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Abstract  : 

I appreciate the feedback from Fortnow (the author of [1]) on my recent viXra article [2], and in 
particular him supplying me with a definition of the standard polynomial-time universal Turing 
machine[4].  In [3], I clarified the way in which my construction and proofs in [2] could be re-
worked to be analogous to the more usual definition of a universal \Sigma_2^P Turing machine.  

Shortly after publishing [2], I realised that my construction in [2] or [3] gives rise to a very, very 
simple new constructive proof of Kannan’s theorem: much simpler than anything that has been 
published before, if I am not mistaken, and even simpler than my proposed “layer by layer” proof in
[2].  I suspect that Fornow realised this soon after reading [2]: his e-mail correspondence with me 
seems to hint at this.  If so, I appreciate him giving me the opportunity to pubish this new proof 
myself!  

I present a sketch of this new proof here.

Introduction  : 

I appreciate the feedback from Fortnow (the author of [1]) on my recent viXra article [2], and in 
particular him supplying me with a definition of the standard polynomial-time universal Turing 
machine[4].  In [3], I clarified the way in which my construction and proofs in [2] could be re-
worked to be analogous to the more usual definition of a universal \Sigma_2^P Turing machine.  

Shortly after publishing [2], I realised that my construction in [2] or [3] gives rise to a very, very 
simple new constructive proof of Kannan’s theorem: much simpler than anything that has been 
published before, if I am not mistaken, and even simpler than my proposed “layer by layer” proof in
[2].  I suspect that Fornow realised this soon after reading [2]: his e-mail correspondence with me 
seems to hint at this.  If so, I appreciate him giving me the opportunity to pubish this new proof 
myself!  

A Sketch of the Proof:

I present a sketch of this new proof here.  We will use the conventions in [3]; I think that it should 
be obvious to the reader as to how to adapt our proof to the conventions in [2], if there is any point 
at all in attempting to adapt our proof to the conventions in [2], which are now sort-of obsolete 
IMHO!

Let the exponent k, for which we want our language not to have circuits of size big oh of n^k, be 
given.  



Let the language L_3 be as defined on page 2 of [3] (sorry, \Sigma^2 should have been \Sigma_2 in 
[3]):

L_3 = {(<M>,x,1^q) | M is a \Sigma_2 machine and M(x) accepts in P(q) steps}

We have not yet decided on a value for the polynomial P: we will discuss this very soon!  We then 
suppose, for the sake of a contradiction, (I just found [5] with a Google search and looked at it to 
check that my memory of the terminology that I am using here is correct), that L_3 has circuits of 
size big oh of n^k.  

Now, it is very well-known that SAT is in NP, and hence in \Sigma_2^P.  Now we set the degree and
coefficients (which we can take as positive) of P to be big enough to accommodate the running time
of this SAT machine (so that the L_3 machine can’t terminate the simulation of M before M 
finishes) and set M to be this SAT machine.  Then, if we hardwire the resulting circuits to make 
them simulate SAT in an way analogous to “Proof that the Construction Works” in [3], we get a 
circuit family of size big oh of n^k for SAT.

Then, by the Karp-Lipton Theorem ([6] I think, cited by [7]) , the polynomial hierarchy collapses 
down to \Sigma_2^P, i.e. PH=\Sigma_2^P.

Now, by Kannan’s Theorem ([8] I think, cited by [7])), there is a language in \Sigma_4^P that does 
not have circuits of size big oh of n^k: we can call this L_4.  Now, since we have already 
established that the polynomial hierarchy collapses down to \Sigma_2^P under our assumption for 
the sake of a contradiction, L_4 is also in \Sigma_2^P.  So if we initially set the degree and 
coefficients of P to be high enough to be able to simulate both the \Sigma_2^P machine for L_4 and
the \Sigma_2^P machine for SAT, we can hardwire our circuits for L_3, in a way analogous to 
“Proof that the Construction Works” in [3], to produce a circuit family of size big oh of n^k for L_4.

But we have already established the fact that L_4 does not have circuits of size big oh of n^k.  This 
gives the required contradiction.

Making Proof even more Constructive?:

I think that it is fair to regard this proof as being constructive.  However, this proof does not, of 
course, explicitly give the value of P (degree and coefficients) that we need in our definition of L_3 
to make the construction work.  Explicitly constructing an NP machine for SAT, which I presume 
has been done before, and looking at the construction, should give the degree and coefficients of P 
required to make the simulation of SAT work.

I presume that it is easy to see, from analysis of Kannan’s[8] construction of his \Sigma_4^P 
machine, how to derive an exact (not asymptotic) polynomial upper bound on its running time.  
However, I have not yet looked into this.

Then, I presume that it would be at least moderately easy to see, from careful analysis of Karp and 
Lipton’s original proof[6], exactly what effect their simulation of a \Sigma_4 machine by a 
\Sigma_2 machine has on a polynomial upper bound on the running time.  

If I am not mistaken, we can assume WLOG that all of the coefficients of both polynomials are non-
negative, so we can simply add both polynomials together to give a usable value of P for our L_3 
construction.



Do readers think that it is worthwhile for me (or someone else) to explicitly try to work out a usable
value for P in our L_3 construction in this (or some other) way?

Conclusion:

So I think that we now have a very simple, intuitive, constructive
proof of Kannan’s Theorem (much simpler than any previous ones) 
that we can make even more constructive (putting in an explicit 
construction of P) if we want!

Conjectured Possible Next Step: Replace [2] Constructions Completely

My proposed “layer by layer” proof in [2] and [3] is now obsolete,
if I am not mistaken, because the sketch proof that I presented 
above is much simpler!
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