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Abstract

In this paper we discuss quantum gravity framework 3.0, where we discuss relative time formulations.
Applications of relative time formulations are discussed. The conventional Hamiltonian of bulk matter
is derived from quantum gravity Hamiltonian. The derivation of Hamiltonians in the contexts of �elds
is brie�y discussed.
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1 Introduction

In this paper1 , I continue the heuristic research of quantum gravity framework project [3] [1], [2]. First, I
discuss the quantum gravity formulation 3.0, which is the further update of the quantum gravity formulation
2.0 formulated in [3]. In quantum gravity framework 2.0 I discussed four proposals: self-time evolution, self-
time decoherence, global quantum decoherence and a fourth proposal related to scale invariance, determinism
and continuum limit. I here discuss the relative nature of the four proposals in quantum gravity formulation
2.0 with respect to choices of observation paths in con�guration space and foliation of the space-time, and
I discuss the relative formulations as the quantum evolutions. I introduce the relative-time evolution which
is the more general form of self-time evolution and its impact on the other proposals. I also introduce the
concept of rest frame foliation which I believe is physically signi�cant in understanding global quantum
reduction.
Second, I discuss the applications of relative-time formulation. First, I discuss how to get the conventional

quantum mechanics from a relativistic Hamiltonian constraint using the relative-time constraint. Then I
discuss how the time constraint formulation can be used to derive non-relativistic quantum mechanics in the
context of particles. This starts with various basic assumptions, regarding collection of particles interacting
with each other by gravitational and gauge �elds. I start with Hamiltonian constraint, and apply the relative-
time evolution formulation. By systematic deductions, simplifying using �at space approximations, I derive
the conventional Hamiltonian including the Newtonian gravity terms. I also brie�y discuss deriving the
conventional Hamiltonian formulation using the relative-time evolution in the context of �eld theory.
I apologize for typos and grammatical mistakes in this paper, and the previous papers related to this

paper. This paper is only a rough draft of work in progress.
We follow the following conventions in this article:

Convention 1: In any integral, the variables over which the integration is done is same those used in the
measure placed in the right most end of the integral, unless explicitly indicated otherwise.

Convention 2: Summation is assumed for all repeated Greek indices in the explicit elementary products of
the basic variables of the theories discussed.

Convention 3: In the di¤erential measures of the integrals, the multiplication over all the su¢ xes and the
pre�xes is assumed, for example dx�dy mean

Q
�;

dx�dy .

Convention 4: For functions with arguments that have su¢ xes, pre�xes, and parameters: The function
depends on all the collection of the arguments for all di¤erent values of the su¢ xes, the pre�xes and the
parameters. Example: f(x� (t); y�) = f(X), where X = fx� (t); y� ; 8�; �; ; tg:

Convention 5: No other summation or multiplication of repeated indices is assumed other than those de�ned
in conventions 2 and 3. Examples: 1) there no summation in f�(x

�; y�), the three ��s are independent, 2)
(p��x� + f�(x

�; y�))dx
�dy� = (

P
�
p��x� + f�(x

 ; y�))
Q
�;" dy�dx

".

Convention 6: It is assumed that ~ = c = G = 1, unless speci�ed.

1For the latest updates proper discussions, comments and issues, please visit www.qstaf.com. Much of the
discussions, updates and supplementary downloadable materials regarding this project will be mostly available on
www.qstaf.com, and other websites referred to such as the researchgate: the link for quantum gravity framework project
is https://www.researchgate.net/project/Quantum-Gravity-Framework. Update information will be provided on social media
also (www.qstaf.com/links).
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2 Quantum Gravity Framework 3.0

2.1 Single point system

2.1.1 Self-time Constraint and a Naive Path Integral

Let me start by repeating some introductory work discussed in the �rst version [1] and [2] of the framework.
In this subsection I repeat and also clarify the concept of self-time evolution, discuss it from a more general
point of view in the next two subsections.
I need to de�ne a set of mathematical concepts so that we can understand time evolution in a fully

constrained system. Consider the con�guration space of a system described by a Hamiltonian constraint.
We can use the understanding of classical physics to describe the �ow of time in the quantum Hamiltonian
constrained system. The most important issue here is to identify the time variable. For a constrained system
it appears that there is no time variable. But I believe proper statement of the problem can tell what the
time variable is. Basically, in general if you are an observer moving in space-time, you observe the world
using the direction of four momentum as the direction of time. Same thing can be done for a constrained
system. It is determined by the initial conjugate momenta that one speci�es. Momenta usually is essentially
the rate of change of con�guration variables. At each instant the direction of conjugate momenta speci�es
what direction the con�guration variables evolve in the con�guration space. This direction keeps changing
each instant. This is similar to accelerating observer in space-time. Basically, he observes the world in an
accelerating reference frame. That is, he observes the universe using sequence of inertial frames, with moving
along a time-like direction in space-time. Same thing can be considered to happen in a constrained system,
with the time-direction speci�ed by conjugate momenta each instant.
Consider a simple quantum system which is described by a Hamiltonian constraint only. Let the internal

con�guration space of the quantum system is of dimension d, and is made of canonical variables p� and q�.
Let m�� , a function of q�; is the metric in the internal con�guration space. Hereafter I will use m�� and
its inverse m��(assuming it exists), to raise and lower indices. Usually m�� is simply a delta matrix ���
multiplied by mass m.
Let me de�ne a scalar product using the metric:

< a; b >=
1

2
a�b�m

�� :

I will assume m�� is positive de�nite for now. The Langrangian is as usual for a simple constrained system,
is as follows:

L(p�; q�; N) = p� _q
� �NH(p� ; q):

Let me assume that a typical Hamiltonian is as follows (without the Lapse):

H(p�; q�) =
< p; p >

2
+ V (q�) =

1

2
m��p�p� + V (q

) (1)

=
p�p

�

2
+ V (q): (2)

We can make the following standard de�nitions:

Norm jpj = +
q
m��p�p� (3)

Unit Vector �p� =
p�

jpj

These quantities de�ned are functions of q�; as m�� is a function of q�. In the path integral for a simple
fully constrained system,
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G(q�1 ; q
�
2 ) =

Z
exp(ip�dq

�)�(H)dp�;

where dq� = q�2 �q�1 . We need to decide how to derive a time variable from a con�guration variable. We can
always linearly map the con�guration space to a new con�guration space through a canonical transformation.
Therefore, the right question is, what direction is to be considered as the time direction in the con�guration
space at each point, de�ned in an invariant way.
Now, consider Newton�s �rst law of motion: Every body continues in its state of rest or of uniform motion.

The law states that time �ows, and a body moves uniformly along the direction of its velocity vector in an
in�nitesimal time interval. Since time is seen through movement, essentially inertia can be considered as
e¤ect of unstoppable �ow of time associated with the system. I will reformulate the law slightly such that it
de�nes time itself. The �rst of Hamilton�s equations of motion captures the mathematics of Newton�s �rst
law:

v� =
dq�

d�
= [q�;H] = m��p� = p� (4)

where d� = Ndt: Please note that momentum and velocity are equivalent in this framework. If q� is
interpreted as position, velocity v� is simply like the contravariant version, and momentum is like the
covariant versions of each other. Here I use m�� and its inverse m�� to raise and lower. Now

p�dq
� = jpj2d�

We can use

�p�dq
� � jpjd� = 0

as time constraint to de�ne a hybrid classical quantum evolution of constrained system as I will discuss now.
This time constraint was introduced in the �rst version [2] and [1].
A naive self-time path integral introduced in [2] and [1] is

G(q�1 ; q
�
2 ; p�; d�) =

1

(2�)
d�1

Z
exp(ip�dq

�)�(H)�(�p�dq
� � jpjd�)dp�:

where p� is classical momentum of the particle at instant � :But this path integral is not time oriented.
A naive time-oriented path integral

G+(q
�
1 ; q

�
2 ; p�; d�) =

1

(2�)
d�1

Z
p�p�<0

exp(ip�dq
�)�(H)�(�p�dq

� � jpjd�)dp�: (5)

which can used to evolve the quantum state j	(�) > of the system. Above the fraktured quantities are
classical values derived from p� =< 	(�)jp̂�j	(�) > , and p� = m��p� at each instant.
In the previous version of this paper I discussed a detailed analysis of this path integral in the con�guration

space [3]. But this integral is too formal and naively de�ned. The last two integrals conveys the idea, requires
proper analysis to put them to use. Next I will discuss how to do that.

2.1.2 Relative Quantum Evolution in Con�guration Space

Consider the simple Hamiltonian system described in section (2.1.1). Given any smooth classical path
� de�ned by q�(�) in the con�guration space Rn one can always de�ne the quantum evolution with respect
to this path for a simple constraint system described before in section (2.1.1). I also assume the function q�(�)
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has smooth �rst and second order derivatives. In this, evolution is not in space-time, but in con�guration
space with metric as m�� . For this let me de�ne the following:

1. De�ne v�(t) = _q�(�) and p� = v�m��(q
(�)), where I have assumed m�� is a function of q .

2. De�ne a one parameter family of hyperplanes S(�) isomorphic to Rn�1 orthogonal to p�(�) going
through q�(�). If x� is the points on this plane, then it satis�es m��(q

(�))(x��q�)p�(�) = 0:We can
denote the hyperplanes by S(�) � S(p�(�); q

�(�)) as it depends on q�(�) and p�(�). S(�) describes a
foliation of the con�guration space if the surfaces don�t cross each other.

3. De�ne quantum states  (q�?; �) on S(�). Here q
�
? takes values in R

n but is restricted to S(�):

4. De�ne a single step path integral from S(�) to S(� + d�)

~Gs+(q
�
?1; q

�
?2; �; � ; d�) =

1

(2�)
d�1

Z
p�p�<0

exp(ip�dq
�
?)�(H)�(p�; q

�)dp�: (6)

where p�p� = m��p�p�. De�ne

Gs+(q
�
?1; q

�
?2; �; � ; d�) = lim

d� 0�>0

~Gs+(q
�
?1
; q�

?2
; �; � ; d�)R

~Gs+(q�?1; q
�
?2
; �; � ; d� 0)dq�

?1

(7)

Since G depends on �; � ; d� , we have q�; p�; d� in the arguments, but separated by a semicolon, as
they are not quantum variable. The �(p�; q�) is a weight, which is deduced so that

Gs+(q
�
?1; q

�
?2; �; � ; 0) = �(q� � q0�)

where � is the Dirac delta function. Also, the division in equation 7 is done to remove unwanted to
factors to get the delta function when d� = 0:Whether �(p�; q�) and the division is necessary in a
physical theory is a good question. I have included them in the de�nition to make the formalism most
general.

The path integral in equation 7 is the relative-time oriented path integral I will use in this section. I refer
to this as relative-time oriented because this evolution is in reference to an arbitrary smooth curve to describe
time evolution. This evolution has di¤erent physical meaning and interpretation in di¤erent contexts. If an
observer is moving along the curved path � in the con�guration space his observations of quantum system
will be described by this evolution.
We can use the relative path integral to de�ne the quantum evolution of states on S(�) of the con�guration

space:

 (q�?1; � + d�) =

Z
Gs+(q

�
?1; q

�
?2; �; � ; d�) (q

�
?2; �)dq

�
?2

For this path integral formulation to genuinely describe the evolution of wavefunction we need to have �
such that S(�) don�t intersect other, that is genuinely describe a foliation of the con�guration space.

2.1.3 Self-time evolution of a single point system

Let �� is a curve in the con�guration space described by the classical expectations of q̂�;

�q�(�) =< 	(�)jq̂�j	(�) > .

Its momentum in the classical phase space is described by

�p�(�) =< 	(�)jp̂�j	(�) > .
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If the path � used to describe the evaluation of wavefunction is same as ��, then I can refer to this as
self-time evolution, which was the original proposal in the �rst version of the framework [2] and [1], and
studied further in detail in [3]. But it is not necessary that � need to be equal to ��; but any � that is smooth
enough with m��(q) _q

�(�):�q�(�) >0 for each � is su¢ cient enough to study the quantum evolution of the
quantum system. Self-time evolution is one particular choice of general evolution described in the previous
section.
For to properly do self-evolution we need to dynamically evolve � as we evolve the wavefunction. For this

I calculate p� and q� from the classical expectation values of the corresponding quantum system and use
this in step (1) in the procedure in the previous subsection, at each instant to evolve the wavefunction to
next step after d� interval. Then I can use this to calculate the p� and q� new classical expectation values
at t + d� and repeat the steps further evolve the wavefunction. In [3], in equation (8), I have derived the
propagator for self-evolving the wavefunction using the variables on the self-evolving hypersurfaces. In the
same paper in section (2.1.3), I given the algorithm for step by step evolution.
In the second version of the paper [3], in section (3), I have discussed how to apply this to various simple

contexts to cosmological reduced model, cosmology with �uctuations, and Newtonian space. In this paper
in section 2, I will discuss the relative-time evolution for common situations encountered by physics. There
I will discuss time evolution of the extended objects living in 3d space.

2.1.4 Relative Decoherence

In previous versions [3] I discussed inclusion of this using di¤usion equation method [10].
We will generalize the formalism to include relative quantum evolution. I de�ne relative quantum de-

coherence evolution equation as follows: The quantum state undergoes continuous reduction with respect
to some fundamental �eld variables Lm, through semiclassicalization and randomization given by equation
below:

dj > = �iĤ?j _��s jd� j > +
X
m

(L̂m� < L̂m >)j > dzm
p
j _��s jd� (8)

+
X
m

(2 < L̂m > L̂m � L̂+mL̂m� < L̂+m >< L̂m >)j > j _��s jd� ;

where Ĥ? is the projected Hamiltonian operator, acting de�ned on the surface of the planes S(�). L̂m are
the operators with respect to which reduction is performed. Here the decoherent evolution depends on �.
This is the decoherent evolution of the state as seen by the observer moving along �, with the foliation S(�)
as a curvilinear reference frame. The � are dummy variables and they can be rescaled. And so I have used
j _��s jd� instead of d� in the above equation, to make time increment invariant.
I am still in the process of properly de�ning self-time evolution and understanding its relevance. Self-

time evolution seems to be arbitrary choice for pure Schrödinger evolution but it becomes essential when
we are including Lindblad [25] type decoherence terms. The decoherence evolution is non-linear and so
clearly dependent on the time variable used. The self-time evolution is the most natural evolution to include
decoherence, because the system evolves with respect to itself in its own momentum direction as time
direction at each instant. But the justi�cation for using self-time evolution appears arti�cial. In the next
revision of the framework I will give much more natural de�nition of relative de�nition involving of self-time
evolution. I also will use path integral approach for decoherent evolution.

2.2 General 4D Curved Space Time

This section let me brie�y summarize the ideas in the previous version [3].
In quantum gravity we want to evolve the quantum states from one spatial hypersurface to another

spatial hypersurface of a space-time foliation. In a spatial hypersurface there are in�nite number of points,
with a quantum system at each point. For each point x; there are one set of conjugate variables px;�, q�x
(D dimensional internal space), with physics identical to the single point system discussed in the previous
section. Only major di¤erence is that the Hamiltonian contains interaction terms as functions of the q�x of
adjacent points. Here I am using simpli�ed version of quantum �elds assuming, while in reality it is complex.
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I also don�t discuss other constraints such as di¤eomorphism or gauge constraints. We will see in the next
update of quantum gravity framework, all constraints including quantum gravity constraints need not be
explicitly needed for formulating dynamics.
To each point we can apply theory discussed for single point �elds. Then there will be one classical curve

��x(�x) for each point, smooth upto second derivative, one parameter family of hyperplanes S
x(��x(�x); _�

�
x(�x)

in the con�guration space of at each point, and one free (dummy) parameter �x for each point.
Let me assume that space is discretized for simplicity, and is made of countable number pieces of volume

elements such as in cubic lattice. I am assuming this discretization only for simplicity and explanatory
purpose.
Let B be the number of lattice points, and for simplicity let us assume B is �nite. Let �V be the

coordinate volume associated to the coordinate volume element associated to each lattice element of the 3D
manifold. Assume that the quantum system at each lattice point x is described by an identical Hamiltonian
constraint Hx only, and it has an interaction term that involves quantum systems at adjacent lattice points.
Each step of the evolution depends on how �x(�x) varies with d�x.

2.2.1 Relative-Time Evolution

Now consider the path integral de�ned in previous section in equation (7). For each system at x; we have
one curve �x assigned. Then we have the combined one step relative path integral as

~G(fq�?;x; q
0�
?;x; �x; �x; d�x;8xg) (9)

=
1

(2�)BD

Z
p�s;xp�;x<0;8x

Y
x

fexp(ip�;x(q�?;x � q0�?;x))�(Hx)�(p�;x; q
�
?;x)dp

D
x g;

To summarize I generalization of relative-time evolution to (3+1) dimensional space-time as follows using
equation (9) as I de�ne below.

Relative-Time Evolution in general curved space time. The propagator for a four dimensional
quantum gravity is given by

G(fq�?;x; q
0�
?;x; �x; �x; d�x;8x) = lim

d� 0x�>0;8x

~G(fq�?;x; q
0�
?;x; �x; �x; d�x;8xg)R

~G(fq�?;x; q
0�
?;x; �x; �x; d�

0
x;8xg)dq�?;x

: (10)

The �(p�;x; q�x ) has been introduced to make sure G is a delta function when d�x = 0: In the second
equation above, the division is done to remove the factors of integration, and make sure we get the proper
delta function. The p�s;xp�;x < 0 term in the integral restrict evolution to the positive direction of _q�x . The
repeated application of the one-step path integral for in�nitesimal��x smoothly evolves all the systems living
on the lattice. The sequence of the quantum states, de�nes the states of the system at various consecutive
instants.
Let me de�ne d�x = nx(�) d� ; where the nx(�) are continuous functions of � , one of them for each lattice

point x. The repeated application of the one-step path integral for in�nitesimal d� evolves the quantum
state along the spatial hypersurfaces. The nx(�) functions de�nes the various ways to foliate the discretized
geometry, whose topology is B point 
 1D. Here nx(�) is essentially is the lapse. Now depending on the
choice of nx(�) we will have di¤erent foliations of the classical space-time geometry relating to the quantum
geometry. We can take the continuous limit by sending the size of the lattice towards zero.

G(fq�?;x; q
0�
?;x; �x; �x; nx(�)d�x;8x) = lim

d� 0x�>0;8x

~G(fq�?;x; q
0�
?;x; �x; �x; nx(�)d�x;8xg)R

~G(fq�?;x; q
0�
?;x; �x; �x; nx(�)d�

0
x;8xg)dq�?;x

: (11)

As the combined system evolves the classical expectation value of the momentum and the con�guration
variables p�;x and q�x also evolve.
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2.2.2 Relative-Time Decoherence

Now if we want to include the reduction at each point discussed in proposal 2 of single point system, the
evolution of j � > depends on �x, as the evolution equation is non-linear. Given a foliation described by
certain choice of nx(�);we generalize proposal one and two as follows:

Relative-Time Decoherence - Given a path ��x(�) for each con�guration space, and lapse functions, the
quantum state of a spatial hypersurface undergoes continuous reduction with respect to observables Li through
semiclassicalization and randomization given by equation below:

dj � >= iHs;xj � > nx(�)j _��x jd�+
X
m;x

�m;xj � > dzm;x
p
j _��x jnx(�)��+(x�

X
m;x

�+m;x�m;x)j � > nx(�)j _��x j�� :

where Hs;x is from equation (10); x = ��x+ < Lm;x > L+m;x � Lm;x < L+m;x >; and �i;x = Li;x� <

Li;x >, the su¢ x x indicates the point to which the quantities corresponds. The operators L̂m are simple
functions of the conjugate variables psI and q

I
s to which are the operators that are being continuous measured

in this evolution.

Physical relevance of � will be evident in the fourth proposal. Since the c term is ignored, j � > is not
assumed to be normalized. So

< Li;x >=
<  � jLi;xj � >
<  � j � >

:

This evolution heavily depends on nx(�) and �x; and so is the evolution is relative to these choices.
Basically nx(�) chooses a global foliation, otherwise a global reference frame to observe the quantum state.
��s (�) is a local internal reference frame to observe the evolution.
Assume that above Hamiltonian constraint is discretized in a cubic lattice made of B cubes as I discussed

in this section.
A demerit of this proposal is that it is not in path integral form. Other three proposals are in path

integral form. In the next revision in quantum gravity framework 3.0 decoherence equation will generalized
into a path integral form.

2.2.3 Global Quantum Reduction

Let me relative time evolution for F steps. Each step of the evolution depends on the values of ��x. Let �
be a continuous time parameter, which varies from � = 0 to � = T .

G(fq�x ; q0�x ; �x; �x;F ; �x;0;8xg) =
Z FY

k=1

[G(fq�x;k; q
�
x;k�1; �x; �x;k�1;8xg)](

Y
x

F�1Y
k=1

dqx;k):

This evolution generates a time dependent quantum state j � > which evolves the initial quantum state.
If we express each step in Hamiltonian form we can include relative decoherence discussed also in this
evolution. This evolution evolves the initial state j � > continuously to generate an entire quantum space
time. But this evolution depends on �x and nx(�). We need to �x the arbitrariness of this. The best approach
is statistical approach.

: Using j � > we can calculate the following: 1) classical metric g�� of the corresponding classical geome-
try 2) hypersurface metric hab for the hypersurfaces 3) classical conjugate momenta �ab for the hypersurfaces.
All these values are dependent on �x and nx(�): I will propose the following.

Global Quantum Reduction - The quantum evolution and reduction process occurs along a spatial foliation
such that the C1smooth functions nx(�) take smooth values, such that relative probability weight is given
by exp(�cr�), where cr is a fundamental constant, where � is de�ned as function of �ab; hab, g�� or a
combination of those to be discovered and veri�ed experimentally.
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Above �ab; hab, g�� , need not be just classical expectation values. They could be directly the quantum
variable also. This is equivalent to adding icr� to the action. In [3] I discussed a various choices for �.
One the special choice of the � which describes a rest frame foliation was discussed later in a subsection.
In the next update, in quantum gravity formulation 4.0, I discuss the covariant version of global quantum
reduction.

2.2.4 Determinism, Continuum Limit and Scale invariance

The introduction of decoherence makes space-time and �elds unstable, and di¢ cult to reach continuum limit.
In quantum gravity framework 2.0 ( [3]), I introduced a fourth proposal, which I will include as the part of
the quantum gravity framework 3.0, without any alteration.

Smoothness Principle: Every subsystem has several mechanisms built into it explicitly such that the ex-
pectation values of quantum variables of nearby or adjacent identical quantum systems are very close to each
other. They are such as 1) There are imaginary decay term in the action to keep the quantum variables
adjacent to each other, 2) Every system is a collection of large of subsystems each having quantum variables
qIx;s and random variables zm; xattached to it and evolving according the �rst three principles, and 3) The
e¤ective variables of every system is got by weighted averaging of the random and quantum variables of the
underlying subsystems; Fundamental Commutators are smoothened as a consequence of this.

In proposing this I assume that nature is fundamentally discrete, and the continuum limit is due to
dynamics rather than kinematics as one would expect in continuum model. Discovering if there is a funda-
mentally discrete model is a future course of research. There are many choices already available in literature,
such as spin foam models.
A simple way to realize the �rst part of the proposal is to add an extra imaginary term to the action for

quantum gravity, for example system,

S �! S + i
X
x;s

(
1

2
�x(q

�
y;s)j _Q�x;sj)nx(�)j _��x jd��V;

such that �x are
1) smooth real functions of the variables q̂�x;s with a lower bound,
2) functions of quantum variables at x and adjacent (or nearby) quantum systems to point x, and
3) are increasing functions as jq�x � q�x0 j� >1:
The new imaginary term with �x need to be added to Hamiltonian Hs;x in the algorithm discussed in

the last section to enforce smoothness. For more information I refer to [3].

2.2.5 Rest frame Evolution

Rest Frame Evolution is the study of a system in the coordinates in which it is dynamically at rest. This
could be in the internal evolution in the con�guration of space of �elds or evolution of �elds in the (3+1)D
space-time geometry. Let me discuss these one by one.

Internal Evolution Rest Frame Evolution of a single point system is described by three things

Proposition 1 Deterministic Version 1)The evolution is de�ned by self-time evolution discussed in 2.1.3.
That is �(�) is same as the expectation of q̂� and is dynamically calculated from the quantum state as the
system evolves as explained in 2.1.3. 2)The system moves slow enough that S(�) don�t intersect at di¤erent
values of � ; atleast in the regions where the wavefunctions of the quantum state have a �nite magnitude.

This was studied for a simple system in detail in section 2 of [3] . Since the Relative decoherence depends
on �(�) rest frame evolution is one natural possibility of it. It is basically the quantum system observes itself
along a reference frame generated by its corresponding classical internal evolution. To understand whether
the decoherence occurs along this path we need to do further research and do experimentally test for this
proposal.
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Proposition 2 Statistical version: The choice of �(�) is statistical in nature. The relative propability of
�(�) is given by exp(��i);where �i = ci

R
(�(�) � < q(�) >)2d�, and ci is a constant to be determined

experimentally.

This is alternative to the self-time version of the previous proposition. This proposition is statistical in
nature and we doesn�t need to specify a speci�c �(�): The �i is just a possibility. The actual form of it may
be di¤erent, but if this proosition is valid, it essentially will take of form of some measure of the deviation
of �(�) from the expection value of < q(�) >.

Space-Time Evolution Now let me introduce the what is I refer to as the rest frame foliation of space-
time. For understanding rest frame foliation let me describe what I call as the global quantum reduction
I used n(x) for describing various foliations. For a space time foliation as de�ned by choice of nx(�); I
suggested various choices in section (2.3) of previous version [3]. In this paper I will focus on one particular
variation among them. The concept of rest frame foliation as the natural foliation as de�ned below in the
canonical version of quantum gravity framework 2.0.

Proposition 3 Classical Version: The quantum evolution and reduction process occurs along a spatial

foliation which minimizes �s =
R
(
<�abf �fab>

cg
+
X
f

1
2
~E2f )

1p
h
dx3; where �abf is the trace free momentum

of gravitational �eld and Ef is the electric part of gauge �elds f .

Proposition 4 Quantum Version: The quantum evolution and reduction process occurs along a spatial
foliation such that the C1smooth functions nx(�) take smooth values, such that relative probability weight is

given by exp(�cr�s), where cr is a fundamental constant, where �s =
R
(
<�abf �fab>

cg
+
X
f

1
2
~E2f )

1p
h
dx3; where

�abf is the trace free momentum of gravitational �eld and Ef is the electric part of gauge �elds f .

In the previous version of quantum gravity framework [3], I gave a fundamental statistical role to such
foliation de�ned by �s to do quantum decoherent evolution. Whether that proposal is physically valid or
necessary is not clear to me at this moment, but it is the most general way to formulate the theory. In this
paper let us just consider the minimal surfaces only, without using the statistical formulation. In this paper
I consider such foliation as just as one choice of foliation in which the �elds are either perfectly or at least
approximately stationary. That is the translational movements of matter particles is reduced or removed.
So I will call such evolution as the rest frame foliation.
Above f denotes the various gauge �elds. First consider the electromagnetic �elds. Consider the �eld

around a charged particle. In a locally �at hypersurface in which the charge is at rest, let ~E be the electric
�eld. We know that F��F�� = ~E2 � ~B2 is invariant. In the rest frame F��F�� = ~E2: In other reference
frames B is non-zero. So to keep F��F�� invariant ~E2 must increase. Explicitly it is 2 ~E2,  is the
gamma in the Lorentz transformation. So we have that

R
1
2
~E2 1p

h
dx3 is minimal when the hypersurfaces are

orthonormal to the 4-velocity of movement of charges in space-time. So at a microscopic level, minimizingR
1
2
~E2 1p

h
dx3 yields a foliation in which the charges are at rest. I assume we can extend this discussion to

include longitudinal �elds for other gauge �elds such as weak and strong forces with same result.
Next consider the gravitational momentum term. Here �abf is the trace free part of the conjugate mo-

mentum. I have removed the trace of the conjugate momentum to make �s � 0. For any particle or any
spherical celestial object, �abf is zero, for example, in case of the Schwarzschild space-time. It is the equiva-
lent of the electric �eld of a particle. Schwarzschild solution neatly de�nes a foliation along with the spatial
metric doesn�t change. In any other foliation �abf is non-zero. So we see that �s is minimal identi�es spatial
hypersurfaces that is orthonormal to direction �ow of an object. This approximates the lab reference. In
Earth the lab reference frame is at rest with respect to the static Schwarzschild foliation. Similarly, in an
in�ationary universe, �abf is zero if the spatial foliation is determined using the natural time parameter of
the Friedmann�Lemaître�Robertson�Walker (FLRW) metric.
Details of rest frame foliation di¤ers depending on the scale of the physics we deal with as follows:
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� When dealing with relative motion between celestial bodies, and movement of small objects with respect
to celestial bodies, the e¤ective reference foliation is given by minimalizing �s; using gravitational
momenta only. This foliation leads to a curved coordinate system with approximates Schwarzschild
coordinate system near these bodies.

� When dealing with relative motion between atoms in matter the rest frame foliation can be determined
by having electrical �eld in �s to be minimal. In this the foliations are such that they are orthogonal
to the direction of movement of atoms.

� In case of nuclear or sub-atomic particles, the �elds used in �s are those of electric �eld related to
higher gauge theories depending on the situation. In the rest frame foliation the nuclear particles
including quarks more or less are rest in them. Their respective electric �elds I believe they have to
minimal in analogy with the electric �eld of EM theory.

In each of these contexts the translational movement is removed with respect to space-time, and only
relative motion between the particles will be dominant. For example, in the �rst case we only can see
relative motion between bodies in Schwarzschild coordinates. In the second, we are dealing with relative
motion between atoms in a molecular context. In the third we are dealing with relative motion between
sub-atomic particles.
To sum up, these foliations describe pure relative movement between local entities with global movement

suppressed. Both self-time evolution and rest-frame foliation provide for natural evolution and conversion of
mixed density states to pure states, with respect to conjugate momenta of �elds at each con�guration space
or with respect to foliation de�ned by their own movement respectively. In quantum gravity framework 4.0
I will discuss how this is related to consciousness.

3 Derivation of Non-Relativistic Hamiltonians

3.1 Conventional Quantum Evolution in (3+1)D

Let us apply the relative-time evolution formulation in the context of conventional quantum mechanics. Let
us �rst consider the conventional quantum mechanics in 3+1 dimensions. Usually in conventional quantum
mechanics, we have a R4; space-time of four dimensions. One of the dimensions is considered as time. For
example, if q� = (t; x; y; z) are the coordinates, we have t as time variable. Quantum states are de�ned on
a one parameter family of R3 spaces S(t); de�ned by t = constant. To make this perfectly 4D I use the
relativistic Hamiltonian constraint as follows:

H = ���p�p� +m
2 = 0

where ��� = diag(�1; 1; 1; 1) and assume velocity of light c=1.
The naive time-oriented path integral is given by

G(q�1 ; q
�
2 ; p�; d�) =

1

(2�)
3

Z
p�p�<0

exp(ip�dq
�)�(H)�(�p�dq

� � jpjd�)dp�:

This is the naive time-constrained path integral corresponding to equation 5.
Let me properly de�ne the relative-time evolution. Let me denote the points on R4 that is restricted

to S(t) as q�? . This one parameter family of spaces are hyperplanes orthogonal to the curve � de�ned by
q�(�) = (0; 0; 0; �); in the Minkowski metric. S(�) are orthogonal to v� = _q�(�) = (1; 0; 0; 0). Assume we
are dealing with a particle of mass m. So p� = (�1; 0; 0; 0).
Now the relative-time path integral de�ned with respect to � is

Gs(q
�
?1; q

�
?2; �; d�) =

1

(2�)
3

Z
p�p�<0

exp(ip�dq
�
?)�(H)dp�
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In non-relativistic approximation the Hamiltonian constraint is approximately

H � m� pt +
1

2m
p2? = 0

Now the relative-time oriented path integral reduces to

Gs(q
�
?1; q

�
?2; �; d�) =

1

(2�)
3

Z
p?�

exp(ip?�dq
�
? �H?d�)dp?�

where dq�? = q�
?2
� q�

?1
. Here

H? = m+
1

2m
p2?

is the usual Hamiltonian of the particle with the rest-mass included. So I deduced the conventional quantum
mechanical path integral using relative-time formulation with respect to � de�ned by q�(�) = (0; 0; 0; �):

3.2 Bulk Matter

In this section I apply the formalism of relative-time evolution to derive the non-relativistic Hamiltonian to
bulk matter in space. Let us consider a group of atoms, such as in a piece of bulk matter, coupled to each
other through electromagnetic forces, which are �oating in free space. I am going to assume the gravitational
�eld is only due to this matter all the way to in�nity. Let us restrict to the case of non-relativistic speeds
and mass of order of that of Earth or smaller, so that we can make use of non-relativistic and linear gravity
approximation, so that we are in Newtonian regime. To simplify the derivation, I am going to assume the
velocity of each particle with respect to the center of mass of the bulk matter is small compared to the
velocity of the center of mass with respect to an inertial reference frame which I will be using to study the
system.
The Hamiltonian of the bulk matter can be separated into two parts: 1) Hamiltonian relating to the

movement of center of mass of the bulk matter and 2) Hamiltonian due to movement of atoms with respect
to the center of mass of the bulk matter. By de�nition the second part will not contribute to the total
momentum of the system. So, momentum is mostly due to �rst part. So the p� will be e¤ectively from the
�rst part of the Hamiltonian. The second part of the Hamiltonian will take care of the internal evolution of
the system, using the movement of center of mass as time. Consider the Hamiltonian constraints:

(HMatter +HGauge +HGravity) j	 >= 0

Here I am assuming that energy from Quintessence �eld or some other term had cancelled out the en-
ergy contributions from vacuum energies and symmetry breaking due to Higgs mechanism. Without such
cancellation this entire universe will explode due to expansion of space-time due to these energies.
Let me integrate the above equation assuming �at space approximation over a large volume which contains

all the bulk matter at the center of it:

Z
(HMatter +HGauge +HGravity) dV j	 >= 0

We can ignore all the non-linear term from the metric except those comes from derivatives of the spatial
metric. If I restrict the Hilbert space only to few particle states we have the following (please see the appendix
for free particle states).
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 X
i

(mic
2 +

1

2mi
p̂2i ) + ĤTem + ĤLem + ĤTg + ĤLg

!
j	 >= 0

Where V (fxig) is the EM potential energy between the particles, HTem and HLem are Hamiltonians of
transverse and longitudinal electromagnetic �elds and other gauge �elds such as those relating to weak and
strong forces, and, HTg and HLg are Hamiltonians of transverse and longitudinal �eld of gravity. That is
the Hamiltonian constraint reduces to that for non-relativistic quantum mechanics

H(pi�; q
�
i ) =

X
i

(mic
2 +

1

2mi
p2i ) +HTem +HTg +HLem +HLg = 0 (12)

The HTem + HTg are the Hamiltonian terms for electromagnetic and gravitational radiation terms. I
have included them for generality, but we can neglect them. The longitudinal �elds in HLem + HLg need
to be solved from initial conditions directly from the distribution of matter using �rst class constraints.
For electric �eld it comes from gauge constraint div(E) � "0� = 0; which can be easily solved, by setting
E = �grad(�) :

�(q�) =
1

4�"0

Z
V 0

�(q�0)dV 0

jq� � q�0j =
1

4�"0

X
i

e

jq� � q�0j

where the summation is over all the particles, e is elementary charge and r0i are the location of the particles.
Above the spatial distances can be calculated using �at space approximations. Similar, calculations need to
be done for other gauge �elds. For gravity, I will discuss it later in this section.
Assuming the Hamiltonian is of the form in equation (12), let us proceed. Assume we have N particle

of various mass coupled together. Let (pi�; q
�
i ) be the phase space variables for each particle i and mi is

its mass. There are about 3N con�guration and conjugate momentum variables. Assuming the action of
external forces on this N particle system is negligible, the center of mass of this particle system moves on
a straight line with velocity v�cm. This simpli�es the problem. If we assume v

�
cm is much greater than the

velocities of motion due to internal interaction between the particles, our � is approximately a straight line
for each particle. The center of mass of the system is,

Q�cm =

P
imiq

�
i

M
;

Where M =
P

imi:
Lets split the expectation value of velocities of each of the particle into sum of center of mass velocity

and a small correction.

v�i = v
�
cm + �v

�
i

We need to lower the � using the metric for the constrained space mi����
ij , where i and j are the particle

index, and � and � denote the vector index.

vi;� = miv
�
cm +mi�v

�
i

We are going to assume summation over repeated greek indices always in multiplication. Taking the
square using the metric mi����

ij ;

p2 = v2 =
X
i

mi���v
�
i v

�
i �Mv2cm
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X
i

vi�dq
�
i =

X
i

(miv
�
cm +mi�v

�
i ) dq

�
i

� v�cm
X
i

mi (dq
�
i )

= v�cmd

 X
i

miq
�
i

!
= Mv�cmdQ

�
cm

I have ignored the �v�;idq�i as the movement is close to the center of mass of the system. Then the time
constraint can expressed as following for the whole system:

X
i

vi�dq
�
i � v2d� = 0

Mv�cmdQ
�
cm �Mv2cmd� = 0

This is the time constraint expressed in velocity or momentum as shown below:

�v�cmdQ
�
cm � vcmd� = 0

�p�cmdQ
�
cm � pcmd� = 0

So the time constraint basically measures the average movement of the entire system along vcm. So, it
would be good, if we recoordinatize the entire system as in conventional quantum textbook analysis, with
respect to center of mass, and the center of mass movement as bulk variable. This will be done later.
The action now for the system including the time constraint imposed with Langrange multiplier � is as

follows:

S
�
pi�; q

�
i ; N; �;P

cm
� ; Q�CM ; d�

�
=

Z " NX
i=1

pi�dq
�
i �NH � �(�p�cmdQ�cm � pcmd�)

#
; (13)

Now we need to make the center of mass coordinates as one of the variables in the action. Let me de�ne

~q�i = q�i �Q�cm:

which are the locations of the particles with respect to the center of mass.
Now, I have

NX
i=1

mi~q
�
i = 0

using the de�nition of Q�cm: So the ~q
�
i are not independent. So I just choose ~q

�
i of N � 1 particles and Q�cm

as the new free variables. I consider the ~q�N dependent upon these free variables, using the last equation:

~q�N = �
N�1X
i=1

�
mi

mN

�
~q�i

Now using this, I have:

14



NX
i=1

pi�dq
�
i =

N�1X
i=1

~pi�d~q
�
i + P

cm
� dQ�cm

where ~pi� and P
cm
� , are the new conjugate momenta, related to the old variables by

~pi� = pi� �
mi

mN
pN�

P cm� =
NX
i=1

pi�:

Now, we have the action simplify as follows:

S
�
~pi�; ~q

�
i ; P

cm
� ; Q�CM ; N; �;P

cm
� ; d�

�
=

Z "N�1X
i=1

~pi�d~q
�
i + P

cm
� dQ�cm �NH � �(�p�cmdQ�cm � pcmd�)

#
; (14)

with the Hamiltonian as a function of new variables

H(~pi�; ~q
�
i ; P

cm
� ; Q�cm) =

1

2M
P 2cm +Mc2 +

N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem +HLg

where with i takes values between 1 to N�1. In deriving this, I have neglected the kinetic energy contribution
from the N th particle assuming it is small compared to the total kinetic energy. Also, the potential energies in
interaction Hamiltonians now dependents on ~q�i (gravitational potential energy will be discussed later). Since
these the potential energies depend on di¤erences between the qi, replacing non tilde�s by tilde�s variables
makes no di¤erences.
The dominant momentum contribution comes from the center of mass movement. Assuming three are

no external forces this velocity is constant and our analysis simpli�es. Since the center of mass is moving at
the speed of �v�cm; I set

dQ�cm = v
�
cmdT

Then we have from the time constraint

dT = d�

Solving the time constraint and putting back the result in the action gives

S
�
~pi�; ~q

�
i ; P

cm
� ; Q�CM ; N ;P

cm
� ; d�

�
=

Z "N�1X
i=1

~pi�d~q
�
i + Pcmd� �NH

#
;

where

Pcm= �v
�
cmP�cm

Now the Hamiltonian constraint is
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1

2M
P 2cm +Mc2 +

N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem +HLg = 0

Let us now discuss the expansion of HLg. The gravitational Hamiltonian constraint without the Kinetic
term for longitudinal �elds is

HLg = cg

Z
R
p
hd3x

where cg = c4

16�G in SI units.
In this I have dropped the kinetic term for longitudinal �elds because its contribution is small for our

non-relativistic case with masses such as about the size of Earth or smaller than that. For the spatial metric
this approximates as

hab = �ab + 2
�

c2
�ab

where � is the gravitational potential in SI units satisfying

@2� = 4�G�

where � is the mass density equivalent of energy density. The HLg terms that are �rst and second order are
as follows (using maxima):

HLg = cg

Z �
�4 1

c2
@2�+

1

c4
2@c�@

c�

�
d3x

For non-relativistic and weak �eld gravity, we know thatZ



@2�d3x = 4�GMTotal

where MTotal is the mass equivalent of energy contained within region of integration 
. The second term in
HLg contains the gravitational potential energy:

Vg =
1

8�G

Z
@c�@

c�d3x

' �1
8�G

Z
�@c@

c�d3x

=
�1
2

Z
��d3x

where � is the mass density equivalent of energy density contained in the region, and I have used integration
by parts in the derivation in the second step. By including HLg terms, now I can rewrite the Hamiltonian
constraint as follows:

1

2M
P 2cm +Mc2 +

N�1X
i=1

1

2mi
~p2i + Vg +HTem +HTg +HLem =Mtotalc

2
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The terms on the both sides are positive. Now one can make sense of this equation as the energy
conservation equation from any textbook of physics. Mtotal can decrease only due to radiation terms HTem+
HTg; if the radiation leaves the surface of integration. But if we make sure that surface is very far from the
system such that radiation stays within the system during our period of analysis, the total on the left-hand
side is a constant.
We can express

MTotalc
2 =Mc2 +

P2cm0
2M

:

Here P2
cm0

2M is the mean kinetic energy due the center of mass movement. Now I can rewrite the equations as
follows:

P 2cm = P
2
cm0 � 2M

 
Vg +

N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem

!

We can solve the Hamiltonian constraint for Pcm, assuming the terms in the bracket are very small
compared to P2

cm0

2M .

Pcm =

vuutP2cm0 � 2M
 
Vg +

N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem

!

� Pcm0 �
M

Pcm0

 
Vg +

N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem

!

Substituting this back in action I get

S
�
~pi�; ~q

�
i ; P

cm
� ; Q�CM ;P

cm
� ; dT

�
=

N�1X
i=1

pi�dq
�
i + Pcmd�

=
N�1X
i=1

pi�dq
�
i �

M

Pcm0

 
N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem + Vg �

P 2cm0
M

!
d�

=
N�1X
i=1

pi�dq
�
i �

 
N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem + Vg �

P 2cm0
M

!
dT

from which we have, ignoring the constant terms,

H(~pi�; ~q
�
i ) =

N�1X
i=1

1

2mi
~p2i +HTem +HTg +HLem + Vg �

P 2cm0
M

(15)

where dT = Md�
Pcm0

is rescaled time measured in terms of distance of movement of center of mass. The term
in the bracket contains the non-relativistic Hamiltonian. Now I have recovered the textbook non-relativistic
Hamiltonian, with an extra constant term of (�P2

cm0

M ):
In this section I assumed that we had one bulk body made of many small particles. We can generalize

the analysis to many bulk bodies. Assume we have M bodies. This could be like a planetary system or star
system. Similar to the last subsection assume that we have an inertial reference frame to study our entire
bulk body system. So now we can do similar calculations like we did in this subsection. Let us assume
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there are large distances between the bulk bodies so that the Newtonian gravitational in�uences are small
between each other. In such case we integrate over a separate large region containing each bulk body to get
a constraint equation for each of them. But the left-hand side will not be a constant as the bulk bodies will
be interacting with each other. To get constant we need integrate over the entire space until in�nity as we
did before. We can do similar analysis, and e¤ectively reduce the Hamiltonian to a form in equation (15),
but with the ~pi�; ~q

�
i are coordinates of center of mass of the bulk bodies with respect to the center of mass

of all bulk bodies. This is a typical calculation for which standard textbook Newtonian analysis is enough.

3.3 Field Theory Dynamics

Let me illustrate the application of the time constraint based path integral in the �eld theory context. I
show how a standard quantum mechanics of a small system can be studied using time variables derived from
the macroscopic environment in which it is a part of. Let me split the space into two regions 1) 
 2) �
 . The
microsystem is considered as a quantum system. It lives in a small region described by 
 . �
 is the rest of
the universe considered as the macroscopic environment. An example of this situation could be a molecule
or an atom living in the gravitational �eld of the Earth.
Let (�; �) are conjugate variables of the microscopic system under study. Let the macroscopic environ-

ment is de�ned by macroscopic �eld variables (�;�) for simplicity.
Let the Lagrangian density of the system in the region 
:

L
dt = �d�+ �d��NH�(�;�)dt�NH�(�; �;�)dt

Here I assume Hamiltonian of H� depends on the macroscopic variable �. Since ( �; �) is microscopic,
it has no impact on (�; �) in the region. Since 
 is small, (�; �) in this region is mostly determined by
con�guration of the �elds in �
; the rest of the universe. In 
; let classical expectation values (��;��) is the
approximately constant value of (�;�); as determined by classical equations in rest of the universe.
Let me assume the �eld metric for the macroscopic �eld is simply equal to 1. Then we have

d�

dt
= N�

Assuming �� is not zero, the momentum of the combined system is dominated by ��. Lets impose the
following time constraint:

d� = N ��dt

Now

Ndt =
d�
��

This constraint will �x the lapse. Now the Langrangian is as follows:

L
dt = ��d�+ �d��H�(��; ��)
d�
��
�H�(�; �; ��)

d�
��

Now � serves as the time variable. To see this explicitly, let us de�ne

d� =
d�
��
= Ndt

Then I have
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L
 = �d��H�(�; �; ��)d� �H�(��; ��)d� + ��
2d�

Here �H�(��; ��)d� + ��2d� is just a number. The dynamical part is contained in �d� �H�(�; �; ��)d� .
The Hamiltonian is

H =

Z



�
H�(�; �; ��)�H�(��; ��) + ��2

�
dV:

We have the Schrödinger equation that controls the evolution of (�̂; �̂) in 
;

i
@

@�
j	 >=

�Z



�
H�(�̂; �̂; ��)�H�(��; ��) + ��2

�
dV

�
j	 >

Let me generalize the formalism to the vectorial case, assuming ( �; �) and (�; �) are vectorial, denoted
by ( �i; �i), (�a; �a). Assume we have a constant classical expectation value ��a in the region 
 for �a.Then
I can split �a into two parts: �k and �a? ,where �k is the momentum along ��a and �a? is momentum in
the space orthogonal to ��a. For doing this calculation, we need to use the supermetric de�ned in the kinetic
part of the Hamiltonian. Similarly I split the �a into two components. Then the new Langrangian density
is given by

L
dt = �id�
i + �id�

i �NH�(�a;�
a)dt�NH�(�i; �

i;�a)dt

� �kd�k +�?ad�
a
? + �id�

i �NH�(�?a;�
a
?;
��k; ��k)dt�NH�(�i; �

i; ��a)dt

Here we may have to treat (�?a;�a?) as quantum variables, as �?a is zero initially and so the these
variables are small.
Let me assume the �eld metric for the macroscopic �eld is simply �ab. Then I have

d�a

dt
= N�a

Imposing the time constraint:

d�k = N ��kdt

we can reduce the Langrangian density to

L
dt = �id�
i +�?ad�

a
? �H�(�i; �

i; ��a)d� �H�(�?a;�
a
?;
��k; ��k)d� +�

2
kd�

The Hamiltonian is

Ĥ =

Z



�
H�(�̂i; �̂

i
; �̂a?; ��k)�H�(�̂?a; �̂

a
?; ��k; ��k) + ��2k

�
dV (16)

3.4 Problem Solving Method: Overview

Here is a general idea how to deal with the universe in the relative-time formulation.
1) Right before or after the big bang the scale parameter acts as time as it has the dominant momentum

contribution. But the e¤ect of other �eld variables need to be studied. We can use Hamiltonian formalism
deduced from quantum framework 2.0 summarized in this paper. Right at the big bang we cannot use the
Hamiltonian formalism as it has an inverse scale factors which is zero. But the Langrangian formalism can
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be used. The Langrangian formulation of decoherence is discussed in the next revision: quantum gravity
framework 3.0.
2) After the big bang, with formation of bulk matter we can use the movement of matter to measure

time, when there is non-relativistic and linear gravity approximation.
3) In case of black holes where there is continuous in-�ow of matter, the mass of the blackhole continuously

grows. Acts as a clock. In the spherically symmetric case the gravitational metric is determined by mass
and distance from center. Here we can use mass to describe the �ow of time at a particular distance from
the center. This time would be non-linear as the �ow of matter into black hole is chaotic. At the singularity
we cannot use Hamiltonian formalism as the metric is zero. But we can use the Langrangian formalism
(quantum gravity framework 4.0).
3) Even if there is no bulk movement of matter, but the electromagnetic and other quantum �elds change,

they can be used as time using the modi�ed path integral formalism. This method can be used for the entire
universe. The �rst three cases are special cases of this. This has been described in the last section.

4 Conclusion

In this paper I simply reviewed and updated the quantum gravity framework 2.0, into quantum gravity
framework 3.0. The Hamiltonian formulation of quantum difussion formulation is not consistent with the
Langrangian formulation of the other parts of the framework. So further development of the framework
will be done in the quantum gravity framework 4.0. We have used the time constraint formalism to get the
conventional non-relativistic Hamiltonian. Also, I have discussed the �eld theory formulation of getting the
conventional Hamiltonian. We need to do further development of this approaches to discover new e¤ects that
can be experimentally studied. This will give directions for further development of the framework. Quantum
gravity framework 4.0 which is a major update of this paper is available along with his paper.

Appendices

A Non Relativistic Quantum Mechanics

Consider a locally �at space-time. Let us derive particle physics from quantum �eld theory. This
derivation is available in many of the textbooks. Let us consider the scalar �eld theory. The notation used
are of standard notations, with ay and a denoting the rising and lowering operators either in momentum (p)
or position space (x) depending on the arguments. Let us �rst focus on single particle system.

j	i =

Z
	(p1) jp1i d3p1

=

Z
	(p1)a

y(p1)d
3p1 jOi d3p1

where jOi is the ground state. The Hamiltonian for this system

Ĥ =

Z
(ay(p)a(p) +

1

2
)~!(p)d3p =

Z
(ay(p)a(p))~!(p)d3p+ E0
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where E0 is the ground state energy.

Ĥ j	i =

Z
((ay(p)a(p))ay(p1))~!(p)	(p1)d3p1 jOi d3p

=

Z
~!(p)	(p)ay(p) j0i d3p+ E0 j	i

=

Z
~(m+

1

2m
p2)	(p) jpi d3p+ E0 j	i

=

Z
1

2m
p2	(p) jpi d3p+ (E0 +m) j	i

=

Z
1

2m
p̂2	(x) jxi d3x+ (E0 +m) j	i
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