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Abstract. We find out that when a sum of five consecutive triangular num-

bers, S5(n) = T (n)+ ...+T (n+4), is also a triangular number T (k), the ratios
of consecutive terms of a(i) that represent values of n for which this happens,

tend to ϕ2 or ϕ4 as i tends to infinity, where ϕ is the Golden Ratio. At the

same time, the ratios of consecutive terms S5(a(i)) tend to ϕ4 or ϕ8. We also
note that such ratios that are the powers of ϕ can appear in the sequences of

triangular numbers that are also higher polygonal numbers, one case of which

are the heptagonal triangular numbers.

1. Introduction

This expository paper is about an unexpected finding revealing a connection
between triangular numbers and the Golden Ratio, ϕ = (1 +

√
5)/2 = 1.61803...

Both the Golden Ratio, intimately related to the famous and ubiquitous Fi-
bonacci sequence as well as to a number of problems one encounters in science, en-
gineering or mathematics, and the triangular numbers belong to elementary math-
ematical objects that have been studied for centuries if not millennia now.

The former enjoys a near-cult following with a large and growing number of
papers (see, e.g,. [1] for a recent review) and many books dedicated to it, ranging
from more scholarly [2] to more popular [4], [3]. To be fair, the cult debunkers also
exist (e.g., [5], [6]).

The latter object, while perhaps less popular, too has produced plenty of both
research and expository work (see, e.g., [7], [8], [9]). It is often studied within a
broader context of figurate [10] or polygonal numbers [11], which form connections
between number theory and geometry, and, if only because of that, serve as a source
of entertainment for the aficionados of recreational mathematics [12].

It is the triangular numbers, in particular, that should be very familiar to most
high school students, who may even not be the fans of recreational mathematics.
The n-th triangular number, often denoted by T (n), is simply the sum of all natural
numbers from 1 up to n: 1, 1+2, 1+2+3, ... and so on, which works out to 1, 3, 6,
... and, in general, T (n) = n(n+ 1)/2.

The ratio of two consecutive triangular numbers is easy to calculate, but even
in its asymptotic form, with n tending to infinity, when one can say something
definitive about it, it is just a boring 1.

To spice things up a bit, let us consider more complex structures. Let us take
two consecutive triangular numbers and add them up. The result of this would be
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S2(n) = T (n) + T (n + 1) = (n + 1)2, which, incidentally, is a well-known formula
that informs us that the sum of two consecutive triangular numbers is square.

We can proceed further this way, constructing S3, S4, and so on, where Sk(n)
is the sum of k consecutive triangular numbers starting from T (n). One can work
out formulas for Sk(n) in terms of n and k, but that’s hardly exciting, and rather
easy to do too: Sk(n) = k(3n(n+ k) + k2 − 1)/6 (1).

However, things get more interesting when we investigate under what circum-
stances these new sequences can also give rise to triangular numbers. This leads to
a condition on n that singles out those n’s for which this is possible for any Sk(n)
that we may want to study.

2. Unexpected connection to the Golden Ratio

The most interesting situation takes place when k = 5, that is, when we are
dealing with the sum of 5 consecutive triangular numbers. In this case, (1) generates
S5(n) = 5(n2 + 5n+ 8)/2.

If we stipulate that this sum is also a triangular number we get a sequence of n’s
that meet this condition. Using PARI/GP or Mathematica (see the next section),
we can work out the first of several n’s for which this happens. Here are the first
12 of them, all that one can find up to 108:

2, 29, 80, 563, 1478, 10145, 26564, 182087, 476714, 3267461, 8554328, 58632251.
Now, to the untrained eye, these numbers may not look particularly interesting.

However, what actually is interesting lies in their ratios, the ratios of consecutive
terms of this sequence. If we call this sequence a(i), it is a(i+ 1)/a(i) that we are
after here.

The list of these ratios - let us call this sequence ra(i) - follows below:
14.5, 2.75862, 7.0375, 2.62522, 6.86401, 2.61843, 6.85465, 2.61806, 6.85413, 2.61804,

6.8541.
What this list reveals is that some of the terms of ra(i) are very close to 2.61803...,

which is 1 + ϕ = ϕ2. The other ratios too can be recognized as having something
in common with ϕ for they turn out to be very close to the fourth power of that
number, ϕ4 = 3ϕ+ 2 = 6.85410... The further down the sequence, the closer these
terms are to the values of ϕ2 and ϕ4.

In other words, the ratios a(i+1)/a(i) asymptotically tend to either ϕ2 or ϕ4, as
i tends to infinity, or, in practical terms, as it gets larger and larger. More formally
and precisely, the limits of a(2k+1)/a(2k) and a(2k)/a(2k−1) as k tends to infinity
are ϕ2 and ϕ4, respectively.

Using Mathematica we can figure out a recurrence relation for these numbers.
To this end, Mathematica’s function FindLinearRecurrence is of tremendous help.
With its aid one finds out that a(i) satisfies the following recurrence formula:

a(i) = a(i−1)+18a(i−2)−18a(i−3)−a(i−4)+a(i−5), with initial conditions
given by a(1) = 2, a(2) = 29, a(3) = 80, a(4) = 563, a(5) = 1478.

Once we have a(i), we can also find b(i) = S5(a(i)), which, unlike the former,
are triangular numbers. Here is their list corresponding to the 12 first values of a(i)
listed above:

55, 2485, 17020, 799480, 5479705, 257429395, 1764447310, 82891465030, 568146553435,
26690794309585, 182941425758080, 8594352876220660.
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As before, we can find the ratios - rb(i) - for the consecutive terms of this sequence
(also as before, we have limited ourselves to the first 6 significant digits rounded
off):

45.1818, 6.84909, 46.973, 6.85409, 46.9787, 6.8541, 46.9787, 6.8541, 46.9787,
6.8541, 46.9787.

It is easy to see that they tend to ϕ4, or its square, ϕ8 = 46.97871... More
precisely, the limits of b(2k+1)/b(2k) and b(2k)/b(2k−1) as k tends to infinity are
ϕ4 and ϕ8, respectively.

Using again Mathematica’s FindLinearRecurrence function, one finds out that
b(i) satisfies the following recurrence formula:

b(i) = b(i−1)+322b(i−2)−322b(i−3)−b(i−4)+b(i−5), with initial conditions
given by b(1) = 55, b(2) = 2485, b(3) = 17020, b(4) = 799480, b(5) = 5479705.

3. PARI/GP and Mathematica code

The following simple but efficient PARI/GP code was used to print the first 12
terms of a(i):

for(n=1, 10^8, s=5*(8+5*n+n^2)/2; ispolygonal(s, 3)&&print1(n, ", "))

The following Mathematica code can be used to accomplish the same:

Select[Range[10^8], IntegerQ[Sqrt[20(8+5#+#^2)+1]]&]

The following PARI/GP code was used to print the first 12 terms of S5(a(i)):

for(n=1, 10^8, s=5*(8+5*n+n^2)/2; ispolygonal(s, 3)&&print1(s, ", "))

With Mathematica, the same numbers can obtained with this piece of code:

Select[Range[10^8], IntegerQ[Sqrt[20(8+5#+#^2)+1]]&]//5(8+5#+#^2)/2&

However, it makes more sense to use Mathematica’s LinearRecurrence function
for that:

LinearRecurrence[{1,322,-322,-1,1}, {55,2485,17020,799480,5479705}, 12]

We can use the same very efficient function to generate the sequence a(i), even up
to 100 terms (or more if we wish so):

LinearRecurrence[{1,18,-18,-1,1}, {2,29,80,563,1478}, 100]

4. Conclusion

This expository essay presented an unexpected connection between the famous
Golden Ratio and also well-known, though less glamorous, triangular numbers. To
the best of our knowledge, this connection was not known before. Considering that
both the Golden Ratio and triangular numbers are so elementary and have been
studied for so long now one would think that everything should already be known
about them. As this paper demonstrates, this may not necessarily be so.

For the sake of completeness, let us also very briefly discuss the case of k = 2,
which we have already alluded to above, and that of k = 3.

The former case has quite a bit of history that involves Euler himself, who was
the first to work out a general solution to this problem, the problem of square
triangular numbers, in the form of a Binet-like formula. It turns out that the ratios
of the consecutive terms of a(i) in this case tend to the square of the Silver Ratio 1

1For more on the family of metallic means (or ratios) that both the Golden Ratio and the
Silver Ratio are part of see [13].
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(equal 1 +
√
2), that is, to 3 + 2

√
2 = 5.82842... The ratios of b(i) = S2(a(i)) tend

to the fourth power of the Silver Ratio, or 17 + 12
√
2 = 33.97056...

The problem of the sum of three consecutive triangular numbers is much less
prominent than that of the two, arguably also because the ratio of the consecutive
terms of its a(i) is not given by a very recognizable number. It just happens to be

a humble2 2+
√
3 = 3.73205... Predictably enough, its S3((a(i)) exhibits the ratios

of consecutive terms that tend to the square of this number, 7 + 4
√
3 = 13.92820...

In closing, let us also note that the problem of the sums of 2, 3, and 5 consecutive
triangular numbers that are also triangular features the square roots of 2, 3, and
5, respectively, which suggests that it is rather unlikely to find the Golden Ratio in
other sums of consecutive triangular numbers.

However, this does not mean that the powers of ϕ do not appear in other contexts
involving triangular numbers. As a matter a fact, they do. For instance, in the
sequence of heptagonal triangular numbers, although this fact too appears to be
largely unknown.

This is the sequence of the triangular numbers that are also heptagonal, the first
few terms of which are 1, 55, 121771, 5720653, 12625478965, ..., where the ratios of
consecutive terms tend to ϕ8 and ϕ16 = 2206.99954... Not surprisingly, the ratios of
indices of the triangular numbers corresponding to this sequence, 1, 10, 493, 3382,
158905, ..., tend to ϕ4 and ϕ8.

It is conceivable that this is not a unique case, i.e., that there exist other se-
quences of triangular numbers that are also higher polygonal numbers, where the
powers of the Golden Ratio make their appearance in the ratios we have investigated
throughout this paper.
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