. The parameters for this model include the initial
variance (v0 = 0.06), rate of reversion (kappa = 2.0), long-run variance (theta
= 0.02), volatility of volatility (xi = 0.1), and the correlation coefficient (rho =
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-0.7).
By comparing and contrasting these models in the context of European

options [1], which can only be exercised at expiry, we can better understand
their strengths and weaknesses, and their suitability under different market
conditions.

3 Implementation

C++ was chosen for its performance capabilities [10], which are critical in the
context of Monte Carlo simulations due to the substantial computational re-
quirement. With its lower-level system access and efficient memory manage-
ment, C++ delivers the performance needed for such heavy computations.

The GBM function in our implementation is a representation of a stochastic
process called Geometric Brownian Motion (GBM). This process is often used
in finance to model the evolution of stock prices or other market variables over
time. The GBM model assumes that the logarithmic returns of the price are
normally distributed and that these returns are independent of each other.

The equation for the Geometric Brownian Motion is given by:

S = S0 exp((r − 0.5σ2)T + σ
√
TZ) (1)

where:

• S0 is the initial asset price,

• r is the risk-free rate,

• σ is the standard deviation of the asset’s returns (volatility),

• Z is a standard normal random variable,

• T is the length of the time step.

The function returns the simulated asset price at the end of the time step.
The Heston model is a stochastic volatility model that describes two stochas-

tic processes: one for the underlying asset price and another for the variance.
Here are the two stochastic differential equations that make up the Heston
model:

The price dynamics are governed by:

dSt = µStdt+
√
vtStdW

1
t (2)

And the variance dynamics are given by:

dvt = κ(θ − vt)dt+ ξ
√
vtdW

2
t (3)

In the above equations:

• St is the asset price.
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• vt is the variance of the asset price.

• µ is the expected return of the asset.

• dW 1
t and dW 2

t are two Wiener processes (i.e., sequences of random vari-
ables) that have a correlation of ρ.

• κ is the rate at which vt reverts to the mean.

• θ is the long-term average price variance.

• ξ is the volatility of the volatility, or how much the volatility itself varies.

4 Results and Discussion

The implementation successfully prices the European option, with the output
being the calculated price. It was observed that the final option price is influ-
enced by various factors such as the volatility, the risk-free rate, and the strike
price. Given the random nature of the Monte Carlo simulation, the output value
varies slightly on each run.

Figure 1 showcases the simulated price paths for the Geometric Brownian
Motion (GBM) and the Heston model. The GBM paths exhibit smooth and
continuous movements, characteristic of its assumption of constant volatility.
In contrast, the Heston paths appear more erratic due to the model’s allowance
for stochastic volatility.

The distribution of the final prices from both models is depicted in Fig-
ure 2. The GBM distribution appears log-normal, while the Heston distribution
showcases greater variability due to its incorporation of stochastic volatility.

The autocorrelation and partial autocorrelation for the first simulated price
paths from the GBM and Heston models are displayed in Figure 3. The ACF
for the GBM path shows gradual decay, while the Heston path’s ACF is more
erratic, reflecting the model’s stochastic volatility.

Figure 4 illustrates the rolling volatilities of the simulated price paths. The
volatility for the GBM path remains relatively stable, while the Heston’s shows
pronounced fluctuations, underscoring the impact of stochastic volatility in the
Heston model.

The boxplots in Figure 5 provide a comparative view of the distributions
of the final prices for both models. The Heston model’s final prices exhibit a
wider distribution, with a more pronounced spread between the 25th and 75th
percentiles compared to the GBM.

Table 1 tabulates the descriptive statistics for the final prices from the GBM
and Heston models. A statistically significant difference is noted between the
means of the final stock prices generated by the two models.

In conclusion, the choice between the GBM and Heston models depends on
the specific asset and market conditions. While the Heston model may pro-
vide a more realistic representation in certain scenarios due to its allowance for
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stochastic volatility, it does come with added complexity in terms of parameter
estimation and computational demands.

5 Future Work

For future projects, there are several pathways to further enhance the perfor-
mance and realism of the Monte Carlo simulations. Here are a few potential
directions:

5.1 Parallel Computing Implementation

Monte Carlo simulations are inherently parallelizable, as each simulation is in-
dependent of the others. Implementing parallel computing techniques, such as
multithreading or distributed computing, can significantly reduce the computa-
tional time. This will be particularly beneficial for handling larger datasets or
increasing the number of simulations for higher accuracy.

5.2 Extensions to American and Exotic Options

The current implementation only prices European options, which can only be
exercised at expiry. Extending the implementation to handle American options
[3], which can be exercised at any time before expiry, would require the devel-
opment of early exercise strategies. Additionally, more complex derivatives, like
exotic options (e.g., Asian or Barrier options), could be incorporated to provide
additional insights.

5.3 Inclusion of More Realistic Models

The current simulations use the Geometric Brownian Motion model and the
Heston model. Although these models offer a reasonable degree of realism,
there are more sophisticated models that can account for the complexities of
financial markets more accurately. For instance, stochastic volatility models
(e.g., the SABR model [11]) or jump-diffusion models (e.g., the Merton’s jump-
diffusion model [4]) can be incorporated. These models allow for more complex
behaviours such as sudden jumps in price and changes in volatility, offering a
more accurate estimation of option prices.
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6 Appendix

6.1 Code

The C++ code used in this project is available on GitHub at the following link:
https://github.com/FaridSoroush/Options_Pricing_in_CPP

The pseudocode representing the main steps of the Monte Carlo method
used for pricing a European option in project is shown below:

Algorithm 1 European Option Pricing Using GBM and Heston Models

1: procedure OptionPricing
2: Initialize parameters for GBM: S0, K, r, T, sigma, M, N
3: Initialize parameters for Heston: v0, kappa, theta, xi, rho
4: Define GBM, Heston and Payoff functions
5: Open files for recording simulation results and paths
6: dt← T/M
7: for i ∈ range(1, N+1) do
8: S gbm← S0
9: S heston← S0

10: for j ∈ range(1, M+1) do
11: Z1, Z2← two correlated random normal variables
12: S gbm← GBM(S gbm, r, sigma, Z1, dt)
13: S heston← Heston(S heston, v0, r, rho, kappa, theta, xi, Z1, Z2, dt)
14: Write S gbm and S heston to path files
15: end for
16: sum payoff← sum payoff+ payoff(S gbm, K)
17: Write S gbm and S heston to simulation results files
18: end for
19: Close files
20: option price← exp(-r * T) * (sum payoff / N)
21: print(option price)
22: end procedure
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6.2 Figures and Tables

Figure 1: Simulated price paths for GBM (top) and Heston model (bottom).

Figure 2: Distribution of final prices for GBM (top) and Heston model (bottom).
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Figure 3: ACF and PACF for GBM (top) and Heston model (bottom).

Figure 4: Rolling volatility for GBM (top) and Heston model (bottom).

Statistic GBM Heston
Mean 105.02 101.66
Standard Deviation 21.00 24.65
Median 102.97 98.91
25th Percentile 89.92 84.31
75th Percentile 117.72 116.24
Minimum 51.41 40.76
Maximum 226.13 228.80

Table 1: Descriptive statistics for GBM and Heston final prices.
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Figure 5: Boxplots of final prices for GBM and Heston models.
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