
Improved Memory-guided Normality with
Specialized Training Techniques of Deep SVDD

1st Xie Lei
Computer of Zhejiang University

Hangzhou, China

Abstract—Deep learning techniques have shown remarkable
success in various tasks, including feature learning, representa-
tion learning, and data reconstruction. Autoencoders, a subset
of neural networks, are particularly powerful in capturing data
patterns and generating meaningful representations. This paper
presents an investigation into the use of deep learning autoen-
coders for both feature extraction and image reconstruction.

Index Terms—Memory, Deep SVDD, Autoencoder, Loss Func-
tion

I. INTRODUCTION

In recent years, deep learning has revolutionized the field
of artificial intelligence, achieving state-of-the-art performance
in many applications. Autoencoders, a type of neural net-
work architecture, have gained significant attention for their
ability to learn compressed, meaningful representations of
high-dimensional data. This paper explores the potential of
deep learning autoencoders to learn intrinsic data features and
generate accurate reconstructions.

II. RELATED WORK

A. Autoencoder Architecture

Autoencoders consist of an encoder and a decoder. The
encoder compresses input data into a lower-dimensional latent
space, while the decoder aims to reconstruct the original
data from the compressed representation. Deep autoencoders,
which include multiple hidden layers, can capture intricate data
hierarchies and dependencies.

III. APPROACH

We reconstruct input frames or predict future ones for
unsuper- vised anomaly detection
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A. Training loss

Number equations consecutively. To make your equations
more compact, you may use the solidus ( / ), the exp
function, or appropriate exponents. Italicize Roman symbols
for quantities and variables, but not Greek symbols. Use a
long dash rather than a hyphen for a minus sign. Punctuate
equations with commas or periods when they are part of a
sentence, as in:

Lloss = LMSE + k ∗ LSV DD OC (1)

For some input space X ⊆ Rd and output space F ⊆ Rp,
let φ(·;W) : X → F be a neural network with L ∈ N hidden
layers and set of weightsW = W1, ...,WL where W ‘ are
the weights of layer l ∈ 1, ..., L. That is, φ(x;W) ∈ F is
the feature representation of x ∈ X given by network φ with
parameters W . The aim of Deep SVDD then is to jointly
learn the network parameters W together with minimizing the
volume of a data-enclosing hypersphere in output space F
that is characterized by radius R > 0 and center c ∈ F which
we assume to be given for now. Given some training data
Dn = x1, ..., xn on X , we define the soft-boundary Deep
SVDD objective as

LSV DD OC = min
W

∥Φ(W )− c∥2 + λ/2

L∑
l=1

∥W l∥2F (2)

The Mean Squared Error (MSE) loss function is a funda-
mental component in the realm of deep learning. It serves
as a critical measure to quantify the discrepancy between the



predicted values generated by a model and the actual target
values present in the dataset. It minimize the L2 distance
between the encoder intput X and the decoder ouput X̂ :

LMSE = ∥X − X̂∥2 (3)

B. Reconstruction loss

In the experiment, the reconstruction loss is Mean Squared
Error (MSE) loss function which achieves great performance.

Lrec = LMSE = ∥X − X̂∥ (4)

IV. EXPERIMENTS

A. Results

TABLE I
MY TABLE

normal class SVDD ROC-AUC MSE ROC-AUC
0 0.518090 0.648595
1 0.575423 0.593060
2 0.519070 0.499428
3 0.475649 0.589599
4 0.542447 0.642375
5 0.545689 0.656750
6 0.537582 0.724450
7 0.518619 0.644719
8 0.652741 0.771980
9 0.606258 0.657551

avg. 0.549157 0.642851

TABLE II
METHODS

Method Avg. AUC-ROC
Autoencoder 0.57
Deep SVDD 0.609

Mocca 0.581347
Ours. 0.642851

V. CONCLUSION

The proposed work designed an new training loss function
which enhances the performance of memory-guided Autoen-
coder. The Deep SVDD, jointly trains a deep neural network
while optimizing a data-enclosing hypersphere in output space,
has experienced a substantial positive impact under the influ-
ence of MSE. Our experiments demonstrate a special training
method which provided avenues for future research directions.
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