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Abstract

The purpose of this article is to outline a framework of concepts and principles to combine quantum
mechanics and general relativity so that time and measurement (reduction) are present as integral parts
of the basic foundations. First, the problem of time in quantum gravity and the measurement problem in
quantum mechanics are brie�y reviewed and the popular proposals to tackle these two problems are brie�y
discussed. Next, on the already known foundations of quantum mechanics, a framework of principles of
dynamics is built: 1) Self-Time Evolution - Newtons �rst law is reinterpreted to de�ne time, 2) Local
Measurement by Local Reduction - Quantum di¤usion theory is adapted, and 3) Global Evolution by
Global Reduction. Ideas on how to apply the framework to study quantum general relativistic physics
are discussed. Further, more general and modi�ed forms of some of these principles are also discussed.
The theoretical elements in the framework to be made concrete by further theoretical and experimental
investigations are listed. Revision information is included.

�Please note that this version will be shortly followed up by version 2.0, which is more advanced,better worked out and
conceptually somewhat di¤ erent. We refer to www.qstaf.com for further discussions. Updates regrading this research will be
made available at twitter.com/qstaf. The o¢ cial website for this research is www.qstaf.com. and the author can be contacted
through the website.
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1 Introduction and Brief Review2

Quantum mechanics and general relativity are two great theoretical developments of the last century. Both
of them have enormous experimental support; Yet, both are incomplete. Each of them leaves open to
interpretation one important conceptual foundation in their theoretical framework: measurement (reduction)
in quantum mechanics [1] and time in (quantum) general relativity. This has left the quest for unifying
quantum mechanics and general relativity in a di¢ cult state. There are many di¤erent proposals to tackle
these two problems and cure the incompleteness in both the theories. My goal in this article is to propose
a framework of concepts and principles for quantum general relativity, such that it 1) has time (dynamics)
and measurement (reduction) as integral parts of the basic foundations, 2) is simple and intuitive, 3) has
proper physical motivation, 4) is based on simple scienti�cally established notions and concepts, and 5)
makes minimal assumptions.
Primarily this article is intended to address the issues of time and measurement in quantum general

relativity. But, I also discuss brie�y the established notions in quantum physics in an axiomatic form so that
we have a complete framework of principles for the Planck scale physics3 .
We follow the following conventions in this article:

Convention 1: In any integral, the variables over which the integration is done is same those used in the
measure placed in the right most end of the integral, unless explicitly indicated otherwise.

Convention 2: Summation is assumed for all repeated Greek indices in the explicit elementary products of
the basic variables of the theories discussed.

Convention 3: In the di¤erential measures of the integrals, the multiplication over all the su¢ xes and the
pre�xes is assumed, for example dx�dy mean

Q
�;

dx�dy .

Convention 4: For functions with arguments that have su¢ xes, pre�xes, and parameters: The function
depends on all the collection of the arguments for all di¤erent values of the su¢ xes, the pre�xes and the
parameters. Example: f(x� (t); y�) = f(X), where X = fx� (t); y� ; 8�; �; ; tg:

Convention 5: No other summation or multiplication of repeated indices is assumed other than those de�ned
in conventions 2 and 3. Examples: 1) there no summation in f�(x

�; y�), the three ��s are independent, 2)
(p��x� + f�(x

�; y�))dx
�dy� = (

P
�
p��x� + f�(x

 ; y�))
Q
�;" dy�dx

".

Convention 6: It is assumed that �h = c = G = 1, unless speci�ed.

1.1 Quantum Mechanics and Measurement

Let me brie�y review the measurement problem in quantum mechanics. Consider a quantum mechanical
system S. Let q̂ be an observable of the system S to be measured. Let an observing instrument O be setup
to measure q̂: During measurement, S interacts with the quantum variables of O due to the presence of
the interaction terms in the total Hamiltonian of O + S. Let j	0S > and j	0O > are the normalized initial

2Please note that there is an updated version of this paper 2.0 will be made available shortly.
3Revision comment: This paper has new ideas mixed with old ideas that are well known to physicists. So please be aware

that one can easily miss the new ideas. In the next revision of this version of quantum framework this problem will be �xed.
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quantum states of S and O respectively. Let j	0S >=
X
q

	0S(q)jq >; where q is an eigenvalue of q̂. The

initial state of the combined system is

j	0S > 
j	0O >= (
X
q

	0S(q)jq >)
 j	0O > :

During measurement, the quantum state of S+O, j	 >, evolves according to the time dependent Schrödinger
equation:

i�h
d

dt
j	 >= HS+Oj	 > . (1)

During this evolution, due to the interaction, the initial state is transformed into a superposition of macro-
scopic states of the form

P
q 	S(q)jq > 
j	qO >, in which the j	qO >�s for the di¤erent q�s are macroscop-

ically distinguishable from each other. The Copenhagen interpretation of quantum mechanics tells that in
the �nal step of the quantum measurement the superposed quantum state collapses to 	S(q)jq > 
j	qO >

with probability j	S(q)j2. The quantum measurement problem is to explain how the superposed stateP
q 	S(q)jq > 
j	qO > randomly collapses to 	S(q)jq > 
j	qO > an eigenstate of q̂ for the eigenvalue q.

This is also referred to as the quantum reduction of the superposed state.
To better understand the measurement process, we need to include the conscious observer C who observes

the result of the measurement and the rest of the universe �U (in the Newtonian Sense) with the initial
quantum states j	0C > and j	0�U > respectively. Let U be the entire universe with the quantum state j	U >.
The (approximate) initial state of the entire universe j	0U >= j	0S > 
j	0O > 
j	0C > 
j	0�U > evolves by
the Schrödinger equation into a superposed state of the universe j	U >=

P
q 	S(q)jq > 
j	qO > 
j	qC >


j	q�U >. In the �nal step of the measurement (or the human observation) this superposition collapses

into j	qU >= 	S(q)jq > 
j	qO > 
j	qC > 
j	q�U > with the probability j	S(q)j2.The ignorance about
this quantum reduction process has spawned many proposals. Let me discuss a typical few of the popular
proposals, and the good points and the problems with them.
1) The many world theory [2]: In the sum j	U >=

P
q 	S(q)jq > 
j	

q
O > 
j	qC > 
j	q�U >, each term

for di¤erent q is assumed to be representing a di¤erent universe (world). So the universe represented by
the quantum state j	0S > 
j	0O > 
j	0C > 
j	0�U > evolves into a superposition of the many universes
corresponding to the di¤erent eigenvalues of q̂, and the observer jumps into one of these universes with
probability j	S(q)j2. It is assumed that the collapse or reduction of superposition never happens. The
critical problems with this theory are: 1) it does not explain exactly when the jump happens and 2) how
to split the universe into the observer and the rest of the universe. The many world theory needs to be
considered more as a philosophy rather than physics.
2) The GRW collapse theory [5]. In this spontaneous collapse of the wavefunctions of particles is proposed.

Even though the probability of each particle to collapse is proposed to be very small, since there are always
very large number of particles in any macroscopic quantum system, few of these particles always collapse in
any instant. Due to the quantum entanglement with the rest of the system, they collapse the entire system.
3) The orchestrated reduction theory by Penrose and Hamero¤ [3]: This theory is based on the idea that

the presence of the quantum superposition of di¤erent macroscopic states of gravity disturbs the �ow of
time; so the macroscopic superposition collapses itself. An estimate of the time for the collapse or reduction
of the superposition is given in terms of the mass of the superposing system. Consciousness is proposed to
be related to the collapse phenomenon. These set of ideas are rich in insights, and a systematic theory needs
to be developed.
4) Decoherence theories [4], [18]: In these theories the universe is divided into two parts: the quantum

system to be studied and the environment. The pure density matrix j	U >< 	U j describing the universe is
traced with respect to the environmental degrees of freedom. The resulting mixed density matrix is considered
to describe a statistical ensemble of the quantum system. It describes the continuous probabilistic evolution
of the quantum system, instead of sudden collapse. Decoherence theories need objective criteria for dividing
the universe into a quantum system to be measured and the environment.
5) Quantum di¤usion theory [6]: In this theory, the time-dependent Schrödinger equation is modi�ed

to include stochastic terms, and terms that remove superposition (both of which I will discuss later in this
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article). The wavefunction evolves continuously, but also stochastically, gradually undergoing reduction
or semiclassicalization, without any sudden collapse. Presence of these terms makes the evolution of the
wavefunction to reproduce the Copenhagen probabilistic reduction.
In this article, I will build on the philosophical and the technical insights in all these ideas, and the

dynamical equation in the last proposal.

1.2 Classical General Relativity and Time

The nature of time has been debated right from the antiquity. Great progress has been made in physics
in understanding the nature of space and time, but deeper questions still persist. Let me assume that an
observer is a �nite entity that records events happening around it in space and time.
In Newtonian physics, time and space are absolute. Newton assumes the space is rigid, three-dimensional,

Euclidean, and there is a global time parameter t which at a given instant is same at all points of the universe
and for all the observers. Space is also absolute, meaning the 3D length between any two points is same as
observed by all the observers. Dynamics of the particles or/and the �elds on the manifold is described in
terms of the absolute space-time coordinates.
In special relativity space and time are merged into a four dimensional pseudo-Euclidean space. There

is one 4D space-time reference frame corresponding to each observer, and the transformation between any
two of them is given by the Lorentz transformation or more generally the Poincare transformation. This
makes time observer dependent. Then the reality observed by an observer is just one way to observe the
universe and is generally related to that of the other observers by the Poincare transformation. The common
physical information between the description of the various reference frames are the invariants such as the
pseudo-Euclidian scalar product, the Cassimer Invariants and other conserved quantities.
In general relativity, the time and space split of 4D space-time manifold is highly arbitrary: because

of general covariance, any smooth decomposition of the four dimensional space-time manifold into a one
parameter family of spatial hypersurfaces is equally acceptable. For example, an observer can choose a one
parameter family of hypersurfaces such that he is at rest in it. The parameter plays the role of the time
coordinate.
The quantum measurement that we discussed in the last section is observer dependent as the entire

measurement theory is formulated on the combined system made of the quantum system whose observable
is to be measured, the observing instrument and the observer. The observer dependence in relativity and
quantum mechanics has spawned many relational theories such as the relational quantum mechanics [9] and
the relational particle mechanics [8]. The relational nature of reality is really common sense: Every entity
observes the universe with respect to itself. But this does not explain why all the entities in the universe
undergo temporal evolution. Relational theories do not answer this question. More interestingly there are
proposals that time itself is not real [10]. But, every one clearly knows that time exists because he can
measure it with his wristwatch and feel its �ow. The purpose of science is to explain the observational
reality and time is real in this context. So any theory that claims time does not exist is a philosophy, or by
time they mean something else that is not related to the common sense time.
We need to observe two critical ideas from Einstein�s relativity. First, in classical general relativity one

can always choose any particular choice of sequences of spatial hypersurfaces to describe physical phenomena.
But not all choices are sensible to describe the universe. For example, in cosmology, time is de�ned based
on the �ow of the events on the space-time manifold globally such as the expansion of the universe. In
this respect, the cosmological time is absolute like in the Newtonian theory, and is objectively based on the
physical processes happening on the space-time manifold. Second, an observer doesn�t have direct access to
the physical processes at a distant point. So the reality observed by him is actually a picture painted to
him by the information that traveled through space and time as disturbance in the physical �elds. So, it is
subjected to the many symmetry properties and other transformations associated to the space-time manifold
and the internal space of �elds. We can put these two points together. As space-time itself is built on the
physical processes associated with the metric �eld, an objective time is to be based on the physical processes
and quantities associated with the metric and the other physical �elds living on the underlying 4D manifold.
So in this article we will try to formulate a general concept of global �ow of time based on the quantum
physical processes happening on the 4D manifold.
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1.3 The Problem of Time in Quantum Gravity

Advanced readers can skip this section.
When one tries to work out the quantum formulation of general relativity, one faces a series theoretical

block referred to as the problem of time as a consequence of general covariance (coordinate independence).
Let me review this now.
Let S be the total action corresponding to the �elds on the space-time manifold M without including

general relativity for now:

S =

Z
Ld4x;

where the L is the corresponding Lagrangian density and the xa are the space-time coordinates.
To get the Hamiltonian formulation, we assume the topology of the space-time manifold is R
 S; where

S is a smooth 3D manifold. The space-time manifold is foliated by a one parameter family of spatial hyper-
surfaces �(t) of topology S, parametrized by a (time) parameter t. Now, let xi be the (spatial) coordinates
on the 3D hypersurfaces. We go to the Hamiltonian formulation using the Legendre transformation. For
this, usually, formally, we rewrite the Lagrangian and an action as follows:

L(p�; q
�; t) =

Z
�(t)

(
X
�

p� _q
� +H(p�; q

�; t))d3x ; S(p�; q
�) =

Z
Ldt; (2)

where the q� and p� are the collection of the con�guration variables and the corresponding conjugate
momentum variables (one set for each point of the manifold) of the �elds and H is the Hamiltonian density.
Usually H involves constraint terms Ck,

H = H0(p�; q
�; t) + �kCk(p�; q

�; t); (3)

where the �k are the Lagrange multipliers, and the H0 is the non-constrained part.
Usually the variational analysis leads to the Hamilton equations of motion. For any observable F (q�; p�);

a function of the variables q� and p�; we have,

dF

dt
= fF;Hg;

C� = 0;

where the brackets are the Poisson brackets de�ned by

fA;Bg = @A

@q�
@B

@p�
� @B

@q�
@A

@p�
:

In particular for q� and p� we have,

fq�(x); p�(x0)g = ����
3(x� x0);

and the equations of motion are

dq�

dt
=

@H

@p�
; (4)

dp�
dt

= � @H
@q�

:

Dirac has formulated the way to go from the classical Hamiltonian formulation to the quantum mechanical
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formulation [11]:

[q̂�(x); p̂�(x
0)] = i�h����

3(x� x0); (5)

Ĉk j i = 0; 8k;
[F̂ ; Ĉk] = 0; 8k;

i�h
d

dt
j i = Ĥ0 j i ;

i�h
dF̂

dt
= [F̂ ; Ĥ0];

where �h is the Planck constant. In these equations,

� the classical variables have become linear operators on the Hilbert space of quantum states,

� the Poisson brackets have been replaced by commutators,

� Ck have become quantum constraint operators Ĉk,

� the physical states are to be annihilated by Ĉk 8k, and

� the physical observables are supposed to commute with Ĉk 8k.

The Ck are usually the generators of the gauge transformations associated with the theory. The Ĉk j i = 0
and [F̂ ; Ĉk] = 0; 8k mean that the physical states and operators are gauge invariant.
Let us now add general relativity to the analysis. In the rest of the article we assume �h = c = G = 1;

unless stated. The action can be split into the matter (su¢ x m) and the gravitational (su¢ x g) parts:

S = Sg + SM =

Z
Lgd

4x+

Z
Lmd

4x

=

Z p
�gRd4x+

Z
Lmd

4x; (6)

where the R is the space-time curvature. The Hamiltonian formulation of general relativity is given by the
ADM formulation [15]. Usually in the theories that do not assume �xed metric the variational analysis leads
to the Hamilton equations with clear dynamics, both in the quantum and the classical level. But once we
allow full gravitational dynamics, as in the ADM formulation, H0 becomes zero and H is simply a linear
combination of constraint terms:

H =
X
k

�kCk: (7)

This is not a problem in case of the classical analysis, the Hamilton equations clearly leads to dynamics.
But in case of the quantum formulation, Ĥ is supposed to be zero on its action on the physical quantum
states, as it is a linear combination of Ĉk which are supposed to be zero on their action on them. There is
no dynamics! This is called the problem of time in quantum gravity which has lead to numerous conceptual
speculations (recently reviewed in ref. [14]).
It is surprising that when we use the Dirac�s procedure for quantization for general relativity, time

evolution exists in the classical level, while it disappears in the quantum mechanical level. The explanation
for this is that at the classical level _p� and _q� depend on the derivatives of the Ck (with respect to p�
and q�); and Ck are constrained to zero independent of these dynamical equations. So _p� and _q� do not
disappear. But in quantum mechanics Ĥ is supposed to be zero in its action on j i. So d

dt j i is supposed
to be zero. And, for any observable F̂ , we can show that d

dt < F̂ >= 0. All these suggest that the Dirac
quantization procedure leads to no dynamics for quantum gravity.
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In the ADM formulation the Hamiltonian density is,

Hg = NHN +N
�D�; (8)

where the HN is called the Hamiltonian term and D�, the di¤eomorphism terms. These are the generators of
space-time di¤eomorphisms. Constraining these two to zero has the obvious physical interpretation that the
physical state of system must not change under the (small) di¤eomorphisms of the space-time coordinates.
Since the lapse N relates to time scaling, HN is called the Hamiltonian term. The problem of time is to
extract dynamics from its constraint equation, which is referred as the Wheeler-Dewitt equation [13]:

HN j i = 0: (9)

To better understand the problem of time, let me �rst discuss the path integral formulation of a 0 + 1
dimensional theory (a single point and one time dimension) with no constraints. Let p� and q� be the
conjugate momenta and the con�gurational variables respectively, and d be the dimension of the con�guration
space. Then the Lagrangian can written as,

L(p�; q
�) = p� _q

� �H: (10)

Let me assume that the time variable t is discretized into a sequence of values, with consecutive values
separated by a small interval �t. We can evolve the quantum system through a sequence of steps correspond-
ing to each of these intervals. If  (q�) and  0(q0�) are the wavefunctions corresponding to two consecutive
intervals then they are related by the single-step propagator G(q�; q0�;�t):

 0(q0�) =

Z
G(q�; q0�;�t) (q�)dq�:

From the path integral formulation of quantum mechanics, the single-step propagator for each interval is,

G(q�; q0�;�t) =
1

(2�)
d

Z
exp(iL(p�; q

�)�t)dp�

=
1

(2�)
d

Z
exp(ip��q

� � iH(q�; p�)�t)dp�; (11a)

where �q� = q0� � q�.
Now, let us study the Feynman�s derivation of the Schrödinger equation from the path integral formula-

tion:

 0(q0�) =
1

(2�)
d

Z
exp(ip��q

� � iH(q�; p�)�t) (q�)dq�dp�: (12)

In this exp(�iH�t) � (1� iH�t) for a �nite H and a small �t;

 0(q0�) � 1

(2�)
d

Z
exp(ip��q

�) f1� iH(q�; p�)�tg (q�)dq�dp�: (13)

Let the Hamiltonian be second order in the momenta, and all the q�s are to the left of the p�s:Then in the
above expression, H(q�; p�) can be replaced by H(q�; @

i@q�
) as follows:

8



 0(q0�) � 1

(2�)
d

�
1� iH(q0�; @

i@q0�
)�t

�Z
exp(ip��q

�) (q�)dq�dp� (14)

=

�
1� iH(q0�; @

i@q0�
)�t

�
 (q0�): (15)

This derivation works straight forward in non-relativistic quantum mechanics leading to the usual Schrödinger
equation.
Now consider an action like in quantum gravity in which the Hamiltonian is constrained:

L(p�; q
�; N) = p� _q

� �NH(p�; q�):

Now the path integral also has a sum over lapse,

 0(q0�) =
1

(2�)
d+1

Z
exp(ip��q

� � iNH(p�; q�)�t) (q�)dNdq�dp�

=
1

(2�)
d

Z
exp (ip��q

�) �(H(p�; q
�)) (q�)dq�dp�: (16)

In quantum gravity the approximation exp(�iH �t) � (1� iH�t) cannot be done, because the exponent
exp(�iH �t) is to be replaced by �(H) due to the sum over the lapse N . The one-step propagator is

G(q�; q0�;�t) =
1

(2�)
d

Z
exp(ip��q

�)�(H(q�; p�))dp�: (17)

We see here that the �t term is absent in the right hand side. So the propagator is a function of the
con�gurational variables only:

G(q�; q0�) =
1

(2�)
d

Z
exp(ip��q

�)�(H(q�; p�))dp�: (18)

This form of the propagator is what is to be expected. This is because t is a coordinate variable, it can be
changed by an arbitrary (smooth) rescaling of the lapse (time di¤eomorphism). So the physical evolution
should not depend on it. Practically we read time by reading observables, for example the position of a
clock�s needles. The q�s are the most basic observables and so the physical time has to be extracted from
them, for example, assuming that one of them acts as an internal time variable. But, this way of choosing
the time variable is arbitrary and subjective. We need a more objective way to choose the time variable,
which I will discuss in next section.
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2 A Framework of Principles

In section 1:1; I have reviewed the various existing proposals for solving the measurement problem. In
section 2.1, I concluded that an objective time needs to be formulated based on the quantum physical
processes happening on the 4D manifold. Based on these two, I will propose a framework of three di¤erent
principles each of which de�nes a concept, to address the issue of time and measurement (reduction). These
principles can be tested experimentally and so are falsi�able. As stated in the last section, we will assume
�h = c = G = 1; unless explicitly speci�ed.
In this section I discuss a list of principles each of which either de�nes a concept or is de�ned based on

a concept. First I brie�y review the basics of statical foundations of quantum theories. Next, I elaborately
discuss the principles of dynamics. Later in the article, I also brie�y introduce a generalized and modi�ed
form of the principles of dynamics as an alternative.

2.1 Principles of Quantum Kinematics: A Very Brief Review

First we de�ne a set of principles so that we have the proper kinematical background to study dynamics.
These ideas are simply the basic principles used in studying quantum without the Schrödinger Hamiltonian
equation. Let me list the set of three principles. An entity of a reality can be considered as made of a group
of interacting elementary quantum system.

Principle 1.1: To each elementary quantum system of a physical object is associated a physical con�guration
space.

Now the physical con�guration spaces di¤ers between various theories used in physics. Usually the
physical con�guration space is de�ned by a simple kinematic con�guration space divided by symmetry
groups. In non-relativistic quantum mechanics it is just a vector space of position. In gauge �eld theory its
a complex vector space reduced by gauge symmetries. In quantum gravity it is the space of metric tensor
�elds reduced by di¤eomorphisms.

Principle 1.2: The quantum state of a physical object is an element of the Hilbert space on the physical
con�guration space.

This means the states are complex functions on the con�guration space; they are considered as vectors;
there are sesquilinear scalar product and Hermitian conjugation de�ned. The bra and ket notation can be
de�ned as usual.

Principle 1.3: The quantum variables are operators on the Hilbert Space.

Most important quantum variables referred to as the observables are the linear operators that are invariant
under Hermitian conjugation. Here we do not assume as fundamental the Copenhagen interpretation that
observations collapse the state of a system to an eigenstate of the observable to be observed. It will be an
emergent concept in our framework, which will be discussed in the next subsection.
Position and momentum quantum variables can be de�ned as usual in quantum mechanics, which are

usually the most basic variables of the theory. Just consider a simple quantum system, with the basic
conjugate variables q�x and p�;x and the commutator [q

�
x ; p�;x0 ] = ����(x

0 � x). The theory is built on the
Hilbert space of the square integral functions  (q�x )of the variables q

�
x , where the basic variables become

operators:

q̂�x (q
0�
x ) = q0�x  (q

�
x ); p̂�;x (q

0�
x ) =

1

i

@

@q0�x
 (q0�x ): (19)

Usually reducing the kinematical con�guration space by symmetry groups to get the physical con�g-
uration is di¢ cult. Formally, the states and the variables can be subjected to projectors to remove the
redundancy due to symmetries. They can be directly applied on the kinematical Hilbert space and the
operators F (q̂�x ; p̂

�
x) to get to the physical Hilbert space and the physical operators:
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 phxs(q
�
x ) = Ô (q�x ); F̂phxs = ÔyF (q̂�x ; p̂�;x)Ô; (20)

Ô =
Y
i

Ô(Ĉi): (21)

where Ô(Ĉi)�s are the projectors relating to the constraints Ĉi (excluding the Hamiltonian constraint). For
example, the action of Ô(Ĉ) on a state j~ > for a constraint Ĉ can be formally de�ned as follows:

j~ >= 1

2�

Z
exp(ixĈ)dxj >; Ô(Ĉ)j >= j~ >

< ~ j~ >
: (22)

The gauge invariance removes the redundancies due to the internal symmetries of the �eld equation. The
di¤eomorphism invariance relates to invariance under the change of spatial coordinates. Physics tells us that
reality should be gauge and di¤eomorphism invariant.

2.2 Principles of Quantum Dynamics

The principles of quantum dynamics discussed here applies to the theories that are constrained by the Hamil-
tonian constraint only. The other constraints (gauge and di¤eomorphism) are applied on kinematic evolving
states using projectors, as discussed in the last subsection. I assume that the metric in the con�guration
space is positive de�nite unless speci�ed.

2.2.1 Self-Time Evolution

Consider4 a simple quantum system which is described by a Hamiltonian constraint only. Let the canonical
variables be p� and q�; and d is the dimension of the con�guration space. Let s�� , a function of q�; is the
metric in the con�guration space. Hereafter I will use s�� and its inverse s��(assuming it exists), to raise
and lower indices. Let me de�ne a scalar product using the metric:

< a; b >= a�b�s
�� :

As I have indicated in the beginning of this section, I will assume s�� is positive de�nite. Let me assume
that a typical Hamiltonian is as follows:

H(p�; q
�) =

< p; p >

2
+ V (q�) = s��p�p� + V (q

�)

=
p�p

�

2
+ V (q�):

Let the Hamiltonian operator �(H(q̂�; p̂�)) be such that all the q�s are to the left of the p�s. Here after
we will assume that this is the case, unless speci�ed explicitly. The propagator G(q�; q0�) between two states
used in the last section is,

G(q�; q0�) = < q0�j�(H(q̂�; p̂�))jq� >

=
1

(2�)
d

Z
exp(ip��q

�)�(H(q�; p�))dp�:

But G(q�; q0�) does not specify any dynamics yet because we have not speci�ed the time variable. For
this to de�ne time evolution, we need to decide which con�guration variable is to be considered as the time

4Revision info: I believe, this proposal is interesting. But it may need some modi�cation to work. In version 2.0 of this
paper this proposal has been completely modi�ed.
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variable. However, we can linearly map the con�guration space to a new con�guration space through a linear
canonical transformation. So we need to specify a time vector at each instant instead of a time variable,
whose magnitude and direction de�nes the rate and the coordinate axis of evolution. (The rate will be more
sensible if we de�ne more than one elementary quantum system, this will be done in the third principle of
dynamics.) Let v� be the vector. The norm of v� is given by jvj =

p
jv�v�j; and the unit vector �v� = v�

jvj :

Let �q� = q0� � q�. If we know v�,we can de�ne the natural time constraint
P

i �v��q
� = jvj�t, where I

consider �t as a measure of physical time interval of the system. This time constraint restricts the coordinate
change to be along �v� in the transition from q� to q0� and the magnitude of change to be jvj�t.
Then the single-step propagator for the system to evolve for an interval �t is de�ned using the time

constraint as5 ,

G(q�; q0�; v�;�t) =
1

(2�)
d�1

Z
exp(ip��q

�)�(H(p�; q
�))�(�v��q

� � jvj�t)�dp�: (23)

The v�; �t variables after the semicolon indicate that the propagator depends on these. The � is a
weight, which is deduced so that G(q�; q0�; v�; 0) = �(q� � q0�); where � is the Dirac delta function.
Let me put the propagator in an operator form. Let M̂v(�t) be de�ned as �(Ĥ)�(�v��q̂�� jvj�t), where

�q̂� =
R
(q�� q0�)j�q� >< q j dq0�dq . Then the time evolution operator T̂v(�t) = M̂v(�t)(M̂v(0))

�1 is the
operator form of the propagator:

G(q�; q0�; v�;�t) =<  1jT̂v(�t)j 2 > (24)

The � in the path integral de�nition of G are the matrix coe¢ cients of (M̂v(0))
�1.

Now the important question is, what is v� in the con�guration space? For this, let us focus on classical
physics and consider Newton�s �rst law of motion: Every body continues in its state of rest or of uniform
motion. The law states that time �ows and a body moves uniformly along the direction of momemtum in
an in�nitesimal time interval. Since time is seen through movement, inertia is essentially nothing but the
unstoppable �ow of time associated with the system. We will now reformulate the law slightly such that it
de�nes time itself. The �rst of Hamilton�s equations of motion captures the mathematics of Newton�s �rst
law: dq

�

dt = fq
�;Hg: We rede�ne the newton �rst law as fundamental de�nition of time:

Self-Time - Movement of physical bodies are synonymous with �ow of time. The time direction in con�gu-
ration space is given by v� = fq�;Hg.6

In this form Newton�s �rst law de�nes time itself. This statement focuses on the primary source of the
movement itself instead of the nature of the movement like in the Newtons law. I would like to refer to
this de�nition of time as self-time. I do not call it as inertial time because there is a redundancy in the
wording, as inertia itself is due to the �ow of time. The remaining part of Newton�s �rst law regarding forces
is contained in the second Hamilton equation. But in the quantum version discussed next the content of
both the equations will be taken into account.
As v� is given, the location of the system in the con�guration space moves along it. Now a time parameter

of the evolution can be de�ned as being a parameter t along the path, which parametrizes evolution. If
v� is zero, then we can replace it with some very small vector. Using equations dq�

dt = v�, we have,
v��q

� = v�v
��t;which is equivalent to the time constraint equation: �v��q� = jvj�t:

5Revision Info:The term �(p��v� � jvj) need to be included and integrated over djvj for the theory to work.
6Revision info: v� will not be referred as velocity vector in this paper to avoid confusion. We will refer to it just as the time

direction in the con�guration space.
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Now, I will formulate the quantum form of the �rst principle of dynamics. Let j > be an arbitrary
initial quantum state of the system. Let me de�ne v� to be the expectation value of the operator i[H; q�]:

v� = i <  j[H; q�]j > : (25)

Principle 2.1: A quantum system during a time interval �t evolves by the transition operator T̂v(�t),
where the time vector v� is the quantum expectation of the operator i[H; q�]; gives the time direction in the
con�guration space and the rate of evolution.

Now since v� depends on the wavefunction itself, the evolution is non-linear in nature. The operator
T̂v(�t) is non-linear.
In classical theory, as a consequence of the Hamilton�s �rst equation of motion, p� = s��v

� = v�. So
momentum and velocity are conceptual equivalents. Then, the above principle makes sense if we take into
account the quantum nature of a system: It is a superposition of various velocity (momentum) states, each
trying to move the system in its own direction. It is natural to expect that the net e¤ect of movement is
along its expectation value, similar to conventional quantum mechanics.
Note that v� is a constant in the phase space at a given instant as de�ned in equation (25). Now we can

de�ne the following in terms of v�:

v� = s��v
� ; jvj = +

q
s��v�v� �v� =

v�p
v�v�

�v� =
v�p
v�v�

.

These quantities de�ned are functions of q�; as s�� is a function of q�. We see that the norm jvj of v� is
function of q�, but we can also simply use the classical norm calculated using the expectation value of s�� .
So there is some �exibility in de�ning the norm, and so there is an ambiguity in the theory. But, hereafter,
we can simply use jvj in the equations without being explicit about its de�nition.
Lets go back to the path integral formulation discussed in last section. The time evolution is determined

by the path integral sum over phase space with the natural time constraint
P

i �v��q
� = jvj�t. Taking this

into account, the new discretized Lagrangian is,

L (p�; q
�; N; �; v�;�t) = p��q

� �NH(p�; q�)�t� �(�v��q� � jvj�t); (26)

where the N and � are Lagrange multipliers. The new action depends on v�. The new single-step propagator,
after the relevant variables are integrated is,

G(q�; q0�; v�;�t) =
1

(2�)
d�1

Z
exp(ip��q

�)�(H(p�; q
�))�(�v��q

� � jvj�t)�dp�: (27)

The v�; �t variables after the semicolon indicate that the propagator depends on these. The � is the weight,
which we can deduced later, to make sure that G(q�; q0�; v�; 0) = �(q� � q0�); where � is the Dirac delta
function. This propagator moves the system through an in�nitesimal step,

 t+�t(q
0�) =

Z
q

G(q�; q0�;�t) t(q
�)dq�; (28)

which can be repeatedly applied to generate the dynamical evolution of the quantum state. The sequence
de�nes the states of the system at various consecutive instants.
To simplify the illustration of proposal one, let me assume s�� = ��� . Now v; v�; �v� and �v� are constants

in the phase space. Let us do a canonical transformation of the con�guration space so that �v�q� = T is one
of the coordinates, and the remaining orthogonal coordinates are QI , where I varies from 1 to d � 1. To
mathematically codify the transformation, we can de�ne orthogonal unit vectors e�i such that i varies from

13



0 to d � 1, and e�0 = �v�. If ei� is the inverse of e
�
i ; then T = e0�q

� and QI = eI�q
�. Let E = e�0 p� be the

momentum conjugate to T and PI = e�I p� be the momentum conjugate to QI : Then H becomes a function
of E;PI ; T and QI :

H =
1

2
(E2 +

X
I

PIPI) + V (T;Q
I);

The propagator can be written as follows:

G(QI ; T;Q0I ; T 0; v�;�t) =
1

(2�)d�1

Z
exp(i

X
I

PIdQ
I � iEdT )�(�T � jvj�t)�(H)�dPIdE; (29)

where the �T = T 0 � T . By integrating over �(H), we can get E as a function of PI ; t and QI .

E = �
s
�V (T;QI)�

X
I

P 2I .

Let me assume the sum inside the square is positive, so that E is real. Since the Hamiltonians in physics
are usually quadratic in the momenta; E can be positive or negative. So, there are two types of propagators
corresponding to the two opposite directions along v�, both of them need to be added to get the full
propagator. But, this would ultimately lead to macroscopic superposition and nature will choose only one of
them. For now, let me restrict E and �t to positive values only, so that time �ows along only one direction.
(In section four the generalization of the framework to both directions will be discussed.)
Let me denote the resulting positive function E of PI ; T;QI of as Hv(PI ; T;QI ; v�). Using the value of

E; we have

H� =

s
�V (T;QI)�

X
I

P 2I :

Now, we have,

G(QI ; T;Q0I ; T 0; v�;�t) =
1

(2�)d�1

Z
exp(i

X
I

PI�Q
I � iHv�T )�(�T � jvj�t)

�

jHvj
dPI : (30)

where the additional factor of jHvj�1 is from the integration of �(H): It is easy to see that if we set � = jHvj,
then G(QI ; T;Q0I ; T 0; v�; 0) = �(QI �Q0I)�(T � T 0), as we want it to be. So, hereafter I will set � = jHvj.
Now the �nal form of the propagator is,

G(QI ; T;Q0I ; T 0; v�;�t) =
1

(2�)d�1

Z
exp(i

X
I

PI�Q
I � iHv�T )�(�T � jvj�t)dPI : (31)

Now,  (q�) can be rewritten in the new coordinates as  (QI ; T ): Let t be the time parameter (de�ned
right after the classical version of the principle). Consider the single-step evolution of the wavefunction from
 t(T;Q

I) to  t+�t(T
0; Q0I):
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 t+�t(T
0; Q0I) =

Z
G(QI ; T;Q0I ; T 0; v�;�t) t(T;Q

I)dQI�T

=
1

(2�)d�1

Z
exp(i

X
I

PI�Q
I � iH� jvj�t)dPI�(�T � jvj�t) t(T;QI)dQI�T

=
1

(2�)d�1

Z
exp(i

X
I

PI�Q
I � iH� jvj�t)dPI t(T 0 � jvj�t; QI)dQI :

 t+�t(T
0; Q0I) =

1

(2�)d�1

Z
exp(i

X
I

PI�Q
I � iH� jvj�t)dPI t(T 0 � jvj�t;QI)dQI : (32)

In the Schrödinger di¤erential form the evolution equation is,

 t+�t(T;Q
I) =  t(T � jvj�t; QI)� Ĥ� t(T � jvj�t; QI)jvj�t

�  t(T;Q
I)� jvj�t@T t(T;QI)�H� t(T;Q

I)jvj�t: (33)

where the higher order terms of v�t from the path integral are ignored. I have placed � to the right of H� .
In general, j�j is a function of q� if de�ned using jvj = +

p
s��v�v� . So the order between H� and � is

important. So there is an ambiguity in the theory as I have indicated before. We can de�ne j�j using the
expectation value of s�� , so that there is no ambiguity.
In the appendices A and B, the H��s for a general single point system with general s�� and canonical

quantum gravity are derived. The general di¤erential form of the �rst principle of dynamics is,

dDj t >= �iv�p̂�j t > dt� iH� j t > jvjdt; v� = i <  tj[H; q�]j t > : (34)

where the D denotes the deterministic evolution due to self-time, and p̂� = 1
i
@
@q� .

Let me consider a concrete realization of the system that we discussed with s�� = ��� . Let me de�ne H
to be,

H =
1

2
���p�p� + V (�

��q�q�).

Assume the initial state of the quantum system is a semiclassical state:

 (q�) =
1

(2��)
N
4

exp(iv�(q
� � q�0 )�

(q� � q�0 )2
4�2

);

where v�, q�0 and � are constants that describe the expectation values of the momenta, the positions variables
and the spread of the wavefunction. The system has rotational symmetry in the con�guration and the
momentum space. If we set T = �v�q� and QI are the con�guration variables along the orthogonal directions
to �v�, we can rewrite the wavefunction as,

 (T;QI) =
1

(2��)
d
4

exp(ij�j(T � T0)�
(T � T0)2 +

P
I(Q

I �QI0)2
4�2

);

where T0 = �v�q�0 and Q
I
0 are the remaining components of q

�
0 along the chosen orthogonal directions.

Let the system evolve for an interval �t. The changes in the expectation values of QI and PI are given
by the Hamilton equations:
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�QI =
@H�

@PI
j�j�t �PI = �

@H�

@QI
j�j�t

where the derivatives are calculated at PI = 0; QI = QI0 and T = T0. So the new wavefunction is of the form
as one would expect from non-relativistic quantum mechanics and equation (32),

 0(T;QI) � 1

(2��)
N
4

exp(ij�j(T � T0 � j�j�t) + i�PIQI)

exp(� (T � T0 � j�j�t)
2 +

P
I(Q

I �QI0 ��QI)2
4�2

);

which is simply the wavefunction shifted in the position and momentum expectation values as one would
expect classically. There would be further small correction terms that depends on the explicit form of V . We
need to rewrite the wavefunction in terms of the original coordinates q� using q� = e�0T + e�I Q

I , calculate
v� and repeat the same calculations for the next one-step evolution.7

2.2.2 Local Quantum Reduction

Consider the single point system discussed in the last subsection. The modi�ed Schrödinger equation (34)
derived describes the evolution of the system in the direction ��. The equation results in the system evolving
into a macroscopic superposition state. To prevent this we need continuous reduction of the system which
removes the macroscopic superposition. The general form of continuous measurement of a quantum system
is given by the Bloch equations in the Lindblad form [17] governing evolution of density matrix (reviewed
in [18]):

_� =
�1
i
[�̂; Ĥ] +

X
m

(2L̂m�̂L̂
+
m � L̂+mL̂m�̂� �̂L̂+mL̂m); (35)

where � is the density matrix and Lm are the operators representing observables to be continuously measured.
This equation has been extensively studied and has been useful in various experimental situations [19]. It
is not the most natural and explicit form to use to describe an individual quantum system. It describes an
ensemble of identical quantum systems and does not tell how each individual system evolves. So, we need
to consider the equivalent equation, given by Percival, Gisin and Diosi [6], which describes the stochastic
motion of the quantum system state j > of a quantum system:

jd > =
1

i
Ĥ dtj > +

X
m

(L̂m� < L̂m >)j > dzm
p
dt (36)

+
X
m

(2 < L̂m > L̂m � L̂+mL̂m� < L̂+m >< L̂m >)j > dt;

where dt is the time interval of evolution in the non-relativistic quantum mechanics. The dzm are complex
numbers representing Gaussian distributed independent random variables. More explicitly, the real and
imaginary parts of dzm are Gaussian random variables such that the statistical expectation values are given
by,

E(dzm) = 0; E(dzmdzn) = 0; E(dzmdz
�
n) = 2�mn: (37)

7Revision Info: The term �(p��v� � jvj) need to be included and integrated over djvj in the path integral for the theory to
work as indicated before. There is a possible error in the calculation in this section, which is being investigated and will be
clari�ed in the next resubmission of this paper.
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where E refers to the statistical expectation. This equation evolves j > such that its norm is preserved; so
a normalized j > remains normalized as it evolves.
Percival applies this to quantum �eld theory but abandons the analysis reasoning that the resultant theory

is non-unitary [7]. But, in case of quantum gravity the universe cannot be described by unitary evolution
alone because that would lead to superposition of macroscopic states. Clearly, experimentally, whenever the
quantum state of a system evolves into a superposition of macroscopic quantum states it probabilistically
evolves to one of the macroscopic states. So, for a macroscopic universe, the quantum evolution must
be described by an equation that has three components: a deterministic unitary component, a stochastic
component, and a component that prevents macroscopic superposition. The modi�ed Schrödinger equation
(36) is the most natural form of it and the three terms in the right hand side of the equation give the
necessary components in the respective order.
Let me clarify how the third term works a little bit. Consider that j > is expanded as a superposition

of the eigenstates of L̂m: As j > evolves, the third term tends to reduce the amplitude of an eigenstate in
the sum to the extent to which its eigenvalue is far away from the expectation value of < L̂m >. Because
of this j > evolve such that the amplitudes of the components are peaked close to < L̂m >, a semiclassical
state.
In equation (36) the second terms randomizes the system, third term classicalizes the system. These are

components of macroscopic quantum reduction. Let me state the second principle of dynamics.

Principle 2.2: Local Quantum Reduction - The evolution of a quantum state of a single point quan-
tum system along with the Schrödinger type evolution also undergoes semiclassicalization and randomization
through quantum state di¤usion terms respectively:

jd t > = jdD t > +
X
m

�m(L̂m� < L̂m >)j t > dzm
p
jvj�t (38)

+
X
m

(2 < L̂m > L̂m � L̂+mL̂m� < L̂+m >< L̂m >)j t > jvj�t;

Here the dD and the jvj�t are the modi�ed Schrödinger part (equation (34))and the time measure from
the �rst principle of dynamics, and the operators L̂m are simple functions of the conjugate variables p� and
q� to undergo continuous measurement. The �m are some functions of of L̂m and j t >.
The purpose of the function �m is to control the random �uctuations in the equation (38). For the

quantum di¤usion theory to reproduce the Copenhagen probabilistic collapse we need �m = 1: So �m needs
to be close to one, but close to zero for reducing randomization. The choice of �m will be discussed further
later.
Usually for the applications of the Bloch equation (35) to study the evolution of the density matrix

of a quantum system, the Lm�s are to be determined by what are to be measured in the experimental
context. But, here in the second principle of dynamics we assume that the Lm�s are fundamental quantities
in quantum gravity to be determined experimentally. The natural and simplest choice for the Lm�s are
given by p�, q�, or some simple functions of them. The combined quantum system forms a complete reality
by itself and there is no outside observer to make measurement. So the system needs to be understood as
undergoing continuous reduction by itself instead of being considered as undergoing measurement. In the
next section we will discuss, in the quantum general relativistic physics of �elds, what is the nature of Lm�s,
how the equation (38) acts on the non-classical quantum states to promote continuous reduction, and how
the phenomenon of quantum measurement in the laboratory experiments can be understood in terms of this
process.
Please notice that if � = 0; then evolution freezes. But we can always set � to be a very small value

instead, so that the system can jump out of any state of unstable equilibrium, under the in�uence of the
stochastic terms in the evolution equation.
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2.2.3 Global Quantum Reduction

The �rst principle of dynamics focused on a quantum system at a single point that evolved according
to a single time parameter. In quantum gravity we want to evolve the quantum states from one spatial
hypersurface to another spatial hypersurface. In a spatial hypersurface there is in�nite number of points,
with a quantum system at each point. So let me discuss how to understand time evolution in a many-point
quantum system. If there are many interacting fully constrained quantum systems, one pair of conjugate
variables px;�, q�x , then there is one time parameter tx for each system. Now, the question is, what is the
relative rate at which these time parameters evolve. I will try to answer this question in this subsection.
Let me assume that space is discretized and is made of countable number of points. Let B be the

number on points (which can be set to in�nity if needed). Assume that the quantum system at each point
x is described by an identical Hamiltonian constraint Hx only, and it has an interaction term that involves
adjacent quantum systems.
If x is the variable that refers to the quantum system at each point, then the single-step propagator

describing the combined systems is,

G(q�x ; q
0�
x ; �x;�;�tx) =

1

(2�)B(d�1)

Z
exp(i

X
x

px;��q
�
x )) (39)Y

x

f(�(Hx)�(�vx�dq
�
x � jvxj�tx))�xgdpx;�; (40)

 t+�t(q
0�
x ) =

Z
q

G(q�;x; q
0�
;x ; �x;�;�tx) t(q

�
;x)dq

�
;x; v�x = i <  tj[H; q�]j t > : (41)

where multiplication over � and x is assumed in dq�;x as per convention indicated in the beginning of the
article. Convention 5 applies to G and  : G is a function of all fq�;x; q0�;x ; �x;�;�txg for di¤erent � and x;  
is considered as a function of all q�;x for di¤erent � and x:
Each step of the evolution depends on the values of �tx. Let t be a continuous time parameter, which

varies from t = 0 to t = T . Let me de�ne �tx = nx(t) �t; where the nx(t) are continuous functions of t, one
of them for each point x. Now the repeated application of the one-step propagator for in�nitesimal jvxj�tx
creates a smooth evolution of all the systems. The sequence of the quantum states, de�nes the states of
the system at various consecutive instants. As the combined system evolves the classical expectation value
of the momentum and the con�guration variables p�;x and q�x also evolve. Consider the usual propagator
de�ned below for M steps, without the sum over the lapse:

�G(q�I ; q
�
F ; fNx;S�tx;Sg) =

1

(2�)SBd

Z
exp

24iX
x;S

�
p�;x;S�q

�
x;S � iHx;SNx;S�tx;S

�35 (42)

dp�;x;Sdq�;x;S ; (43)

where the S indexes the steps in between the initial and the �nal steps. The integration over the lapses,
integrates the integral over various possible foliations. After the summation over the lapses, we get,

G(q�I ; q
�
F ) =

1

(2�)SBd

Z
�G(qI ; qF ; fNx;S�tx;Sg)

Y
x;S

Nx;Sd(�tx;S): (44)

This is the usual propagator of a fully constrained system.
Now consider the propagator de�ned in principle 2.1. Let me apply it for S steps. From equation (39)

we have:

G(q�I ; q
�
F ) =

Z Y
S;x

(G(qx; qF ; vx;�;�tx;S)
vx;S
�x

)d(�tx;S): (45)
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In this the integrals over the lapses are already performed, the time intervals �tx;S are physical quantities
extracted from the internal evolution based on vx;�, and assume vx;� are independent of the states just for
discussing this sum. So the summation in the net propagator given in this equation is over various possible
physical macroscopic evolutions unlike equation (44). Therefore, we can reason that this superposition over
this history has to collapse probabilistically, as it usually happens in nature, a global reduction in contrast
to the local reduction discussed in last subsection. Now, so let me propose the following:

Principle 2.3: Global Quantum Reduction - The functions nx(t) take random but continuous values
with the relative probability distribution given by the functional P (nx(t)) = exp(�W (p̂�;x; q̂�x ;  t)): Here W
needs to be found experimentally or theoretically. The W is a scalar functional of the operators p̂�;x and q̂�x ,
for all x and the sequence of wavefunctions  t between t = 0 to t = T 8 .

Revision info: This principle is too general and need to be improved.
The nx(t) essentially are the lapses, and they give the various ways to foliate the manifold of the quantum

system whose topology is B point 
 1D. This could be the discretized 4D manifold of general relativity.
Since now the nx(t) are random functions, the foliation is a random hypersurface. In this subsection I only
assumed that  t evolves by the self-time evolution of the �rst principle of dynamics. It is straight forward to
include the second principle of dynamics, which will be discussed in the next section. This will be discussed
in the next section.
Let me discuss now the sample space in which nx(t) take values. One can come with a simple choice as

follows. a) nx(t) need to be continuous functions on the manifold b) the �rst derivative is �nite but changes
only in random steps of values for a random sequence of intervals. This restricts the choice of the sample
space, so that the evolution is smooth.
It is important to note that the special case of deterministic nx(t) is built into the theory. For this to

happen P (nx(t)) need to be in�nitely peaked for one choice of nx(t) for each point x.
In the section (2.2), when discussing about time in classical general relativity, I discussed that the physics

happening on the space-time manifold is used to de�ne a physically relevant foliation in cosmology. For
example, the foliation of the space-time manifold is de�ned by the scale parameter in big bang cosmology.
The principle proposed in this section generalizes this through the use of W functional.
Semiclassical states are usually those whose amplitudes are peaked in and �nite near some classical values

(wave packets). We may also smear each step of the quantum states using functions that are peaked at nx(t),
for example:

 t+�t(q
0�
x ) =

Z
G(q�x ; q

0�
x ; �x;�; Nx(t)�t) exp(�a2Nx(t)2) t(q�;x)dq�;x:

where the nx(t) are determined probabilistically. Here the smearing is done with an exponential factor. It is
not clear to me whether this must be done, as this would be over constraining the system, more than what
the Hamiltonian constraint has already done.

8Revision info: In version 2.0 this principle has been made more speci�c. The W functions are unspeci�ed in this paper.
In version 2.0 concrete choices of W functions are given, where they are referred to as � functions.
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3 Applying the Framework

3.1 Dynamics

In this section, I discuss how to use the framework of the three conceptual principles in the last section to
study physics of quantum �elds in general relativity. For this we discretize the spatial manifold into large
number of points. Now, we have a multi-point system and at each point the �rst and the second principle of
dynamics describe the stochastic and the self-time evolution. The q�x and p�;x now stand for the collection
of con�guration variables and the conjugate momenta respectively of all the quantum �elds living at each
point x of a spacial hypersurface, such as the spacial metric, the electromagnetic, the Fermionic, the scalar,
and other �elds like the remaining gauge �elds. Let us denote the quantum state of the combined system as
j t >. Specify a smooth function nx(t) for each point. The time increment for each point x is now nx(t)�t.
The modi�ed Schrödinger equation of the entire system is now:

jd t > = dDj t > (46)

+
X
m;x

�m;x(L̂m;x� < L̂m;x >)j t > dzm;x
p
jnx(t)jjvxjdt

+
X
m;x

(2 < L̂m;x > L̂m;x � L̂+m;xL̂m;x� < L̂+m;x >< L̂m;x >)j t > nx(t)jvxjdt; (47)

dDj t > = �
X
x

nx(t)idtv
�
x p̂�;xj t > �

1

i

X
x

Hv;xj t > nx(t)jvxjdt

v�x = i <  tj[Hx; q
�
x ]j t >;

where the operator contributions from all the points are added. These equations time evolve the system
through a sequence of quantum states. The evolution is continuous but yet stochastic in nature.
Using a choice of the functions nx(t); we can use these equations to evolve the quantum state 	 from t = 0

to t = T . Then exp(�W (p̂�;x; q̂�x )) gives the relative probability for the nx(t)�s chosen to physically occur.
Now we have two sets of random variables the z�s and the n�s. The z�s are Gaussian distributed as discussed
in principle 2.2. The probability distribution of the n�s depends on the values of the n�s themselves and the
Gaussian random variables z�s, as  t depends on both of them. Essentially, this probability distribution
describes the quantum reduction of quantum histories of the combined system. Then for the nx(t)�s chosen
to occur, the probability is given by,

P (nx(t)) =
exp(�W (p̂x; q̂x;  t))R

exp(�W (p̂�;x; q̂�x ;  t)�t)
Q
t
dnx(t)

: (48)

where the integral is performed over all possible nx(t) in the interval t = 0 to t = T; at all points x:
Consider quantum gravity: The q�x stand for the metric tensor. Assume q

�
x are some linear combination of

the components of the spatial metric. For the equations to work we need to proper choice for �m;x. They
need to set to 1 for the equations to reproduce the quantum probabilistic collapse as described in [6]. The
purpose of �m;x is to control the randomization due to the second term in equation (46). We can choose
�m;x to be very small so they make the quantum evolution to be mostly deterministic and semiclassical near
the space-time singularities such as in the sceneries of big bang theory and black holes. The precise form of
�m;x needs to be determined by experimental and theoretical investigation.
In classical general relativity physics is foliation independent. But in the modi�ed quantum theory

de�ned by the framework of the three principles, the quantum evolution is foliation dependent: the evolution
described by the �rst and the second principle of dynamics depend on the foliation which in turn is de�ned
by the third principle of dynamics.
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3.2 Choosing time direction

The �rst principle of dynamics picks the direction of time to be determined by the quantum expectation
value of the operators i[Hx; q

�
x ] using the wavefunction. But at each point of the space-time manifold there

are many �elds: the scalar, the vector, the spinorial �elds, etc. For Fermions described by the spinorial
�elds, the expectation values of the conjugate momenta are zero. So they don�t contribute to v�x . So the
direction of time �ow is only determined by the scalar, the gravitational and other gauge �elds such as the
electromagnetic �eld. But the relative contribution of each of these �elds may be di¤erent. One can rescale
the theory such that all the fundamental constants are unity, and just declare the remaining con�gurational
variables at each point to be of equal footing. Instead, it might be possible that only the scalar �elds�
momenta give the direction of time �ow. But we can see that such a scalar �eld suitable for time description
is only possibly available in the early universe such as in Guth�s theory of in�ation [12]. In the current
universe (away from the exotic objects in the universe such as the black holes) the (Higgs) scalar �elds
have zero classical conjugate momentum. Also the gauge �elds other than the electromagnetic �elds have
zero conjugate momentum except possibly near particles. So we are left with the gravitational and the
electromagnetic �elds which can be expected to continuously vary over space-time, contributing non-zero v�

to set the direction of time �ow in the internal con�guration space of these two �elds. Also, these theories
can be uni�ed either along the lines of Kaluza-Klein [16], the string theory, or some future theory giving a
set of con�guration variables which are at equal footing to work with.

3.3 Observables

The operators and variables are supposed to be subjected to the constraints: the Hamiltonian, the dif-
feomorphism, and the gauge constraints. We have used the Hamiltonian constraint to extract dynamics.
The self-time evolution equation (34) is nothing but the Hamiltonian constraint equation rewritten in the
Schrödinger equation form. The gauge constraints and the di¤eomorphism constraints can be directly ap-
plied on the basic Hilbert space and the operators F (q̂�x ; p̂

�
x) to get to the physical Hilbert space and the

physical operators as I have discussed in section (2.1).
We need to apply the Ô =

Y
i

Ô(Ĉi) on evolving j t > described in the last subsection to get the physical

states and operators. The projectors are to be applied statically on the combined state j t > of the all the
systems living at all the points on the hyperspace at each instant t.
The gauge invariance removes the redundancies due to the internal symmetries of the �eld equation. The

di¤eomorphism constraints relates to invariance under the change of spatial coordinates. Physics tells us
that what we physically observe should be gauge and di¤eomorphism invariant. But, in the alternative way
to tackle the di¤eomorphism constraints discussed later in section (3.6), the coordinate invariance could be
only an approximation at Planck scale.

3.4 Quantum Reduction and Measurement

In quantum di¤usion theory [6] used in principle 2.2, we don�t need the Copenhagen interpretation, as it is
built into the theory: the quantum di¤usion equation (36) takes care of the technical implementation of the
interpretation, through a process of continuous quantum reduction, in other words gradual semiclassicaliza-
tion.
In [6] the quantum di¤usion theory is used in a non-relativistic context. Let me discuss how technically the

equation works in quantum general relativity with all other �elds included. Let me assume the Hamiltonian
formulation is discretized, and the full framework is applied. Sometimes in the study of decoherence in non-
relativistic quantum mechanics individual particles states, their momentum and position operators are used
to de�ne L̂m�s [18]. But in a Fermionic �eld theory context these are not the proper operators to use, because
there is one set of L̂m for each point x, which we denoted as L̂m;x. We discussed in the last subsection that the
Fermions don�t contribute to v�x . Similar to this, they should not contribute to L̂m;x�s also, because they are
always fully quantum in nature due to Fermi statistics - maximum one particle per point. The expectation
values of Fermionic �eld operators at each point are usually small. The electromagnetic �eld, metric �eld,
etc. following Bose statistics, with unlimited number of quanta per point, their expectation values can reach
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to classical values, their contributions to L̂m;x are important. Nevertheless Fermionic particles can under go
quantum reduction as we will discuss next.
Assume we have the full general relativistic physics (including all the matter and the gauge �elds)

discretized on a spatial hypersurface. The quantum state on the hypersurface is made of multiples of the
following two types of states:
1) Macroscopic states corresponding to the Bosonic �elds: semiclassical states of the gravitational (the

spatial metric �eld), the electromagnetic �eld states, and possibly the scalar �elds. These states are usually
not superposed or entangled heavily.
2) Microscopic elementary quantum states of the Fermionic particles and the Bosonic �elds: electron,

quark, photon, graviton, etc. These states can be superposed and entangled.
So a typical quantum state looks like this: j t >= jem; g; s > 


P
i;j;k;l;:::

jei; qj ; emk; gl; :: >, where em

stands for electromagnetic, g - spatial metric, e - electron, q - quark, etc., and the indices refers to the various
states relating to the di¤erent charges, spin and position. The jem; g; s > is of type 1 and the fully quantum
sum is of type 2.
Assume the L̂m;x�s are derived from the em; g; and s �elds. Consider the quantum di¤usion equation

(46). The purpose of the second and the third terms are to gradually randomize and semiclassicalize j t >
as it evolves. As long there is no superposition and entanglement in the semiclassical states the contri-
bution of the second and third terms are minimal. The contribution is mostly from the �rst term. But,
as j t > evolves due to the �rst term, due to the interaction between the con�gurational variables of the
Fermionic and the semiclassical �elds (em; g; and s), the superpositions and entanglements in the fully
quantum

P
i;j;k;l;:::

jei; qj ; emk; gl; :: > passes over to superpositions and entanglements of the semi-classical

states jem; g; s >. (This is essentially what was discussed in the section (1.1):
�P

q j	S(q)jq >
�

 j	0O >

evolves to
P

q 	S(q)jq > 
j	
q
O >.) The evolved states are like the superposition of the states of the needle

pointer in the measuring instrument, with each needle pointer state having its own semi-classical con�g-
uration of the electromagnetic and the metric �elds. But since the electromagnetic and the metric �elds
contribute to L̂m;x�s, the second and third terms in the evolution equation (46) remove these macroscopic
entanglements and superpositions, performing reduction, exactly in the way it is supposed to happen by
Copenhagen interpretation. This reduction process happens continuously as the state evolves. Basically
the macroscopic semiclassical states of the metric, the electromagnetic, (and possibly scalar, example in the
early universe) keeps measuring the microscopic quantum states of all the quantum �elds. This is a deeper
and objective way of understanding the quantum measurement by an observer. (This is in the spirit of the
gravitational reduction by Roger Penrose [3], but more explicit and generalized.)
Now the relative evolution is determined by nx(t) at each point. As I have discussed before they choose

a random foliation along which the combined hypersurface quantum state evolves. The quantum state is
made of superposed and entanglement microscopic states. Now as the state evolves it undergoes continuous
quantum reduction, this process correlates the classical and quantum information along di¤erent points of
the hypersurfaces of the random foliation.

3.5 The W functions

Let me consider a physically interesting choice for the W function. Assume that the spatial manifold is
somehow discretized. The q�x and p�;x now stand for h

��(x) and ���(x). Let me evolve the initial state
using the path integral in equation (46). Since nx(t)�s govern the relative rate of evolution of the quantum
state at each point compared to those of the other points, the di¤erent choices of nx(t)�s relate to the di¤erent
ways to foliate the space-time manifold.
Now, consider the following interesting suggestion:

W (p̂I;x; q̂
I
x;  t) = �

X
x

Z
t

sIJ < _QIx >t< _QJ;x >t dtx (49)

with � being a physical constant to be determined and _QI�;x are observables orthogonal to �v
�
x at each point
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x described in principle 2.1. The< (Q̂I�;x
_) >t= i <  tj[H�;x; Q̂

I
�;x]j t >; and sIJ is the projected spatial

metric into the QIx space. The reason for this suggestion comes from the existing physical sceneries. Consider
the evolution of the universe after the big bang singularity. Let � be the scale parameter. Assume the initial
quantum state is such that its v�;x are along the increasing � direction of the metric con�guration space
at each point. Then Tx at each point is an increasing function of the scale parameter itself, which is the
diagonal value of the spatial metric.
The QIx stand for the perturbations in the diagonal metric. If the nx(t) are equal for all x�s, then the

evolution is on the foliation de�ned by hypersurfaces with constant ��s as usual in cosmology. For this QIx
and _QIx are zero and so the W is zero. Assume the nx(t) are slightly perturbed. This increases QIx and _QIx
and so the W . So minimality of the W will ensure that the nx(t) choose a foliation close to the foliation
based on the scale parameter. The relative probability being maximum means the W being minimum. So
principle 2.3 chooses the functions nx(t) with high probability such that the foliation is close to that used in
big-bang cosmology.
Similarly, in the Schwarzschild case along the temporal killing �ow the classical conjugate momenta

and the rate of change of the spatial metric are zero. The evolution is described by the Hamiltonian
constraints related to the perturbations in metric caused by the long range gravitational waves, the local
matter �uctuations, or the movement of bulk matter radially. The W is zero when there is no perturbation,
and it increases with increasing perturbation. Smallness of the W will ensure that the evolution happens
along the approximate time-like killing vector in these contexts. So again the suggestion for theW suggested
is consistent with the Schwarzschild case also9 .
In the last subsection I have discussed that the continuous reduction of the quantum state correlates

the classical and quantum information along the hypersurfaces. Now for the W suggested the correlation
happens along the random hypersurfaces that are close the physically intuitive ones that we discussed.

3.6 Models and Constraints: Discrete Vs. Continuum

The principles can be easily applied to discrete models. Assume the space is discrete, made of B points and
the quantum systems at all the points are coupled to each other. Let q� and p� stand for the collection
of the con�guration variables and the conjugate momenta of all the points. If d is the dimension of the
con�guration space this mean � varies from 1 to Bd: Let the Hamiltonian constraint at a point I is given
by,

HI = �I;��p�p� + �I;��q�q� ; (50)

where the sum is over repeated Greek indices. The � and � tells how the quantum systems at the various
points interact with each other. Then the commutator [HI ;HJ ] is given by

[HI ;HJ ] = 2
X
lm�

�
�J;lm�I;m� � �I;lm�J;m�

�
(2q�pl � ��l) :

Let me call this result as CIJ . It can be written in the matrix form as

CIJ = 2Tr (AJBI �AIBJ)
�
2QPT � �

�
;

where AJ = f�J;lmg; BI = f�I;lmg with m indexing the rows, and l indexing the columns. Here Q = fq�g
and P = fp�g are column matrices10 .
In the framework proposed in the last section, the Hamiltonian constraints are re-interpreted as modi�ed

Schrödinger evolution equations in principle 2.1. Assume we discretize the ADM formulation, and assume

9Revision info: In version 2.0 more analysis has been done on choices of W functions, where they are referred to as �
functions.
10Revision info: Some possibly erronous analysis located after this in the previous version has been deleted.
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that the system evolves under the in�uence of all the Hamiltonian constraints at each point, as given in the
combined propagator in equation (39).
We can simulate quantum evolution of discrete models using the three principles. We need to study

whether we can start with a discrete model representing continuum general relativity at certain physical
scenario in Planck scale, and under a large number of the points limit, extract sensible quantum physics
of the continuum model that satis�es the Hamiltonian and the di¤eomorphism constraints. The study is
currently under progress and will be reported in the follow-up reports.

3.7 Perturbed Models

In general relativity important scenarios are as follows:

� The big bang singularity and the expanding universe,

� The spherical symmetry and the quasi-static geometry, and

� The black hole singularity and the contracting geometry.

Most scenarios in the real universe are perturbed versions of these. Let me discuss some ideas about how
to tackle time in these. Let me consider a general single point model. Assume that the initial wavefunction is
peaked around p0�; x

�
0 ; in the momentum and the con�guration space respectively. Let _q

�
0 be the expectation

value of i[H; q�].
Then in the classical case we have,

v� = _q� =
@H(p�; q

�)

@p�

=
@H(p0� + �p�; q

�
0 + �q

�)

@(p0� + �p�)

=
@H(p0� + �p�; q

�
0 + �q

�)

@(p0�)

� @H(p0�; q
�
0 )

@p0�
= _q�0 :

In other words the direction of time in con�guration space remains close to the classical value. This can
be used to set the initial value of the time direction in both single point and multipoint models. We can use
this to identify the time parameters in the three sceneries listed.
In the �rst scenario in the list, v� is along increasing �. In the second scenario, the issue is more

involved; nevertheless, the direction of time is given by classical derivatives of the non-angular components
of metric coe¢ cients (assuming the electromagnetic �eld is very weak). If the space-time evolves such as
in an expanding star, the time parameter is a function of the classical radial metric parameters. If the
space-time is macroscopically static, then the time �ow is derived from the momentum generated by the
gravitational �uctuations. In the third scenario the time evolution is given by decreasing radial parameters.
We can study the random perturbation around these most probable solutions and analyze the in�uence of

the random perturbations on the physics of the universe, such as in seeding structure formation in cosmology,
time evolution in the region of near �at space-times, or physics inside the black-holes.
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4 Generalized Principles of Dynamics

The three concepts de�ned by the three principles that I proposed in section two are physically intuitive and
natural. Related to each of these is a more general concept with various di¤erent purposes and usefulness,
which I will discuss in this section.

4.1 Selective-Time Evolution

Consider the phase space (p�; q�) of the single point system discussed in principle 2.1 in section 2. We have
the conventional timeless propagator for this as,G(q�; q0�) =

R
exp(ip��q

�)�(H)dp�: Let me introduce a
general form of the time step constraint in the phase space as follows:

w�(p ; q
�)�q� � u�t = 0: (51)

Here w�(p ; q�) is function of both p and q�, u is assumed to be independent of p�s and q�s. Given a �t; q0�

and p�; the set of points q� satisfying this equation gives a surface in the coordinate space that contributes
quantum amplitude at q0�. The new propagator including the general time step constraint is,

Gs(q
�; q0�;�t; w�; u) =

Z
exp(ip��q

�)�(H)�(w�(p ; q
�)�q� � u�t)�dp�: (52)

I would like to refer to this as the selective-time propagator (or subjective-time propagator) because w� and
u are speci�ed selectively to study the relative evolution of a system with respect to the time step de�ned
in the equation (51) by these two. For example we can choose w�(p ; q�) to make quantity of interest such
as the scale parameter in cosmology to be the time variable. In appendix C this selective-time propagator
is applied to deduce the natural time associated with a simpli�ed system in which a matter-like system
interacting with a gravity-like system.
Now I will study the properties of these selective-time propagators. Equation (52) can be integrated to

get

G(q�; q0�) =

Z
Gs(q

�; q0�;�t; w�; u)
u

�
d�t: (53)

Let me assume H is a function of q� and p� only. Assume in w� and � all the p�s are placed to the right of
the q�s. Then using p̂0� = 1

i
@

@q0� ; we have,

Gs(q
�; q0�;�t; w�; u) = �(w�(q

� ; p̂0)�q
� � u�t)�(q� ; p̂0)

Z
exp(ip��q

�)�(H)dp�

= �(w�(q
� ; p̂0)�q

� � u�t)�(q� ; p̂0)G(q�; q0�): (54)

To summarize we have the following:

Gs(q
�; q0�;�t; w�; u) = �(w�(p̂

0
 ; q

�)�q� � u�t)�(q� ; p̂0)G(q�; q0�)

G(q�; q0�) =

Z
Gs(q

�; q0�;�t; w�; u)
u

�
d�t: (55)

If we have two di¤erent selective-time propagators parametrized by f ~w; ~ug and fw�; ug respectively, they
can be related to each other using the above two equations as follows:
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Gs(q
�; q0�;�t; w�; u) = �(w�(p̂

0
 ; q

�)�q� � u�t)�(q� ; p̂0)G(q ; q0�) (56)

= �(w�(p̂
0
 ; q

�)�q� � u�t)�(q� ; p̂0) (57)Z
Gs(q

�; q0�;�t0; ~w�; ~u)
~u

~�
d�t0: (58)

In the regions of space-time, where the evolution is only determined by the �rst principle of dynamics
only, the evolution is determined by the propagators only. We can describe the evolution by many choices
of selective propagators. Then the above transformation formally relates these various propagators.

4.2 Bidirectional Time Evolution

The time evolution de�ned in principles 1 and 2 are actually unidirectional in time. We can generalize this
to both the opposite directions along v�. Consider the momentum operator Ê = p̂�v

� (assuming v� is a
unit vector in the metric discussed in the previous section). Let j > = j + > +j � >; where j + > and
j + > are made of the positive and negative eigenvalued eigenvectors of Ê correspondingly. Then we have
a more generalized dynamic equation as follows:

jd t > = �p̂�v��tj t > �
1

i
Ĥvj +;t > jvj�t+

1

i
Ĥvj _;t > jvj�t

+
X
k

(2 < L̂k > L̂k � L̂+k L̂k� < L̂+k >< L̂k >)j t > jvj�t

+
X
k

�k(L̂k� < L̂k >)j t > dzk
p
jvj�t; (59)

v� = i <  tj[H; q�]j t > : (60)

The two terms involving Hv evolves the state in the positive and negative direction along v�. But
because of the third summation term in the �rst equation one of j + > and j + > will be fully attenuated
eventually. So we only have a unidirectional motion eventually. The above evolutions can be easily included
in the framework of section 2:

4.3 Statistical Time Evolution

There is one more alternative to time evolution de�ned in principles 1 and 3. Consider the many systems
one step propagator:

G(q�x ; q
0�
;x ;�tx; v�;x) =

Z
exp(i

X
x

px;��q
�
x )�(Hx)

Y
x

�(vx�dq
�
x � jvxj�t)dpx;�: (61)

The v�;x; which de�ne the time direction in the phase space, are the expectation values of the operator
i[Ĥx; q̂

�
x ]. In the principle 2.3 we introduced the nx�s to de�ne relative evolution. They are statistical

distributed function of t due to statistical selection over sum over histories as reasoned in principle 2.3. The
purpose of the relative rate function nx could be ful�lled by v�;x themselves in all the spirit by modifying
principle 2.3 as follows:

Principle 2:30: Statistical Time - The continuous functions v�;x(t) takes random values with the relative
probability distribution given by P (v�;x(t)) = exp(�W (p̂x; q̂x;  )). Here W needs to be found by theoretical
and experiment investigation.

This proposal makes the principle 2.1 no longer needed. Now vx� vectors are statistical. The modi�ed
principles in this section along with the principles of quantum statics form a complete framework by them-
selves. We can evolve the combined quantum system using equations(46). The probability distribution of
v�s depend on values of the Gaussian random variables z�s and v�s, as W depends on them.
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Similar to section (2.3), I suggest W = �
R X

x

sIJ < _QIx >< _QIx > dtx, with � being a physical

constant and _QSx = i[HS
�;x; Q

S
x ]. This proposal chooses the values of vx� with a high probability such that

they minimize W , so that resulting evolution is based on random foliations approximately close to the
conventional foliations in the big bang cosmology and the Schwarzschild case, like we discussed in the last
section (3.4).
Even though, this modi�ed proposal is quite interesting, the usefulness of this modi�ed proposal is

doubtful. Consider the original proposal 2.3. It is motivated by the fact that the integration of propagator
in equation (39) over various nx(t)�s gives the total gravity propagator as given in equation (45). The random
choice of nx(t)�s chosen can be interpreted as a quantum projection of the corresponding quantum history
from the total gravity propagator (the sum over histories). But this interpretation does not work in the
modi�ed proposal because the integration of the modi�ed path integral in equation (61) over the various
v�;x(t) does not yield the total propagator. This integration does not look to be physical sensible, in the
same way as equation (45), as v�;x(t) have too much degrees of freedom.

5 Discussion

The set of three basic principles discussed in section 2 only lays down a conceptual framework instead of
a full concrete proposal. These principles are essential to study quantum dynamics of a full background
independent general relativity with time and measurement (reduction). The �rst principle of dynamics of
picks a self-time direction in the con�guration space of the quantum system at each point;, the second
principle of dynamics introduces spontaneous local quantum reduction for the quantum system at each
point, which gives deeper understanding of quantum measurement ; and the third principle of dynamics
deals with global evolution by determining the relative rate of time evolution for di¤erent points on space
by global quantum reduction. These principles embody conceptual foundations but leaves open the concrete
implementation to be determined by further theoretical and experimental investigation.
Let me list the various possibilities:

1. This framework is highly abstract and it can be applied to the usual quantum �eld theory with general
relativity using Dirac�s method of quantization, or any uni�ed �eld theory such as the string theory,
Kaluza-Klein theory, etc. One needs to discover which is the best theory that works with the framework.

2. The framework is based on discrete model. There are many possible ways to discretize quantum general
relativistic physics. The right way to discretize, so that we could extract low energy continuum physics
needs to be found.

3. Principle 2.1 proposes time direction to be determined from the expectation value v�x of the operator
i[Hx; q

�
x ]. Now there are various possibilities for choosing the con�guration variables among scalar,

tensor, vector, etc., to calculate v�x . Another possibility is using the Kaluza-Klein theory [16], String
theory or some other uni�ed where these �elds are uni�ed theory as discussed in section 3.3.

4. I have used the time direction v�x to be a direction in the con�guration space. But we can generalize
this, by considering v�x to be a direction in the full phase space instead, and create a more general
theory.

5. Instead of the self-time propagator, a selective-propagator derived from the modi�ed form of it may
be suitable to describe physics.

6. In the �rst principle of dynamics in its quantum and mathematical form de�nes ��x as expectation value
of i[Ĥx; q̂

�
x ]: So the quantities jvxj and �v�x , derived from ��x and used in the time constraint depend on

the metric which is a function of the con�guration variables. But we can use the expectation value of
the metric to calculate one or both of these and use them in the constraint, leading to slightly di¤erent
theories.

7. In the second principle of dynamics we have the L̂m;x�s to be determined. The natural choices are
the con�gurational variables q�x , which will restrict the quantum evolution to be peaked around their
expectation values.
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8. In the second principle of dynamics in �m;x is also to be determined. They have serious technical
impact by determining the impact of stochastic part of the evolution. It makes evolution semiclassical
for small �m;x and stochastic for large �m;x: The value needs to set to one for Copenhagen collapse e¤ect
to take place. Important scenarios where �m;x are to determined are those related the singularities,
such as the black hole or the big bang singularity.

9. In third principle of dynamics W is to be determined. A suggestion has been made in the discussion
itself in section (2.3). If possible, better ones need to be found.

10. The sample space of nx(t) used for calculating probability is also very general. More speci�c sample
space needs to be determined.

11. The modi�ed principle of dynamics (2:3)0 de�ned in the last section along with the principles of
quantum statics de�nes a conceptual framework themselves. It makes self-time principle unnecessary.
Whether this framework is more useful than the one discussed in section 2 in describing reality needs
to be determined.

12. Now W functionals and L̂m require two new physical constants to determine their scale. The search
of W , L̂m and the scales may point out to a new fundamental theory.

So the principles presented in this article have a huge choice. The various possible theories relating to
the di¤erent implementations of the principles have to be studied theoretically and experimentally to come
up with the precise details to achieve successful model for quantum general relativistic description of nature,
or some or all of them be falsi�ed in the veri�cation process.

6 Conclusion

In this article, I have outlined a conceptual framework and have discussed how to apply this to study physics.
Because of highly stochastic nature of the theory we need to use computer simulation, and statistical analysis
to get any useful physics out of the theory. Application of the framework to simple models is straight forward.
But the complication is, even for simulating simple models, extensive computing power is required. Currently
the application of the conceptual framework to some simple models is being studied by the author. The
results will be published in the follow-up reports. The framework discussed is quite general and there are
wide variety of variations and sceneries. To come up with a speci�c model that best explains the physics of
the entire universe requires exploring as many interesting models as possible.
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Appendices

A Single Point System

Consider a single point universe made of a simple quantum system with p�; q� as the conjugate variables for
which:

L (p�; q
�; n; �) = p��q

� �N�tH(p�; q�): (62)

Let me de�ne a scalar product as follows:

< a; b >= a�b�s
�� ; (63)

s�� are function of q� . Let the Hamiltonian constraint be,

H(p�; q
�) =

< p; p >

2
+ V (q): (64)

The direction v� = i <  tj[H; q�]j t >. The norm of v� is given by jvj = p
< v�; v� >: Using this the

normalized v� is �v� = v�

v : Let v�; �t are �xed parameters, with < v; v >= 1. Then from the �rst principle
of dynamics the modi�ed Lagrangian is as follows:

L (p�; q
�; N; �; v�;�t)�t = p��q

� + �(�v��q
� � jvj�t)�N�tH: (65)

We can rewrite the Lagrangian as follows:

L (p�; q
�; N; �; v�;�t)�t = (p� + ��v�) �q

� � �jvj�t�N�tH: (66)

Let me perform a change of variables from p� to m� = p� + ��v�. This change of variables does not
introduce any new weight in the path integral because the integral measure is unchanged d�dp� = d�dm�.
Let me de�ne ~H as follows using p� = m� � ��v�:

~H(m�; q
�; �;N ; v�) = H(m� � ��v�; q�; �;N ; v�): (67)

Then we have,

~H(m�; q
�; �;N ; v�) =

�
1

2
< m� ��v;m� ��v > +V (q)

�
=

1

2
(< m;m > +�2 � 2� < m; �v > +2V (q)): (68)

Now the new Lagrangian is given by,

~L (m�; q
�; �;N ; v�;�t)�t = m��q

� � �jvj�t�N ~H(m�; q
�; �; v�)�t: (69)

The propagator is,

G(q�; q0�; v�;�t) =

Z
exp(m��q

� � �jvj�t)�( ~H(m�; q
�))�dm�d�: (70)

Let me integrate over �( ~H)d�. For this we solve,
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~H(m�; q
�; �;N ; v�) = 0;

�2 � 2� < m; �v > +2V (q)+ < m;m >= 0;

� = < m; �v > �
p
< m; �v >2 � (2V (q)+ < m;m >) (71)

From this we identify,

Hv =
p
< m; �v >2 � (2V (q)+ < m;m >). (72)

Now the reduced Lagrangian for both directions of time evolution along �v�is

~L� (m�; q
�; �;N ; v�;�t)�t = m��q

�� < m; v̂ > jvj�t�Hvjvj�t. (73)

Integrating
R
�(H)d� introduces a new weight 1

jHvj in the path integral, but as we discussed in principle 2.1,
this is supposed to cancel the weight � already present in the path integral so that the path integral yields
a Dirac delta when �t = 0: Now the one step propagator is

G�(q
�; q0�; v�;�t) =

1

(2�)d

Z
exp(im��q

� � i < m; �v > jvj�t� iHvjvj�t)dm� (74)

Then the evolution of the wavefunction is given by

 �;t+�t(q
0�) =

1

(2�)d

Z
exp(im��q

� � i < m; �v > jvj�t� iHvjvj�t) �;t(q�)dm�dq
�: (75)

From this we have the Schrödinger equation form of evolution as

d �;t(q
�)

dt
= �v�@� �;t(q�)� iĤv �;t(q

�)jvj: (76)

The Schrödinger form of evolution equation is dependent on v� = i <  tj[H; q�]j t > :.

B Canonical Quantum Gravity

B.1 Using supermetric

Here I apply principle 2.1 to a theory described by the Hamiltonian constraint of general relativity only. In
case of gravity the Lagrangian density (without the di¤eomorphism constraints) is

L = ���� _h�� �
p
hN [�R+

������ � 1
2�

2

h
]; (77)

H = [�R+
������ � 1

2�
2

h
]: (78)

Given two spatial tensors A�� ; B�� , I can de�ne the scalar product using a supermetric on second rank
spatial tensors as follows:
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< A;B >= A��B�� �
1

2
AB A = A��h

�� B = B��h
��

Please note that the scalar product is not positive de�nite. Let me assume the initial state to be j >. Now
we can de�ne the following quantities:

v�� = i <  j[H;h�� ]j >;
jvj =

p
< v; v >

�v�� =
v��
jvj

Using the �rst principle of dynamics the modi�ed Lagrangian density is given by,

L�t = �����h�� + �(�v���h�� � jvj�t)�
p
hN�t[�R+ 1

h
< �; � >]

= �(��� � ��v��)�h�� � �jvj�t�
p
hN�t[�R+ 1

h
< �; � >]

Let me make a change of variables,

m�� = ��� � ��v�� => ��� = m�� + ��v�� ;

< �; � >=< m;m > +�2 + 2� < �v;m > :

Using this in the Lagrangian density we have,

L�t = � (m��) �h
�� � �jvj�t�

p
hN�t[�R+ < �; � >

h
]: (80)

We can expand H in terms of m�� as follows:

hH = �hR+ < m;m > +�2 + 2� < �v;m >

Now we can solve the H = 0 for � :

� = � < �v;m > �
p
< �v;m >2 �(< m;m > �hR):

We get the e¤ective Hamiltonian density as,

H�(h
�� ; ��) = �

p
< �v; � >2 � (< �; � > �hR): (81)

The e¤ective Lagrangian density is

L��t = �����h��� < v; � > �t�H�(h
�� ; ��)jvj�t (82)

The single-step propagator and the modi�ed Schrödinger equation is given as follows:

31



G�(h
��
x ; h0��x ) =

Z
exp(i

Z
L�;x�txd3x)d��;x; (83)

dDj �;t > = i

Z �
< vx; �̂x > �Ĥv(h

��
x ; �̂�;x)jvxj

�
dtxd

3xj �;t >;

v��x = i <  j[Hx; h
��
x ]j > :

In the three equations dependence on location is made explicit. Principle 2.3 describes how dtx is dealt with.

B.2 Using normal metric

Given two spatial tensors A�� and B�� , I can de�ne the scalar product as follows:

< A;B >= A��B�� (84)

This metric is positive de�nite. Using the �rst principle of dynamics the modi�ed Lagrangian density is
given by,

L�t = �����h�� + �(�v���h�� � jvj�t)�
p
hN�t[�R+ 1

h
(< �; � > �1

2
< h; � >2)]

= �(��� � ��v��)�h�� � �jvj�t�
p
hN�t[�R+ 1

h
(< �; � > �1

2
< h; � >2)] (85)

and the Hamiltonian constraint is,

H =
p
h[�R+ 1

h
(< �; � > �1

2
< h; � >2)] (86)

Let me make a change of variable,

m�� = ��� � �v�� => ��� = m�� + �v�� ;

< �; � >=< m;m > +�2 < �v; �v > +2� < �v;m >;

< h; � >=< h;m > +� < h; �v > :

We can expand H in terms of m�� as follows:

p
hH = �hR+ < m;m > �1

2
< h;m >2

+�2( < �v; �v > �1
2
< h; �v >2) + �(< �v;m > � < h; �v >< h;m >)

Let us solve the Hamiltonian constraint for �. We �nd � by de�ning functions a; b and c;

a = (1� 1
2
< h; �v >2);

b = (< �v;m > � < h; �v >< h;m >);

c = �hR+ < m;m > �1
2
< h;m >2;

� = �< �v;m > � < h; �v >< h;m >

2(1� 1
2 < h; �v >2)

�
p
b2 � 4ac

2(1� 1
2 < h; �v >2)

:
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We get the e¤ective Hamiltonian density as,

H�(h
�� ;m�) =

p
b2 � 4ac

2(1� 1
2 < h; �v >2)

: (88)

The e¤ective Lagrangian density, the single-step propagator, and the modi�ed Schrödinger equation are
given, with dependence on location made explicit, by,

L�;x�tx = ��x;���h��x � (< �vx; �x > � < hx; �vx >< hx; �x >

2(1� 1
2 < hx; �vx >2)

jvxj�tx �H�(h
��
x ; ��;x)jvxj�tx; (89)

G�(h
��
x ; h0��x ) =

Z
exp(

Z
L�;x�txd3x)d��;x; (90)

dDj �;t >= i

Z �
(< �vx; �̂x > � < hx; �vx >< hx; �̂x >

2(1� 1
2 < hx; �vx >2)

� Ĥv;x(h
��
x ; �̂�;x)jvxj

�
dtxd

3xj �;t > : (91)

C Gravity-Matter-like Evolution: An Example

In the present universe, at near �at space-times encountered, the local matter does not signi�cantly in�uence
the gravitational �eld. The gravitational metric gets contributions only in the form of �uctuations. Let me
study this using a very simpli�ed example of a single point system. Let the total Hamiltonian H at each
point is given by the sum of a background (gravitation-like) term Hg and a matter-like term Hm:

H = Hg(q
�; p�) +Hm(�; �; q

�): (92)

where Hg is �nite and Hm � 0 in the region of the phase space of the theory where the wavefunction of the
theory is �nite.
To simplify the problem let me assume the Hg is given by a term of the form,

Hg = E2 � hg(PI ; QI); (93)

where the E is the momentum along the direction of time �ow in con�guration space given in the principle
2.1 and hg(PI ; QI) are the remaining contributions. Assume that the matter-like term does not contribute
to time direction. The total Hamiltonian is,

H = E2 � hg +Hm; (94)

with E2 � hg >> Hm. Along with H = 0, we get E2 � hg >> Hm. Using H = 0 we can solve for positive
root of E; which de�nes H�

E = +
p
hg +Hm �

p
hg +

1

2

Hmp
hg
:

H� =
p
hg +

1

2

Hmp
hg
:

We get the matter-like Hamiltonian Hm along with the additive and the scale factors. We assume time
evolution only along the +ve direction of v�. The scale factor can be absorbed by rescaling time de�nition.
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The new Lagrangian is

PI�Q
I + ����H��t

= PI�Q
I + ����

 p
hg +

1

2

Hmp
hg

!
�t

= PI�Q
I + ���� (2hg +Hm)� ~T ; (95)

where �~T = �t

2
p
hg
. Since the scale factor depends on PI and QI , the scaling must be entered inside the

de�nition of the propagator itself. Let d be the number of q��s. Consider the propagator de�ned in the �rst
principle of dynamics:

G(QI ; T; �;Q0I ; T 0; �0; v�;�t)

=
1

(2�)d

Z
exp(iPI�Q

I + i���� iH��T )d�dPI : (96)

Explicitly,

G(QI ; T; �;Q0I ; T 0; �0; v�;�t)

=
1

(2�)d

Z
exp

(
iPI�Q

I + i���� i
 
hg +

1

2

Hmp
hg

!
�T

)
�(�T � jvj�t)d�dPI ; (97)

The rescaling can be done by modifying �(�T � v �t) as �( 1
2
p
h
�T � v �t). Basically this de�nes a new

selective-time propagator de�ned by w� = 1
2
p
h
�v� and jvj, written formally as

Gs(q
�; q

0�;�t; w�; jvj)

=
1

(2�)d

Z
exp(ip��q

�)�(H))�(w�(p; q
0�)�q� � jvj�t)jvjdp�

=
1

(2�)d

Z
exp(ip��q

�)�(H)�(
1

2
p
hg
�v��q

� � jvj�t)jvjdp�: (98)

Making change of variable to Q�s and P�s we get,

Gs(Q
I ; T; �;Q0I ; T 0; �0;�t; w�; jvj)

=
1

(2�)d

Z
exp

(
iPI�Q

I + i���� i
 
hg +

1

2

Hmp
hg

!
�T

)
�(
�T

2
p
hg
� jvj�t)jvjdPI

=
1

(2�)d

Z
exp

�
iPI�Q

I + i���� i (2hg +Hm) jvj�t
	
�(
�T

2
p
hg
� jvj�t)jvjdPI : (99)

Now the selective evolution of the wavefunction,

 t+�t(T
0; Q0L; �0) =

1

(2�)d

Z
G(QI ; T; �;Q0I ; T 0; �0;w�;�t) t(T;Q

I ; �)dQId��T

=
1

(2�)d

Z
exp(PL�Q

L + ���� (2hg +Hm)�T )

 t(T
0 � 2

p
hgjvj�t; QI ; �)dPLdQId�: (100)
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If we assume  t(T; �t; Q
I ; �) to be a product of the form  gt (T;Q

I) �  mt ( QI ; �); where the �rst is the
gravity-like part and second matter-like part,

 t+�t(T
0; Q0L; �0) =

1

(2�)d

Z
exp(iPL�Q

L � 2ihgjvj�t) gt (T 0 � 2
p
hgjvj�t;QI)dPLdQI

�
Z
exp(����Hmjvj�t) mt (T 0 � 2

p
hgjvj�t;QI ; �)d�d�: (101)

If Hm and  monly slightly depends on �uctuations in q�, by substituting the expectation values of QI in
Hm;we can separate the matter-like and the background-like quantum evolutions:

 gt+�t(T
0; Q0L) =

1

(2�)d�1

Z
exp(iPL�Q

L � 2ihgjvj�t) gt (T 0 � 2
p
hgjvj�t; QI)dPLdQI ; (102)

 bt+�t(< T >;< QI >;�0) =
1

2�

Z
exp(

X
i���� iH 0

mjvj�t) mt (< T >;< QI >;< T >; �)d�d�: (103)

where the H 0
m depends on < q� >. This is a very formal result. Knowing explicitly the function hg can help

this make result more concrete.
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