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Abstract
The notion of a connection from di�erential geometry is employed in a category-theoretic

context. We discuss the properties of holonomy from a tangent ∞-category perspective.

§0 Preamble
Let x and y be two distinct invariant objects. Then, there is a shortest path 𝓟:x→ y, which is a

distance-minimizing curve (proper geodesic) between them. Cartan, Ehressman, Levi-Civita, et al.
produced a particularly compelling industry for describing this sort of a path. The common
terminology involves the notion of a “connection,” i.e., a �bration between two elements or objects.
However, they did not discuss these connections categorically. To give a proper picture of this story, we
employ the notion of a tangent ∞-category of K. Bauer et al.

Let 𝜑(𝕏,𝕏):𝕏→𝕏 be a �bration between quasicoherent schemes. We work in the
category-enriched category SchCat. There is an intrinsic bundle (which is normal),

𝓁n𝕏 =H ⊕V,
which is essentially a�ords an Ehresmann connection xi→yi to every object in𝕏. This gives us a
smooth, projective morphism which allows us to do some bookkeeping apropos to any “twisting” that
may occur over𝕏.

We will also borrow the notion of a “display tangent category” [Disp1] to license talk of our
previously constructed notion of a hyperbolic block of display maps, B𝜆, which foliates open
neighborhoods of some sort of geometrically or topologically closed structure. In a sense, the
distinction between a tangent in�nity category, and a projective restriction from a vector space to an
ambient space of codimension 1 is not so clear. For instance, if we introduce a twist:

𝓽𝓌: L𝜀→ 𝜀L⊗R

and lift out of a desuspended point, then we can simply choose to model the lift as a morphism in a
vect-enriched category.

§1Cross Sections
De�nition 1.1.0A connection is a path 𝓟:𝜶→ 𝜷which admits a module A in the category

SchCat.
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De�nition 1.1.1A cross-section is an open topological neighborhood𝒰(–) which covers a
section of 𝜶 and 𝜷.

De�nition 1.1.2A𝒞*-module is an object𝒞*
Modwhich is “movable,” i.e., exhibits holonomic

transport along connections

One of the quintessential features of connections (categorically) is that they allow us to
describe physical and dynamic motion along spaces. This is very geometrically interesting, but it
should, in principle, be very categorically appetizing as well. We will use Grothendieck’s notion of a
homotopy type [Hot] to ease the discussion.

Let𝔊 be a �eld. A connection (in our context) is essentially a map:
𝔊HOT→A,

where A≃TM(𝛼) is a manifold tangent to some 𝛼. Quantummechanically, this gives us a path interval
[𝛼,ACENT]

Diagram I
An(x) takes the top of the diagram to the bottom by animating a small subcategory of𝔊∞.

LetC be a chain of functors 𝛾n ⚬ 𝛾n-1⚬… ⚬ 𝛾inf(D). Then, there is a choice of restriction𝓡𝒆𝑠n(𝔊)
such that a countable cardinal is obtained.𝓡𝒆𝑠n(𝔊) is also called the codensity monad. The codensity
monad obscures the twist by providing an ind-object for n to pull back to.1

As we see here, An(x) provides a pipe from isomorphism to a normal functor.
De�nition 1.2.0 A pipe is an n-cell which maps to an (n-k)-cell, with (n-k)>0
Examples Say we have a 3-cell in some category, large or small. Then, if there is a map to a natural
transformation, that is a pipe. A further map to an arrow would be a pipe. However, the evident map

(f:a →n b)→ c
fails to be a pipe, because it reduces to an object, or in other words vanishes.

Our choice of n for this operation is syntactically crucial. If n is su�ciently large, it
approximates a non-localized ∞-category Hot∞. This makes the simplicial complex representing Hot∞
“locally smooth,” but the smoothness is perhaps not global.

1 See [Cod]
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De�nition 1.3.0A locally smoothmap is a continuous (𝒞∞) map.
Lemma 1.4Amap𝒞∞(A)→n𝒞∞(A) is locally smooth for n>ℵ0.
Proof Let ℵ0be a supercompact cardinal. Then, there is a projection

ℵ0 ⇉ 𝜆(n),
where 𝜆(n) is some proper function.
De�nition 1.5.1A proper function is a function of the form

f(x) = *****∨ *****
where every asterisk is a “wildcard.”
De�nition 1.5.2 A wildcard is a formal power series, object, etc., which is chosen deterministically,
but is initially non-determined.

§2Determination Conditions
De�nition 2.0.0A determination is an action which connects a point to a choice.

Proposition 2.1.0 Let X→n Y be a connection. Let n be comparable with m. Then, we have the
classical relationship:

nRm,
and we have

(X→n Y)→ (X→m) ≃ Fun(Homn(X,Y),Hom(m,n)) = 𝓩
This proposition will be very important for us later. In the meantime, we will write

よ:𝓩→ 𝓩*

for a Yoneda automorphism from the ambient space to the total �ber space.

RemarkHere, the relationship nRm is symmetric, and so it does not induce a preorder on the
pro-object z∈SSets.

Nothing is stopping us from writing

よn(𝓩) =
∞ 𝑛
lim
→

𝐶∞(𝒰)

under the condition that the localization functor
𝖓: n→ n

is nilpotent. Notice also that the nilpotent character 𝖓 gives rise to the display block 𝜙𝖓.

De�nition 2.2.1a Let𝒫:x→ y be a simply connected path connection. Let it be nilpotent at every
step. Then, it is a locally pointed connection.



De�nition 2.2.1b Let every neighborhood on a manifold M contain locally pointed connections.
THenM is said to be a locally pointed manifold. Accordingly, a space S with the same universal
property is said to be a locally pointed space.

Proposition 2.2.2 Let𝛱 be a path connected, locally pointed space. Then,

= f( )
0

1

∫ τ(𝐻𝑜𝑚(𝑥, 𝑦)) τ

gives the complete set of information about a particle at a point in time. Theよ-link gives the rankτ
p<2 connection on a particle’s worldsheet to a standard projection onto a worldline 𝕊よ=𝖂.

A cross-section on𝖂 is a smash product of Regge trajectories of a particle and an antiparticle.
Letting be particle, and - be an antiparticle, we have𝑞 𝑞

⊗ - =𝒞(𝕏)𝑞 𝑞
- ⊗ =-𝒞(𝕏)𝑞  𝑞

Encoding the sub object identi�ers as
, -}→ {𝛼→n 𝛽}{𝑞 𝑞

gives us a “unique” polymorphism to a span of locally pointed, locally ringed spaces. This
polymorphism is co-degenerate with the mutually orthogonal slices of 4-dimensional classical
spacetime. This gives rise to a rank n connection between each object, and a representative cocharacter
at a designated point about some center on a strati�ed lightcone. This works, because 𝕃4 has
projections from discs which are covariantwith respect to the orientation of 𝖇, some binomial.

Borrowing again from Emmerson (with some original modi�cation):

=
𝑥=0

𝑥'

∏ 𝑂𝑏𝑗(𝕏)∝𝐵
𝑎

𝑐𝑒𝑛𝑡

≃𝑆
𝑘

⇒ 𝑘
𝑥

𝑥'

∫ 𝐼𝑑
𝕏

In the above equation, k is basically a measure of “choiciness;” the entire determination of relata is
completely determined by the projectivity of k at a certain slice of spacetime. Spontaneous breaking of
symmetry occurs during the natural transformation; syntactically:

No choice→ Choice;
Notice, there is no morphism

Choice→No Choice;
this would violate the arrow of time.

De�nition 2.3.1A stratum is said to be uniquely determined if there is only one such restriction 𝖀|S
from the universal class which yields S.
Proposition 2.3.2 𝖀 is uniquely determined



Proof Since 𝖀⊃k for all k∈𝖀, 𝖀 is the coarsest such space that these elements are comparable with.
Thus, Id𝖀 is the only operation taking some k to 𝖀.

Because each universe uniquely determines the sup-pole of a compass, a compass

Ω
𝑥
𝑦

with y=sup(𝖀) has, as a result, a uniquely determined sup-pole.
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