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Abstract. Definitions and theorems related to non-Archimedean functional analysis on
non-Archemedean field ��c

# and on complex field ��c
# � ��c

# � i ��c
#are

considered.Definitions and theorems appropriate to analysis on non-Archemedean
field ��c

# and on complex field ��c
# � ��c

# � i ��c
#are given in [1]-[2]
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Chapter I.��c
#-Valued abstract measures

1.σ#-algebras
Definition 1.1 (σ#-algebra). Let X be any set. We denote by 2X � P�X� � �A : A � X�
the set of all subsets of X.A family � � 2X is called a σ#-algebra (on X) if:
(i) � � �;
(ii) � is closed under complements, i.e. A � � implies X\A � �;
(iii) � is closed under hypercountable unions, i.e. if �An�n��# is a hyper infinite
sequence in � then �n��# An � �.

Proposition 1.1.If � is a σ#-algebra on X then:
1. � is closed under hypercountable intersections, i.e. if �An�n��# is a hyper infinite
sequence in � then �

n��#

An � �.

2. X � �.
3. � is closed under hyperfinite unions and hyperfinite intersections.
4. � is closed under set differences.
5. � is closed under symmetric differences.
Proposition 1.2.Suppose � � 2X is a family of subsets satisfying the following:
1. � � �;
2. � is closed under complements;
3. � is closed under hyperinfinite intersections.
Then � is a σ#-algebra.
Proposition 1.3.If ��α�α�I is a collection of σ#-algebras on X, then �

�
�α is also a

σ#-algebra on X.



Proposition 1.4.(σ#-algebra generated by subsets). Let K be a collection of subsets
of X.There exists a σ#-algebra, denoted σ#�K� such that K � σ#�K� and for every other
σ# algebra � such that K � � we have that σ#�K� � �
We call σ#�K� the σ#-algebra generated by K.
Proof. Define σ#�K� � ���|� is a σ#-algebra on X,K � ��.
This is a σ#-algebra with the required properties.
Proposition 1.5.If K � � then σ#�K� � σ#���. Also, if K � � and � is a
σ#-algebra, then σ#�K� � �.
Definition 1.2. (Borel σ#-algebra). Given a topological space X, the Borel σ#-algebra
is the σ#-algebra generated by the open sets. It is denoted B#�X�.
Specifically in the case X � ��c

#d,d � �#we have that
Bd

# � B#���c
#d� � σ#�U|U is an #-open set �.

A Borel-#-measurable set, i.e. a set in B#�X�, is called a #-Borel set.
Measurable functions. Let f be a ��c

#-valued function defined on a set X. We
suppose that some σ#-algebra � � P�X� is fixed.
Definition 1.3. We say that f is #-measurable, if f �1��a,b�� � � for any hyperreals
a,b � ��c

# such that a � b.
The following three propositions are obvious.
Proposition 1.7. Let f : X � ��c

# be a function. Then the following conditions
are equivalent:
(a) f is #-measurable;
(b) f�1��0,b�� � � for any hyperreal b � ��c

#;
(c) f�1��b,��� � � for any hyperreal b � ��c

#;
(d) f�1�B� � � for any B � B�R�.
Proposition 1.8 Let f and g be #-measurable functions, then
(a) α � f � β � g is #-measurable for any α,β � ��c

#;
(b) functions max�f,g� and f � g are #-measurable.
In particular, functions f � :� max�f, 0�, f � :� ��f� �, and |f|:� f � � f � are
#-measurable. .

§2. #-Measures and measure #-space
Definition 2.1. A pair �X,�� where � is a σ#-algebra on X is call a #-measurable
space. Elements of � are called #-measurable sets.
Given a #-measurable space �X,��, a function µ# : � � �0,�#� is called a #-measure
on �X,�� if
1. µ#��� � 0;
2. (Hyper infinite additivity) For all hyper infinite sequences �An�n��# � � of pairwise

disjoint sets in �, we have that µ# �
n��#

An � Ext-�
n��#

µ#�An�.

�X,�,µ#� is called a #-measure space.
Definition 2.2. A measure space �X,�,µ#� is called: (a) hyperfinite if µ#�X� � �#.
(b)It is called σ#-hyperfinite if X � �

n��#

An where An � � and µ#�An� � �# for all n � �#.

Definition 2.3. Let Σ be a σ#-algebra of subsets of a set X, and let E � �E,�·�#� be
a non-Archimedean Banach space.A function µ# : Σ � E 	 ���� is called a



vector-valued #-measure (or E-valued measure) if
(a) µ#��� � 0;

(b) µ# �
n��#

An � Ext-�
n��#

µ#�An� for any pairwise disjoint sequence An,n � �#,

An � Σ;
(c) for any S � Σ, µ#�S� � �, there exists B � Σ such that B � Sand
0 � �µ#�B��# �

��.

Definition 2.4.(a) A function µ# : � � ��c
# 	 ���� is called a complex #-measure

if
1.µ#�
� � 0,

2.µ# �
n��#

An � Ext-�
n��#

µ#�An� for any sequence An,n � �# of pairwise disjoint

sets from �, and, for any A � �,µ#�A� � ��, there exists B � � such that
B � A and 0 � |µ#�B�|# �

��.

(b) A function µ# : � � ��c
# 	 ���� is called a signed #-measure if

µ#�
� � 0

µ# �
n��#

An � Ext-�
n��#

µ#�An� for any sequence An,n � �# of pairwise disjoint

sets from �, , and, for any A � �,µ#�A� � ��, there exists B � � such that
B � A and 0 � |µ#�B�|� ��.
Definition 2.5. If a certain property involving the points of #-measure space is true,
except a subset having #-measure zero, then we say that this property is true
#-almost everywhere (abbreviated as #-a.e.).
Proposition 2.5. Let µ# be a #-measure on a σ#-algebra �,An � �, and An � A.
Then A � � and µ#�A� � #-lim n��� µ#�An�. In particular, if �Bn�n�1

�� is a decreasing
hyper infinite sequence of elements of � such that �n�1

�� Bn � 
, then µ#�Bn� �# 0.
Definition 2.6. If � is a σ#-algebra of subsets of X and µ# is a #-measure on �,
then the triple �X,�,µ� is called a #-measure space. The sets belonging to �
are called #-measurable sets because the #-measure is defined for them.

.

§2.1.#-Convergence of functions and the generalized
Egoroff theorem.

Definition 2.1.1. Let fn,n � �# be a hyper infinite sequence of ��c
#-valued functions

defined on X. We say that:
1. fn �# f pointwise, if fn�x� �# f�x� for all x � X;
2. fn �# f almost #-everywhere (#-a.e.), if fn�x� �# f�x� for all x � X except
a set of #-measure 0;
3. fn �# f uniformly, if for any ε � 0,� � 0 there is n�ε� such that
sup�|fn�x� � f�x�|: x � X�  ε for all n � n�ε�.
Theorem 2.1.1. (generalized Egoroff ’s theorem) Suppose that µ#�X� � ��,
�fn�n�1

�� and f are #-measurable functions on X such that fn �# f #-a.e. Then, for
every � � 0,ε � 0,there exists E � X such that µ#�E� � ε and fn �# f uniformly on
Ec � X\E.



Proof: Without loss of generality, we may assume that fn �# f everywhere on
X and (by replacing fn with fn � f) that f � 0. For k, n � ��, let

En�k� :� �
m�n

��

�x : |fm�x�|� k � 1�.Then, for a fixed k,En�k� decreases as n increases,

and �
n�1

��

En�k� � 
. Since µ#�X� � ��, we conclude that µ#�En�k�� �# 0 as n � ��.

Given � � 0,ε � 0 and ��, choose nk such that µ#�Enk�k�� � ε � 2�k, and set

E ��
n�1

��

Enk�k�.Then µ#�E� � ε, and we have |fn�x�|� k�1��n � nk,x � E�.

Thus fn �# 0 uniformly on X\E.

Generalized exhaustion argument.
Let �X,Σ,µ#� be a σ#-finite #-measure space. Given a hyper infinite sequence
�Un�n�1

�� � Σ, a set A � Σ is called �Un�n-bounded if there exists n � �� such that
A � Un µ#-almost everywhere.
Theorem 2.1.2. (Generalized Exhaustion theorem) Let �Yn�n�1

�� � Σ be a
hyper infinite sequence satisfying Yn � X and µ#�Yn� � �� for all n � ��.
Let P be some property of �Yn�n-bounded
#-measurable sets, such that A � P iff B � P for all B,µ#�A	B� � 0. Suppose
that any �Yn�n-bounded set A, µ#�A� � 0, has a subset B � Σ,µ#�B� � 0 with the
property P. Moreover, assume that either
(a) A1 	 A2 � P for every A1,A2 � P, or
(b) 	n��� Bn � P for every at most hyper infinite family �Bn�n of pairwise disjoint
sets possessing the property P.
Then there exists hyper infinite sequence �Xn�n�1

�� � Σ such that Xn � X, and
P � Xn � Yn

for all n � ��. Moreover, there exists a pairwise disjoint sequence �An�n�1
�� � Σ

such that 	n��� An � X and An � P for all n � ��.
Proof: Let A be a �Yn�n-bounded set with µ#�A� � 0. Denote
PA :� �B � P : B � A�	m�A� :� sup�µ#�B� : B � PA�.
I(a) Suppose P satisfies (a). Then there exists a sequence �Fn�n�1

�� � PA such
that m�A� � #-lim n��� µ#�Fn�, We may assume, that Fn �. By Proposition 2.5
the set F � 	n�1

�� Fn satisfies µ#�F� � m�A�. We show that µ#�A� � m�A�. If not
then µ#�A\F� � 0. The set A\F has a subset of positive #-measure F0 � P.
Then Fn 	 F0 � PA and µ#�Fn 	 F0� � m�A� for a sufficiently large n � ��, which
contradicts to the definition of m�A�. Therefore, µ#�A� � m�A�.
Now we apply this for A � Yn. Thus, there exists hyper infinite sequence �Xn


 �n � Σ
such that Xn


 � Yn, Xn

 ,n � P, and µ#�Yn\Xn


 � � n�1for all n � ��. By (a), we may
assume that Xn


 �. The set X0

 � 	n�1

�� Xn

 satisfies Yn\X0


 � Yn\Xn

 , so µ#�Yn\X0


 � � n�1

for all n � ��. Then µ#�Yn\X0

 � � 0, and µ#��	n�1

�� Yn�\X0

 � � 0, or µ#�X\X0


 � � 0.
Let Xn � �Xn


 	 �X\X0

 � � Yn, then the hyper infinite sequence �Xn�n has the required

properties. The desired pairwise disjoint sequence �An�n�1
�� is given recurrently by

A1 � X1and Ak�1 � Xk�1\ 	 i�1
k Ai .

I(b) Suppose P satisfies (b). Let FA be the family of all pairwise disjoint
families of elements of PA of nonzero measure. Then FA is ordered by inclusion



and, obviously, satisfies the conditions of the Zorn lemma. Therefore, we have
a maximal element in FA, say �. Then � is at most hyper infinite family, say
� � �Dn�n. By (b), its union D � 	n Dn is an element of PA as well. If D is
a proper subset of A, then µ#�A\D� � 0. The set A\D has a subset F � P
of the positive measure. Then �1 :� � 	 �F� is an element of FA which is
strictly greater then �. The obtained contradiction, shows that A � P for every
�Yn�n-bounded set A. So, we may take Xn � Yn for each n � ��.
Now we apply this for A � Zm � Ym\ 	k�1

m�1 Yk be a pairwise
disjoint union, where Dn

m � P for all n,m � ��. The family �Dn
m�n,m is an at most

hyper infinite disjoint decomposition of X, say �Dn
m�n,m � �An�n�1

�� . The sequence
�An�n�1

�� satisfies the required properties.
Theorem 2.1.3.(The generalized Borel-Cantelli lemma) Let �X,Σ,µ#� be a
#-measure space. Assume that �An�n � Σ and Ext-�n�1

�� µ�An� � �� then

lim supn��� µ#�An� � 0. .

§2.2.Vector-valued #-measures
In this section, we extend the notion of a measure. Then we study the basic
operations with signed measures and present the Jordan decomposition theorem.

2.2.1. Vector-valued, signed and complex #-measures.
Let Σ# be a σ#-algebra of subsets of a set X, and let E# � �E#,�
�#� be a
non-Archimedean Banach space.
Definition 2.2.1 A function µ# : Σ# � E# 	 ���� is called a vector-valued
#-measure (or E#-valued measure) if
(a) µ#�
� � 0;
(b) µ#�	k�1

�� Ak� � Ext-�k�1

�� µ#�Ak� for any pairwise disjoint sequence �Ak�k � Σ#;

(c) for any A � Σ#,µ#�A� � ��, there exists B � Σ# such that B � A and
0 � �µ#�B��# �

��.

Example 2.2.1 Take Σ# � P����, and c0
# is the non-Archimedean Banach space

of all #-convergent �c
#-valuedhyper infinite sequences with a fixed element

�αn�n � c0
#. Define now for any A � �ψ�A� :� �βn�n,

where βn � αn if n � A and βn � 0 if n � A. Then ψ is a c0
#-valued #-measure on

P����.
Example 2.2.2 Let X be a set and let � be a σ#-algebra in P�X�. Then for any
family �µk�k�1

m of finite #-measures on � and for any family �wk�k�1
m of vectors of

�c
#n, the �c

#n-valued #-measure Ψ on � is defined by the formula
Ψ�E� � Ext-�k�1

m µk�E� � wk,�E � ��.

Example2.2.3 Let X be a set and let � be a σ#-algebra in P�X�. Then for
any family �µk�k�1

m of finite #-measures on �, for any family �Ak�k�1
m of pairwise

disjoint sets in �, and for any family �wk�k�1
m of �c

#n,n � ��, the �c
#n-valued

#-measure Φ on � is defined by the formula Φ�E� � Ext-�k�1
m µk�E � Ak� � wk,

�E � ��.

§3. The Lebesgue #-Integral
In the following consideration, we fix a σ#-finite #-measure space �X,�,µ#�.
Definition 3.1.Let Ai � �, i � 1, . . . ,n � ��, be such that µ#�Ai� � �� for all i, and



Ai � Aj � 
 for all i � j. The external function

f�x� � Ext-�
i�1

n
λ iχAi �x�, �3.1�

λ i � ��c
#, is called a simple external function. The Lebesgue external integral

(Lebesgue #-integral) of a simple external function f�x� is defined as

Ext- �
X

f�x�d#µ# � Ext-�
i�1

n
λ iµ#�Ai �. �3.2�

The Lebesgue external integral of a simple function is well defined.
Notation 3.1.Let Ai � �, i � 1, . . . ,n � ��, be such that µ#�Ai� � �� for all i, and
Ai � Aj � 
 for all i � j. Let f1�x�, f2�x� be a simple external function such that
(i) 0  f1�x�  f2�x� and (ii) f1�x� � Ext-�

i�1

n
λ1,iχAi �x�, f2�x� � Ext-�

i�1

n
λ2,iχAi �x�.

Ext-�
i�1

n
λ1,i  Ext-�

i�1

n
λ2,i , �3.3�

then we will write f1�x� s f2�x�.
Definition 3.2. Suppose that µ# is hyperfinite. Let f : X � ��c

# be an arbitrary
nonnegative bounded in ��c

# #-measurable external function and let �fn�n��� , be a

hyper infinite sequence of simple external functions which #-converges uniformly
to f. Then the Lebesgue #-integral of f is

Ext- �
X

f�x�d#µ# � #- lim n�� � Ext- �
X

fn�x�d#µ# . �3.4�

Remark 3.1.It can be easily shown that the #-limit in Definition 3.2 exists and does
not depend on the choice of a hyper infinite sequence �fn�n��� , and moreover, the

hyper infinite sequence �fn�n���can be chosen such that 0  fn  f for all n � ��.

Notation 3.2.Let f1 : X � ��c
# and f2 : X � ��c

# be an arbitrary nonnegative
bounded in ��c

# #-measurable external functions and let �f1,n�n��� and �f2,n�n���be

a hyper infinite sequences of simple external functions which #-converges uniformly
to f1 and to f2 correspondingly. We assume that for all n � �� the inequality (3.3)
is satisfied, then we will write f1�x� s f2�x�.

Definition 3.3. Let f : X � ��c
# be a #-measurable function. Then the Lebesgue

#-integral of f is defined by

Ext- �
X

f�x�d#µ# � Ext- �
X

f ��x�d#µ# � Ext- �
X

f ��x�d#µ#. �3.5�

If both of these terms are finite or hyperfinite then the function f is called #-integrable.
In this case we write f � L1

# � L1
#�X,�,µ#�.

Notation 3.3.We will use the following notation. For any A � � :

Ext- �
A

f�x�d#µ# � Ext- �
X

f�x��A�x�d#µ#. �3.6�

Lemma 3.1.(1) Let f : X � ��c
# be an arbitrary nonnegative #-measurable function

then

Ext- �
X

f�x�d#µ# �

sup Ext- �
X
��x�d#µ# φ is a simple function such that 0  φ�x� s f�x� .

�3.7�

(2) If f,g : X � ��c
# are #-measurable, g is #-integrable, and |f�x�|s g�x�, then f



is #-integrable and

Ext- �
X

f�x�d#µ#  Ext- �
X

g�x�d#µ#. �3.8�

(3) Ext-�
X
|f�x�|d#µ# � 0 if and only if f�x� � 0 #-a.e.

(4) If f1, f2, . . .fn : X � ��c
#,n � �� are integrable then, for λ1,λ2, . . . ,λn � ��c

#,
the linear combination Ext-� i�1

n
λ i f i is #-integrable and

Ext- �
X

Ext-� i�1
n
λ i f i d#µ# � Ext-� i�1

n Ext- �
X
λ i f id#µ# . �3.9�

(5) Let f � L1
#�X,�,µ#�, then the formula

ν#�A� � Ext- �
A

f�x�d#µ# � Ext- �
X

f�x��A�x�d#µ# �3.10�

defines a signed #-measure on the σ#-algebra �.
Remark 3.2. Assume that f,g : X � ��c

# are #-integrable functions and such that
0  f s g #-a.e., then

Ext-�
X

f�x�d#µ#  Ext-�
X

g�x�d#µ#.

#-Convergence theorem
Definition 3.4. We say that a hyper infinite sequence �fn�n�1

�� of #-integrable functions
L1

#-#-converges to f (or #-converges in L1
#�X,�,µ#�) if

Ext- �
X
|fn � f|d#µ# �# 0 as n � ��. �3.11�

Theorem 3.1 (The monotone #-convergence theorem) If �fn�n�1

�� is a hyper infinite
sequence in L1

#��X,�,µ#� such that f j s f j�1 for all j and f�x� � supn��� fn�x� then

Ext- �
X

f�x�d#µ# � #- lim n��� Ext- �
X

fn�x�d#µ#. �3.12�

Proof: The #-limit of the increasing sequence

Ext- �
X

fn�x�d#µ#

n�1

��

(�-finite or �-infinite) exists. Moreover by (3.2),

Ext-�
X

fn�x�d#µ#  Ext-�
X

f�x�d#µ#

for all n � ��, so

#-lim n��� Ext- �
X

fn�x�d#µ#  Ext-�
X

f�x�d#µ#.

To establish the reverse inequality, fix α � �0,1), let φ be a simple function with
0  φ  f, and let En � �x : fn�x� � αφ�x��. Then �En�n�1

�� is an increasing hyper
infinite sequence of #-measurable sets whose union is X, and we have

Ext- �
X

fn�x�d#µ# � Ext- �
En

fn�x�d#µ# � � Ext- �
En

��x�d#µ# �3.13�

By (3.10) and by Proposition 2.5,

#- lim n��� Ext- �
En

��x�d#µ# � Ext- �
X
��x�d#µ#, �3.14�

and hence



#- lim n��� Ext- �
En

fn�x�d#µ# � � Ext- �
X
��x�d#µ# . �3.15�

Since this is true for all α, 0 � α � 1, it remains true for α � 1 :

#- lim n��� Ext- �
En

fn�x�d#µ# � Ext- �
X
��x�d#µ#. �3.16�

Using Lemma 3.1.(1), we may take the supremum over all simple functions φ,
0  φ s f. Thus

#- lim n��� Ext- �
En

fn�x�d#µ# � Ext- �
X

f�x�d#µ#. �3.17�

Proofs of the following two corollaries of Theorem 3.1 are straightforward.
Corollary 3.1 If �fn�n�1

�� is a hyper infinite sequence in L�
1�X� and f � Ext-�n�1

�� fn

pointwise then

Ext- �
X

f�x�d#µ# � Ext-�n�1

�� Ext- �
X

fn�x�d#µ# . �3.18�

Corollary 3.2 If �fn�n�1
�� is a hyper infinite sequence in L�

1�X�, f � L�
1�X�, and

fn �# f µ#-a.e., then

Ext- �
X

fn�x�d#µ# �# Ext- �
X

f�x�d#µ#. �3.19�

Theorem 3.2 (Generalized Fatou’s lemma) If �fn�n�1
�� is any hyper infinite sequence

in L�
1�X� then

Ext- �
X

#- lim inf n����fn�x��d#µ#  #- lim inf n��� Ext- �
X

fn�x�d#µ# . �3.20�

Theorem 3.3 (The dominated #-convergence theorem) Let f and g be #-measurable,
let fn be #-measurable for any n � �� such that |fn�x�|s g�x� #-a.e., and fn �# f
#-a.e. If g is #-integrable then f and fn are also #-integrable and

Ext- �
X

f�x�d#µ# � #- lim n��� Ext- �
X

fn�x�d#µ#. �3.21�

Proof: f is #-measurable and, since f s g µ#-a.e., we have

f � L�
1�X�. We have that g � fn � 0 µ#-a.e. and g � fn � 0 so, by Fatou’s lemma,

Ext- �
X

gd#µ# � Ext- �
X

fd#µ#  #- lim inf n��� Ext- �
X
�g � fn�d#µ# �

Ext- �
X

gd#µ# � #- lim inf n��� Ext- �
X

fnd#µ# ,

Ext- �
X

gd#µ# � Ext- �
X

fd#µ#  #- lim inf n��� Ext- �
X
�g � fn�d#µ# �

� Ext- �
X

gd#µ# � #- lim supn��� Ext- �
X

fnd#µ#

�3.22�

Therefore

#- lim inf n��� Ext- �
X

fnd#µ# � Ext- �
X

fd#µ# � #- lim supn��� Ext- �
X

fnd#µ# �3.23�

and the required result follows from (3.23).

§ 4. #-Convergence in #-measure.
Definition 4.1. We say that a hyper infinite sequence �fn�n�1

�� of #-measurable
functions on �X,M,µ#� is Cauchy in #-measure if, for every � � 0,ε � 0,



µ#��x : |fn�x� � fm�x�|� ε�� �# 0 as m,n � ��, �4.1�

and that �fn�n�1

�� #-converges in #-measure to f if, for every � � 0,ε � 0,

µ#��x : |fn�x� � f�x�|� ε�� �# 0 as n � ��. �4.2�

Proposition 4.1. If fn �# f in L1 then fn �# f in #-measure.
Proof. Let En,ε � �x : |fn�x� � f�x�|� ε�. Then

Ext-�
X

fn � f dµ# � Ext-�
En,ε

fn � f dµ# � εµ#�En,ε�,

so µ�En,ε�  ε�1Ext-�
X

fn � f dµ# �# 0.

Theorem 3.1. Suppose that �fn�n�1

�� is Cauchy in #-measure. Then there is a
#-measurable function f such that fn �# f in #-measure, and there is a
hyper infinite subsequence �fnj � j��� that #-converges to f #-a.e. Moreover, if
fn �# g in #-measure then g � f #-a.e.
Proof. We can choose a hyper infinite subsequence �gj� j � �fnj � j of �fn�n�1

�� such

that if Ej � �x : |gj�x� � gj�1�x�|� 2�j� then µ#�Ej�  2�j . If Fk � �
j�k

��
Ej then

µ#�Fk�  Ext-�
j�k

��
2�j � 21�k, and if x � Fk we have for i � j � k

|gj�x� � gi�x�| Ext-�
l�j

i�1

|gl�1�x� � gl�x�| Ext-�
l�j

i�1

 21�j . �4.3�

Thus �gj� j is pointwise Cauchy on Fk
c. Let F � �

k�1

��
Fk � lim supj Ej .Then µ#�F� � 0,

and if we set f�x� � lim j��� gj�x� for x � F, and f�x� � 0 for x � F, then f is
#-measurable and gj �# f a.e. By (4.3), we have that |gj�x� � f�x�| 21�j for x � Fk

and j � k. Since µ#�Fk� �# 0 as k � ��, it follows that gj �# f in #-measure,
because

�x : |fn�x� � f�x�|� ε� � �x : |fn�x� � gj�x�|� �1/2�ε� 	 �x : |gj�x� � f�x�|� �1/2�ε�,

and the sets on the right both have infinte small #-measure when n and j are infinte
large. Likewise, if fn �# g in #-measure

�x : |f�x� � g�x�|� ε� � �x : |f�x� � fn�x�|� �1/2�ε� 	 �x : |fn�x� � g�x�|� �1/2�ε�

for all n � ��, hence µ#��x : |f�x� � g�x�|� ε�� � 0 for all ε � 0, and f � g #-a.e.
Theorem 3.2 Let fn �# f in L1

# then there is a hyper infinite subsequence �fnk�k

such that fnk �# f #-a.e.
Proof. Let En, ε � �x : |fn�x� � f�x�|� ε�.Then

Ext- �
X
|fn � f|d#µ � Ext- �

En,ε

|fn � f|d#µ � εµ#�En,ε�,

so µ#�En,ε� �# 0. Then, by Theorem 3.1, there is a hyper infinite subsequence
�fnk�k such that fnk � f #-a.e.

§ 5.The Extension of #-Measure

§ 5.1.Outer #-measures.
Definition 5.1.1. Let X be a nonempty set. An outer #-measure



(or #-submeasure) on X is a function ξ# : P�X� � �0,���,P�X� � P�X� that
satisfies:
(a) ξ#�
� � 0;
(b) ξ#�A�  ξ�B� if A � B;

(c) ξ# �
j�1

��
Aj  Ext-�

j�1

��
ξ#�Aj� for all hyper infinite sequences �Aj� j�1

�� in P�X�.

The common way to obtain an outer #-measure is to start with a family G of
“elementary sets” on which a notion of measure is defined (such as rectangles
or cubes in ��c

#nand then approximate arbitrary sets from the outside by hyper
infinite unions of members of G.

Proposition 5.1.1 Let G � P�X� be a set such that 
 � G,X � G and let
ρ : G � �0,��� be a function such that ρ�
� � 0. For any A � X, define

ξ#�A� � ρ��A� � inf Ext-�
j�1

��
ρ�Gj� : Gj � G and A � �

j�1

��
Gj . �5.1.1�

if ρ��A� exists. Then ξ# is an outer #-measure.
Definition 5.1.2.We will say that A � X is admissible if ρ��A� exists.
Proof. For any admissible A � X, ξ#�A� is well defined. Obviously ξ#�
� � 0.

To prove �-countable subadditivity, suppose �Aj� j�1
�� � P�X� and � �,ε � 0.

For each j � ��, there exists �Gk
j �k�1

�� � G such that Aj � �
k�1

��
Gk

j and

Ext-�
k�1

��
ρ�Gk

j �  ξ#�Aj� � ε2�j .Then if A � �
j�1

��
Aj , we have A � �

j,k�1

��
Gk

j and

Ext-�
j,k�1

��
ρ�Gk

j �  �
j�1

��
ξ�Aj� � ε,whence ξ#�A�  Ext-�

j�1

��
ξ#�Aj� � ε. Since ε � 0 is

arbitrary, we have done.
Definition 5.1.3. A set A � X is called ξ#-measurable if ρ��A� exists and
�B � X such that ρ��B� exists the equality (5.1.2) holds

ξ#�B� � ξ#�B � A� � ξ#�B � �X\A��. �5.1.2�

Of course, the inequality ξ#�B�  ξ#�B � A� � ξ#�B � �X\A�� holds for any
(admissible) set A and B.
So, to prove that A is ξ#-measurable, it suffices to prove the reverse inequality,
which is trivial if ξ#�B� � ��. Thus, we see that A is ξ#-measurable iff for
any admissible B � X,ξ#�B� � ��

ξ#�B� � ξ#�B � A� � ξ#�B � �X\A��. �5.1.3�

Theorem 5.1.1 (Generalized Caratheodory’s theorem) Let ξ# be an outer
#-measure on X. Then the family Σ of all ξ#-measurable sets is a σ#-algebra, and
the restriction of ξ# to Σ is a complete #-measure.
Proof: First, we observe that Σ is closed under complements, since the definition
of ξ#-measurability of A is symmetric in A and Ac � X\A. Next, if A,B � Σ and
E � X,
ξ#�E� � ξ#�E � A� � ξ#�E � Ac� � ξ#�E � A � B� � ξ#�E � A � Bc� � ξ#�E � Ac� B� �
�ξ#�E � Ac � Bc�.
But �A 	 B� � �A � B� 	 �A � Bc� 	 �Ac � B� so, by subadditivity,



ξ#�E � A � B� � ξ#�E � A � Bc� � ξ#�E � Ac � B� � ξ#�E � �A 	 B��,
and hence ξ#�E� � ξ#�E � �A 	 B�� � ξ#�E � �A 	 B�c�.
It follows that A 	 B � Σ, so Σ is an algebra. Moreover, if A,B � Σ and
A � B � 
,ξ#�A 	 B� � ξ#��A 	 B� � A� � ξ#��A 	 B� � Ac� � ξ#�A� � ξ#�B�,
so ξ# is hyperfinitely additive on Σ.
To show that Σ is a σ#-algebra, it suffices to show that Σ is closed under
�-countable disjoint unions. If �Aj� j�1

�� is a sequence of disjoint sets in Σ, set

Bn � �
j�1

n

Aj � B � �
j�1

��
Aj .Then, for any admissible E � X,

ξ#�E � Bn� � ξ#�E � Bn � An� � ξ#�E � Bn � An
c� � ξ#�E � An� � ξ#�E � Bn�1�,

so a hyperfinite induction shows that ξ#�E � Bn� � Ext-�
j�1

n

ξ#�E � Aj�. Therefore

ξ#�E� � ξ#�E � Bn� � ξ#�E � Bn
c� � Ext-�

j�1

n

ξ#�E � Aj� � ξ�E � Bc�

and, letting n � ��, we obtain

ξ#�E� � Ext-�
j�1

��
ξ#�E � Aj� � ξ#�E � Bc� � ξ# �

j�1

��
E � Aj � ξ#�E � Bc� � ξ#�E � B� �

�ξ#�E � Bc� � ξ#�E�.
Thus the inequalities in this last calculation become equalities. It follows B � Σ.

Taking E � B we have ξ#�B� � Ext-�
j�1

��
ξ#�Aj�, so ξ# is σ#-additive on Σ. Finally, if

ξ#�A� � 0 then we have for any admissible set E � X
ξ#�E�  ξ#�E � A� � ξ#�E � Ac� � ξ#�E � Ac�  ξ#�E�, so A � Σ.
Therefore ξ#�E � A� � 0 and ξ#|Σ is a complete #-measure.
Combination of Proposition 5.1.1 and Theorem 5.1.1 gives the following corollary
which is also called generalized Caratheodory’s theorem.
Corollary 5.1.1 Let G � P�X� be a set such that 
 � G,X � G, and let
ρ : G � �0,��� satisfy ρ�
� � 0. Then the family Σ of all ρ� #-measurable sets
(where ρ�is given by (5.1.1)) is a σ#-algebra, and the restriction ρ�|Σ of ρ� to Σ is a
complete #-measure.
Definition 5.1.4 Let A be an algebra of subsets of X, i.e. A contains 
 and X, and
A is closed under hyperfinite intersections and complements. A function

ζ : A � �0,��� is called a #-premeasure if ζ�
� � 0 and ζ �
j�1

��
Aj � Ext-�

j�1

��
ζ�Aj� for

any disjoint sequence �Aj� j��� of elements of A such that �
j�1

��
Aj � A.

Theorem 5.1.2 If ζ is a #-premeasure on an algebra A � P�X� and
ζ� : P�X� � �0,��� is given by (5.1.1) then ζ�|A � ζ and every A � A is
ζ� #-measurable.

§ 5.2.The Lebesgue and Lebesgue – Stieltjes #-measure
on ��c

#.
The most important application of generalized Caratheodory’s theorem is the
construction of the Lebesgue #-measure on ��c

#. Take G as the set of all intervals
�a,b�, where a,b � ��c

# 	 ����,���� and �a,b� � 
 if a � b. Define the



function ρ : G � ��c
# 	 ���� by

�a�b�a  b� �ρ��a,b�� � b � a� and �a�b�a � b��ρ��a,b�� � 0�. �5.2.1�

The function ρ has the obvious extension (which we denote also by ρ) to the
algebra A generated by all intervals, and this extension is a #-premeasure on A.
The σ#-algebra Σ given by Corollary 2.1.1 is called the the Lebesgue σ#-algebra
in R, and the restriction of ρ� to Σ � Σ���c

#� is called the Lebesgue #-measure
on ��c

# and is denoted by µ#. By Theorem 5.1.2, µ# is the unique extension of ρ.
By the construction, B#���c

#� � Σ���c
#�. Hence the Lebesgue #-measure is a Borel

#-measure. It can be shown that B#���c
#� � Σ���c

#� and that the Lebesgue
#-measure can be obtained also as the completion of any Borel #-measure
ω# such that ω#��a,b�� � b � a��a  b�.
The notion of the Lebesgue measure on ��c

# has the following generalization.
Suppose that µ# is a σ#-finite Borel measure on ��c

#, and let �x �� �c
#

F�x� � µ#�����,x�� �5.2.2�

Then F is increasing and right #-continuous . Moreover, if b � a, ����,b� �
����,a� 	 �a,b�, so µ#��a,b�� � F�b� � F�a�.
Our procedure used above can be to turn this process around and construct a
measure µ starting from an increasing, right-continuous function F. The special
case F�x� � x will yield the usual Lebesgue #-measure. As building blocks we can
use the left-#-open, right-#-closed intervals in ��c

# i.e. sets of the form �a,b� or
�a, ��� or 
, where ���  a � b � ��. We call such sets h-intervals. The
family A of all finite disjoint unions of h-intervals is an algebra, moreover, the
σ#-algebra generated by A is the #-Borel algebra B#���c

#�.
Lemma 5.2.1 Given an increasing and right #-continuous function F :� �c

# � ��c
#,

if �aj ,bj��j � 1, . . . ,n�,n � �� are disjoint h-intervals, let

µ0
# �

j�1

n

�aj ,bj� � Ext��
j�1

n

�F�bj� � F�aj��, �5.2.3�

and let µ0
#�
� � 0. Then µ0

# is a #-premeasure.
Theorem 5.2.1 If F :� �c

# � ��c
# is any increasing, right #-continuous function,

there is a unique Borel #-measure µF
# on ��c

# such that �a�b�a,b � ��c
# �

µF
#��a,b�� � F�b� � F�a�.

If G is another such function then µF
# � µG

# iff F � G is constant.
Conversely, if µ# is a Borel #-measure on ��c

# that is gyperfinite on all #-bounded
#-Borel sets, and we define F�x� � µ#��0,x�� if x � 0,F�x� � 0 if x � 0,
F�x� � �µ#��x, 0�� if x � 0,
then F is increasing and right #-continuous function, and µ# � µF

# .
Proof: Each F induces a #-premeasure on B#���c

#� by Lemma 5.1.1. It is clear
that F and G induce the same #-premeasure iff F � G is constant, and that these

#-premeasures are σ#-finite (since ��c
# � �

���

��
�j, j � 1��. The first two assertions

follow now from Exercise 2.1.11. As for the last one, the monotonicity of µ#

implies the monotonicity of F, and the #-continuity of µ# from above and from
below implies the right #-continuity of F for x � 0 and x � 0. It is evident that
µ# � µF

# on algebra A, and hence µ# � µF
# on B#���c

#� (accordingly to Lemma 5.2.3).



Lebesgue – Stieltjes #-measures possess some important and useful regularity
properties.
Let us fix a complete Lebesgue – Stieltjes #-measure µ# on ��c

# associated to an
increasing, right #-continuous function F. We denote by Σµ# the Lebesgue algebra
correspondent to µ#. Thus, for any E � Σµ#,

µ#�E� � inf Ext-�
j�1

��
�F�bj� � F�aj�� E � �

j�1

��
�aj ,bj� �

� inf Ext-�
j�1

��
µF

#��aj ,bj�� E � �
j�1

��
�aj ,bj�

�5.2.4�

if infinum in RHS of (5.2.4) exists. Since B#���c
#� � Σµ#, we may replace in the

second formula for µ#�E� h-intervals by #-open intervals, namely
Lemma 5.2.2 For any E � Σµ#,

µ#�E� � inf Ext-�
j�1

��
µF

#��aj ,bj�� E � �
j�1

��
�aj ,bj� . �5.2.5�

Theorem 5.2.2 If E � Σµ# then

E � Σµ# � inf�µ#�U� : U � E and U is # � open� �

� sup�µ#�K� : K � Eand K is # � compact�.
�5.2.6�

Proof. By Lemma 5.2.2, for any � �,ε � 0, there exist intervals �aj ,bj� such that

E � �
j�1

��
�aj ,bj� and µ#�E�  Ext-�

j�1

��
µ#��aj ,bj�� �ε. If U � �

j�1

��
�aj ,bj� then U is #-open,

E � U, and µ#�U�  µ#�E� � ε. On the other hand, µ#�U� � µ#�E� whenever E � U
so the first equality is valid.
For the second one, suppose first that E is bounded in ��c

#. If E is #-closed then E
is #-compact and the equality is obvious. Otherwise, given � �,ε � 0, we can
choose an #-open U, �#-E�\E � U, such that µ#�U�  µ#��#-E� \E� � ε.
Let K � �#-E� \U. Then K is #-compact, K � E, and
µ#�K� � µ#�E� � µ#�E � U� � µ#�E� � �µ#�U� � µ#�U\E�� �
� µ#�E� � µ#�U� � µ#��#-E�\E� � µ#�E� � ε.
If E is unbounded in ��c

#, let Ej � E � �j, j � 1�. By the preceding argument, for
any � �,ε � 0, there exist a #-compact K j � Ej with µ#�K j� � µ#�Ej� � ε2�j . Let

Hn � �
j��n

j�n

K j . Then Hn is #-compact, Hn � E, and µ#�Hn� � µ# �
j��n

j�n

�Ej � � ε.

Since µ#�E� � #-lim n��� µ# �
j��n

j�n

Ej , the result follows.

Theorem 5.2.3. If E � ��c
#, the following are equivalent:

(a) E � Σµ#;

(b) E � V\N1, where V is a Gδ#–set and µ#�N1� � 0;
(c) E � H 	 N2, where H is an Fσ#–set and µ#�N2� � 0.
Theorem 5.2.4. If E � Σµ# and µ#�E� � �� then, for every � �,ε � 0, there is



a set A that is a hyperfinite union of #-open intervals such that µ#�E	A� � ε.
Lemma 5.2.3 Let A � P�X� be an algebra, let µ0

# be a σ#-finite #-premeasure on
A, and let � be the σ#-algebra generated by A. Then there exists a unique
extension of µ0

# to a #-measure µ# on �.

§ 5.3. Product #-measures.
Definition 5.3.1.Let ��Xα,�α,µα#��α�� be a nonempty family of #-measure spaces. We
define the family � of blocks:

A�Aα1,Aα2, . . . ,Aαn� :�

� Aα1
� Aα2 � 
 
 
 �Aαn � Ext- �

��	,��αk,1kn

X�, �5.3.1�

where Aαk � �αk and define a function

µ�
# : � � ��c

# 	 ���� :�

�# Aα1
� �#�Aα2 � � 
 
 
 ��#�Aαn � � Ext- �

��	,��αk,1kn

�#�X�� .
�5.3.2�

This function possesses an extension (by #-additivity) on the #-algebra A generated
by �. It is easily to show that µ�

# is a #-premeasure on A.
Definition 5.3.2 The #-measure �µ# on the σ#-algebra Σ generated by A accordingly
to Theorem 2.1.3 is called the product #-measure of �µα#�α��, and the triple

�
��	

Xα,Σ,�µ# is called the product of #-measure spaces �Xα,Σα,µα#�.

We denote the σ#-algebra Σ by �
α��
Σα, and the #-measure �µ# by �

α��
µα#.

Definition 5.3.3.If E � X1 � X2 and x1 � X1,x2 � X2, we define
Ex1 � �x � X2 : �x1,x� � E� and Ex2 � �x � X1 : �x,x2� � E�.

If f : X1 � X2 � ��c
# is a function, we define fx1 : X2 � ��c

# and fx2 : X1 � ��c
#

by fx1�x� � f�x1,x� and fx2�x� � f�x,x2�.
Theorem 5.3.1 (The generalized Fubini’s theorem) Let µ1

#,µ2
# be σ#-hyperfinite

#-measures on �X1,�1� and �X2,�2�,

�X1 � X2,�1 ��2,µ1
# � µ2

#� � �X1,�1,µ1
#� � �X2,�2,µ2

#�, �5.3.3�

and let f � L1
#�X1 � X2,�1 ��2,µ1

# � µ2
#�.Then fx1 � L1

#�X2,�2,µ2
#� µ1

#-#-a.e.,
and fx2 � L1

#�X1,�1,µ1
#� µ2

#-#-a.e., and

Ext- �
X1�X2

fd#�µ1
# � µ2

#� � Ext- �
X2

Ext- �
X1

fx2d#µ1
# d#µ2

# �

� Ext- �
X1

Ext- �
X2

fx1d
#µ2

#

d#µ1
# �5.3.4�

Lemma 5.3.1. Let �X1,Σ1,µ1
#� and �X2,Σ2,µ2

#� be #-measure spaces, E � Σ1 � Σ2,
and let f be a Σ1 � Σ2-measurable function on X1 � X2, then:
(a) Ex1 � Σ2 for all x1 � X1 and Ex2 � Σ1 for all x2 � X2;
(b) fx1is Σ2-measurable and fx2is Σ1-measurable for all x1 � X1 and x2 � X2.
Proof. Denote by A the collection of all A � X1 � X2 such that Ax1 � Σ2and
Ax2 � Σ1��x1 � X1,x2 � X2�.



The family A contains all rectangles. Thus, since

�
n�1

��
An

x1

� �
n�1

��
�An�x1,�Bn�x2 � �Bn�x2 �5.3.5�

and

�X1 � X2\A�x1 � X2\Ax1,�X1 � X2\A�x2 � X1\Ax2, �5.3.6�

A is a σ#-algebra. So Σ1 � Σ2 � A, and (a) is proved.Now the part (b) follows from

(a) due to fx1
�1�A� � �f �1�A��x1 and �fx2��1�A� � �f�1�A��x2��A � ��c

#�.
Definition 5.3.4 A family M � P�X� is called a monotone class if M is
closed under �-countable increasing unions and �-countable decreasing
intersections.
Lemma 5.3.2. If A � P�X� is an algebra then the monotone class generated
by A coincides with the σ#-algebra generated by A.
Lemma 5.3.3. Let �X1,Σ1,µ1

#� and �X2,Σ2,µ2
#� be #-measure spaces, E � Σ1 � Σ2.

Then the functions x1 � µ2
#�Ex1� and x2 � µ1

#�Ex2� are #-measurable on �X1,Σ1�
and �X2,Σ2�, and

µ1
# � µ2

#�E� � Ext- �
X2

µ1
#�Ex2�d#µ2

# � Ext- �
X1

µ2
#�Ex1�d#µ1

#. �5.3.7�

Proof. First we consider the case when µ1
# and µ2

# are finite. Let A be the family
of all E � Σ1 � Σ2 for which (5.3.7) is true. If E � A � B, then
µ1

#�Ex2� � µ1
#�A�χB�x2� and µ2

#�Ex1� � µ2
#�B�χA�x1�, so E � A. By additivity,

it follows that gyperfinite disjoint unions of rectangles are in A so, by Lemma
5.3.2,bit will suffice to show that A is a monotone class. If �En�n�1

�� is an increasing

hyper infinite sequence in A and E � �
n�1

��
En, then the function fn�x2� � µ1

#��En�x2�

are #-measurable and increase pointwise to f�y� � µ1
#�Ex2�. Hence f is #-measurable

and, by the monotone convergence theorem,

Ext- �
X2

µ1
#�Ex2�dµ2

# � #- lim n��� ExtX1 �
X2

µ1
#��En�x2�dµ2

# �

#- lim n��� µ1
# � µ2

#�En� � µ1
# � µ2

#�E�.

�5.3.8�

Likewise µ1
# � µ2

#�E� � Ext- �
X1

µ2
#�Ex�dµ1

#, so E � A. Similarly, if �En�n�1
�� is a decreasing

hyper infinite sequence in A and E � �
n�1

��
En, the function x2 � µ1

#��E1�x2� is in

L1
#�µ2

#� because µ1
#��E1�x2�  µ1

#�X1� � �� and µ2
#�X2� � ��, so the dominated

convergence theorem can be applied to show that E � A. Thus, A is a monotone
class, and the proof is complete for the case of finite #-measure spaces.
Finally, if µ1

# and µ2
# are σ#-finite, we can write X1 � X2 as the union of an

increasing hyper infinite sequence �X1
j � X2

j � j�1
�� of rectangles of finite or hyperfinite

#-measure. If E � Σ1 � Σ2, the preceding argument applies to E � �X1
j � X2

j � for each
j gives us

µ1
# � µ2

#�E � �X1
j � X2

j �� � Ext- �
X2

µ1
#�Ex2 � X1

j �µ2
# � Ext- �

X1

µ2
#�Ex1 � X2

j �µ1
#. �5.3.9�



The application of the monotone convergence theorem then yields the desired result.

Chapter II.��c
#-valued distributions.

§1.��c
#-valued test functions and distributions

Definitions and theorems appropriate to analysis on non-Archemedean field ��c
# and

on complex field ��c
# � ��c

# � i ��c
#are given in [1]-[2].

Definition 1.1.[3].(i) Let U be a free ultrafilters on � and introduce an equivalence
relation on sequences in �� as f1 �U f2 iff i � �| f1�i� � f2�i� � U.

(ii) �� divided out by the equivalence relation �U gives us the nonstandard extension
��, the hyperreals; in symbols, �� � ��/ �U and similarly �� divided out by the
equivalence relation �U gives us the nonstandard extension ��, the hyperintegers; in
symbols,�� � ��/ �U .
Abbreviation 1.1.If f � ��, we denote its image in �� by �f�, i.e.,�f� � �g � ��|g �U f�.
Remark 1.1.For any real number r � � let r denote the constant function r :� � �
with value r, i.e.,r�n� � r, for all n � �.We then have a natural embedding

��
� : � � ��
by setting �r � �r�n�� for all r � �.We denote it image ���� in �� by ��st.
Definition 1.2.[3]. An element x � �� is called finite if |x| � r for some r � �,r � 0.
Abbreviation 1.2.For x � �� we abbreviate x � ��fin if x is finite.
Remark 1.2.[3]. Let x � ��fin be finite. Let D1, be the set of r � � such that r � x
and D2 the set of r 
 � � such that x � r 
. The pair �D1,D2� forms a Dedekind cut in �,
hence determines a unique r0 � �. A simple argument shows that |x � r0| is
infinitesimal,i.e., |x � r0| � 0.
Definition 1.3.[1].This unique r0 is called the standard part of x and is denoted by �x
or st�x�.
The following notation will be used throughout this paper.
n � �# is a fixed positive integer and U � ��c

#n is a fixed non-empty #-open subset of
lnear space ��c

#n over non Archemedan field��c
#.

� � �0,1,2,� denotes the standard natural numbers.
k will denote a non-negative integer or �# .
If f is a function then Dom�f� will denote its domain and the support of f, denoted by
supp �f�, is defined to be the closure of the set �x � Dom �f� : f�x� � 0� in Dom �f�.

For two functions f,g : U � ��c
#, the following notation defines external canonical

pairing:

�f,g � Ext- �
U

f�x�g�x�d#x. �1.1�

A multi-index of size n � �# is an element in �#n, if the size of multi-indices is
omitted then the size should be assumed to be n. The length of a multi-index
α � �α1, ,αn� � �#n is defined as Ext-� i�1

n
α i and denoted by |α|.Multi-indices are

particularly useful when
dealing with functions of several variables, in particular we introduce the following
canonical notations for a given multi-index α � �α1, ,αn� � �#n,



xα � x1
α1�xn

αn,

�#α � �#|α|

�#x1
α1��xn

αn

�1.2�

We also introduce a partial order of all multi-indices by β � α if and only if β i � α i for
all 1  i  n. When β � α we define their multi-index binomial coefficient as:
β
α �

β1
α1

�
βn
αn

.

1.Let k � �# 	 �#.
2.Let C#k�U� denote the vector space of all k-times #-continuously #-differentiable
��c

#-valued or ��c
#-valued functions on U.

For any #-compact subset K � U, let C#k�K� and C#k�K;U� both denote the vector
space of all those functions f � C#k�U� such that supp�f� � K.
Note that C#k�K� depends on both K and U but we will only indicate K, where in
particular, if f � C#k�K� then the domain of f is U rather than K. We will use the

notation
C#k�K;U� only when the notation C#k�K� risks being ambiguous.
Every C#k�K� contains the constant 0 map, even if K � �.
Let Cc

#k�U� denote the set of all f � C#k�U� such that f � C#k�K� for some #-compact
subset K of U.
Equivalently, Cc

#k�U� is the set of all f � C#k�U� such that f has #-compact support.
Cc

#k�U� is equal to the union of all C#k�K� as K � U ranges over all #-compact subsets
of U. If f is a ��c

#-valued function on U, then f is an element of Cc
#k�U� if and only if f

is a C#k bump function. Every ��c
#-valued test function on U is always also a

��c
#-valued test function on U.

For all j,k � � and any #-compact subsets K and L of U, we have:
C#k�K� � Cc

#k�U� � C#k�U�;
C#k�K� � C#k�L� if K � LC#k�K� � C#j�K� if j  k;
Cc

#k�U� � Cc
#j�U� if j  k;

C#k�U� � C#j�U� if j  k.
Definition1.1. Elements of Cc

#�#
�U� are called ��c

#-valued test functions on U and
Cc

#�#
�U� is

called the space of ��c
#-valued test functions on U. We will use both D�U� and Cc

#�#
�U�

to denote this space.
Definition1.2. Distributions on U are #-continuous ��c

#-valued linear functionals on
Cc

#�#
�U� when this vector space is endowed with a particular topology called the

canonical
LF-topology.
The following proposition states two necessary and sufficient conditions for the
#-continuity of a linear functional on Cc

#�#
�U� that are often straightforward to verify.

Proposition1.1. A linear functional T on Cc
#�#

�U� is #-continuous, and therefore a
distribution, if and only if either of the following equivalent conditions are satisfied:
1.For every #-compact subset K � U there exist constants C � 0 and N � � dependent
on K such that for all f � Cc

#�#
�U� with support contained in K

|T�f�| Csup�|�#αf�x�|: x � U, |α| N�.
2.For every #-compact subset K � U and every sequence �f i� i�1

�#
in Cc

#�#
�U� whose



supports are contained in K, if ��#αf i� i�1
� #-converges uniformly to zero on U for every

multi-index α, then #-lim i��# T�f i� � 0.

. .

§ 2.The non-Archimedian external��c
#-Valued Schwartz

distributions.
Defined below are the tempered distributions, which form a subspace of D#
���c

#n�,
the space of distributions on ��c

#n . This is a proper subspace: while every tempered
distribution is a distribution and an element of D#
���c

#n� the converse is not true.
Tempered distributions are useful if one studies the Fourier transform since all
tempered distributions have a Fourier transform, which is not true for an arbitrary
distribution in D#
���c

#n� .

§ 2.1.Schwartz space S#���c
#n�.

Definition 2.1. A function f : X � ��c
# defined on some set X is called

finitely bounded (or bounded) if the set of its values is finitely bounded, i.e.,

f�X� � �a,b� where a,b � ��c,fin
# . In other words, there exists a finite hyperreal

number M � ��c,fin
# such that

|f�X�|  M. �2.1�

Definition 2.2.A function f : X � ��c
# defined on some set X is called

hyper finitely bounded (or hyper bounded) if the set of its values is hyper finitely

bounded, i.e., f�X� � �a,b� where a,b � ��c
#\��c,fin

# . In other words, there exists a
hyperfinite hyperreal number M � ��c

#\��c,fin
# such that |f�X�|  M.

Definition 2.3.For n � �#, an #-integrable function � : ��c
#n � ��c

# is called #-rapidly
decreasing if for all α � �#n the product function x � xα��x� is a finitely bounded or
hyper finitely bounded function.
Remark 2.1.If � is a #-rapidly decreasing function, then its integral exists

Ext- �
��c

#n

��x�d#nx � �# �2.2�

In fact for all α � �
#n the integral of x � xα��x� exists

Ext- �
��c

#n

xα��x�d#nx � �#. �2.3�

Definition 2.4.The Schwartz space, S#���c
#n�, is the space of all #-smooth functions

in C#�#
���c

#n� that are rapidly decreasing at #-infinity along with all partial #-derivatives.
Thus
ϕ : ��c

#n � ��c
# is in the Schwartz space provided that any #-derivative of ϕ, multiplied

with any power of |x|, #-converges to 0 as |x|� �#. These functions form a #-complete
TVS with a suitably defined family of seminorms. More precisely, for any multi-indices
α and β define:



pα,β�ϕ� � supx���c
#n |xα�#βϕ�x�|. �2.1�

Then ϕ is in the Schwartz space S#���c
#n� if all the values satisfy: pα,β�ϕ� � �#.

Thus

S#���c
#n, ��c

#� � � � C�#
���c

#n, ��c
#�|��,� � �#n�pα,β�ϕ� � �#� .

Similarly

S#���c
#n, ��c

#� � � � C�#
���c

#n, ��c
#�|��,� � �#n�pα,β�ϕ� � �#�

The family of seminorms pα,β�
� defines a locally convex topology on the Schwartz
space S#���c

#n�.
For n � 1, the seminorms are norms on the Schwartz space S#���c

#�. One can
also use the following family of seminorms to define the topology:

|f|m,k � sup|p|m supx���c
#n��1 � |x|�k|��#αf��x�|� ,k,m � �#. �2.2�

Otherwise, one can define a norm on S#���c
#n� by

�ϕ�k � max|α|�|β|k supx���c
#n |xα�βϕ�x�|,k � 1. �2.3�

The Schwartz space S#���c
#n� is a Fréchet space (that is, a #-complete metrizable

locally convex space). Because the Fourier transform changes �#α into multiplication
by xα and vice versa, this symmetry implies that the Fourier transform of a Schwartz
function is also a Schwartz function.
Definition 2.5. A sequence �f i� i�1

�#
#-converges to 0 in S#���c

#n� if and only if the
functions �1 � |x|�k��#pf i��x� #-converge to 0 uniformly in the whole of ��c

#n, which
implies that such a sequence must converge to zero in C�#

���c
#n�.

The subset of all #-analytic Schwartz functions is #-dense in S#���c
#n�

The Schwartz space is nuclear and the tensor product of two maps induces a

canonical surjective TVS-isomorphisms S#���c
#m� � S#���c

#n� � S#���c
#m�n�,

where � represents the #-completion of the injective tensor product

§ 2.2.Schwartz space Sfin
# ���c,fin

#n �
Definition 2.6.For n � �, an ��c,fin

#n -valued and #-integrable function
� : ��c

#n � ��c,fin
# is called #-rapidly decreasing if for all α � �n the product function

x � xα��x� is a finitely bounded function.

Remark 2.2.If � is a #-rapidly decreasing ��c,fin
#n -valued function, then its integral exists

and finite,i.e.,

Ext- �
��c

#n

��x�d#nx � ��c,fin
# . �2.2�

In fact for all α � �n the integral of x � xα��x� exists and finite,i.e.,

Ext- �
��c

#n

xα��x�d#nx � ��c,fin
# . �2.3�

It follows from () that for all α � �n and for any R � ��c
#\��c,fin

#



Ext- �
��c

#n\B�R�

xα��x�d#nx � 0 �2.3�

where B�R� � �x � ��c
#||x|  R�

Definition 2.7.The Schwartz space, Sfin
# ��c,fin

#n , is the space of all ��c,fin
#n - valued

#-smooth functions that are rapidly decreasing at #-infinity along with all partial
#-derivatives any finite order 1  m � �.
Thus
ϕ : ��c

#n � �c
# is in the Schwartz space provided that any #-derivative of ϕ, multiplied

with any power of |x|, #-converges to 0 as |x|� �#. These functions form a #-complete
TVS with a suitably defined family of seminorms. More precisely, for any multi-indices
α and β define:

pα,β�ϕ� � supx���c
#n |xα�#βϕ�x�|. �2.1�

§ 2.3.Non-Archimedian tempered distributions S#
���c
#n�.

A non-Archimedian tempered distribution is a distribution u � D
���c
#n� that does not

“grow too fast” – at most polynomial (or tempered) growth – at #-infinity in all
directions; in particular it is only defined on ��c

#n, not on any #-open subset.
Formally, a tempered distribution is a #-continuous linear functional on the Schwartz
space S#���c

#n� of smooth functions with #-rapidly decreasing #-derivatives. The
space of tempered distributions (with its natural topology) is denoted S#
���c

#n�.
Every #-compactly supported distribution is a tempered distribution , yielding an
inclusion E#
���c

#n� � S#
���c
#n�.

.

§ 3. The Fourier transform on S#���c
#n�,Sfin

# ���c
#n�

We begin by defining the Fourier transform, and the inverse transform, on S#���c
#n�,

n � �#, the Schwartz space of C�# functions of rapid decrease.
Definition 3.1. Suppose f � S#���c

#n�. The Fourier transform of f�x� is the function
�
f �	�

given by

�
f �	� � 1

�2
#�n/2
Ext- �

��c
#n

f�x��Ext-exp��ix 
 	��d#nx , �3.1�

where x 
 � � Ext-� i�1
n xi	 i . The inverse Fourier transform of f, denoted by f�, is the

function

f��	� � 1
�2
#�n/2

Ext- �
��c

#n

f�x��Ext-exp�ix 
 	��d#nx . �3.2�

We will usualy write f� � ��f� and f� � ��1�f�.
Since every function in Schwartz space is in �1

#���c
#n�, the above integrals (1.1) and

(1.2) make sense.
We will use the standard multi-index notation. A multi-index � � ��1, . . . ,�n,n � �# is



an n-tuple of nonnegative integers. The collection of all multi-indices will be denoted
by I�n. The symbols |�|,x�,D#�,and x2 are defined as follows:

|�| � Ext-�
i�1

n

� i

x� � Ext-�
i�1

n

xi
� i or Ext-�x1

�1x2
�2 
 
 
xn

�n � or simbolically x1
�1x2

�2 
 
 
xn
�n

D#�f�x� � Ext-�
i�1

n
�#� i

�#x� i
f�x� or simbolically D#�f�x� �

�#|�|f�x�
�#x�1�#x�2 
 
 
�#x�n

x2 � Ext-�
i�1

n

xi
2.

�3.3�

Lemma 1.1.The maps f � f� and f � f� are #-continuous linear transformations of
S#���c

#n� into S#���c
#n�.Furthermore, if � and � are multi-indices, then

�i	��D#�f� �	� � D#� ��ix��f�x� �	�. �3.4�

Proof The map f � f� is clearly linear. Since

�i	��D#�f� �	� �

1
�2
#�n/2

Ext- �
��c

#n

�	����ix��f�x��Ext-exp��ix
	��f�x�d#nx �

1
�2
#�n/2

Ext- �
��c

#n

1
��i��

�Dx
#��Ext-exp��ix
	�����ix��f�x�d#nx �

��i��

�2
#�n/2
Ext- �

��c
#nx

#�

�Ext-exp��ix
	��Dx
#� ��ix��f�x� d#nx .

�3.5�

We conclude that

f�
�,�

�
	���c

#n

sup 	� D#�f� �	�  1
�2
#�n/2

Ext- �
��c

#n

|Dx
#��x�f�x��|d#nx � �# �3.6�

so f � f� takes S#���c
#n� into S#���c

#n�, and we have also proven (1.4).Furthermore,
if k is large enough, ��1 � x2��kd#nx � �# so that

f�
�,�
 1

�2
#�n/2
Ext- �

��c
#n

�1 � x2��k

�1 � x2��k
Dx

#� ��ix��f�x� d#nx 

1
�2
#�n/2

Ext- �
��c

#n

�1 � x2��kd#nx
x���c

#n

sup �1 � x2��k Dx
#� ��ix��f�x� .

�3.7�

Using generalized Leibnitz’s rule we easily conclude that there exist multi-indices
� j ,� j and constants cj so that



f�
�,�
�

j�1

M

cj�f�� j ,� j
. �1.8�

Thus the map f � f� is bounded and therefore #-continuous. The proof for f � f� is
the same.
Theorem 1.1. (Generalized Fourier inversion theorem) The Fourier transform (3.1)
is a linear bicontinuous bijection from S#���c

#n� onto S#���c
#n�. Its inverse map is the

inverse Fourier transform, i.e.,��1���f�� � f and ����1�f�� � f.
Proof. We will prove that ��1���f�� � f. The proof that ����1�f�� � f is similar.
����1�f�� � f implies that ��f� is surjective and ��1���f�� � f implies that ��f� is
injective. Since ��f� and ��1�f� are #-continuous maps of S#���c

#n� onto S#���c
#n�, it

is sufficient to prove that ��1���f�� � f for f contained in the dense set C0
�#
���c

#n�.
Let C�,� � 0 be the cube of volume �2/��n centered at the origin in ��c

#n.Choose � � 0
infinite small enough so that the support of f is contained in C�. Let
K� � �k � ��c

#n| each ki /�
# � k is an integer �

f�x� � Ext-�
k�K�

1
2
�

n/2
�Ext-exp�ik 
 x��, f 1

2
�

n/2
�Ext-exp�ik 
 x�� �3.9�

is just the hyper infinite Fourier series of f which #-converges uniformly in C� to f since
f is #-continuously #-differentiable. Thus

f�x� � Ext-�
k�K�

�
f �k��Ext-exp�ik 
 x��

�2
#�n/2
��
#�n. �3.10�

Since ��c
#n is the disjoint union of the cubes of volume ��
#�n centered about the

points in K�, the right-hand side of (1.10) is just a hyper finite Riemann sum for the
integral of the function

�
f �k��Ext-exp�ik 
 x��. By the lemma 3.1,

�
f �k��Ext-exp�ik 
 x�� � S#���c

#n�, so the hyperfinite Riemann sums (1.10)
#-converge to the integral. Thus ��1���f�� � f.
Corollary 3.1.Suppose f � S#���c

#n�. Then

Ext- �
��c

#n

|f�x�|2d#nx � Ext- �
��c

#n

|f�k�|2d#nk. �3.11�

Proof. This is really a corollary of the proof rather than the statement of Theorem 1.1.
If f has #-compact support, then for � � 0 small enough,

f�x� � Ext-�
k�K�

1
2
�

n/2
�Ext-exp�ik 
 x��, f 1

2
�

n/2
�Ext-exp�ik 
 x�� �3.12�

Since 1
2 �

n/2n/2
�Ext-exp�ik 
 x��

k�K�
is an orthonormal basis for �2

#�C��,

Ext- �
��c

#n

|f�x�|2d#nx � Ext- �
C�

|f�x�|2d#nx � �
k�K�

1
2 �

n/2
��Ext-exp�ik 
 x��, f�x��

2
�

�
k�K�

�
f �k�

2
��
#�n

��# 0
�# Ext- �

��c
#n

|f�k�|2d#nk.
�3.13�

This proves the corollary for f � C0
�#
���c

#n�. Since f �
�
f and �
�2 are #-continuous

on S#���c
#n� and C0

�#
���c

#n� is #-dense, the result holds for all of S#���c
#n�.



Definition 3.2. Let T � S#
���c
#n�the Fourier transform of T,denoted by T� or ��T�,

is the tempered distribution defined by T� ��� � T � .

Suppose that h,� � S#���c
#n�, then by the polarization identity and the corollary to

Theorem 1.1 we have �h,�� �
�
h,� . Substituting ��g� � ��1�g� for h, we obtain

T�g��� � Ext- �
��c

#n

�g�x���x�d#nx � Ext- �
��c

#n

g�x���x�d#nx � Tg � � T� g���.

where T�g and Tg are the distributions corresponding to the functions �g and g

respectively. This shows that the Fourier transform on S#
���c
#n� extends the

transform we previously defined on S#���c
#n�.

Theorem 3.2. The Fourier transform is a one-to-one linear bijection from S#
���c
#n�

to S#
���c
#n� which is the unique weakly #-continuous extension of the Fourier

transform on S#���c
#n�.

Proof. If hyper infinite sequence ��n�n��# #-convergence to � � S#, then by
Theorem 1.1, hyper infinite sequence �n n��#

#-convergence to � � S#,so

T �n �# T � for each T � S#
. Thus #-lim n��# T �n � T � , which shows that

T is a #-continuous linear functional on S#. Furthermore, if Tn
w
�w T, then

�
Tn

w
�w

�
T

because T �n �# T � implies
�
T��n� �#

�
T���. Thus T �

�
T is weakly #-continuous.

Definition 3.3. Suppose that f,g � S#���c
#n�. Then the convolution of f and g,

denoted by f � g, is the function

�f � g��y� � Ext- �
��c

#n

f�y � x�g�x�d#nx. �3.14�

Convolutions frequently occur when one uses the Fourier transform because the
Fourier transform takes products into convolutions.
Theorem 3.3.(a) For each f � S#���c

#n�, g � f � g is a #-continuous map of S#���c
#n�

into S#���c
#n�.

(b) fg � �2
#��n/2
�
f � �g and f � g � �2
#�n/2

�
f�g.

(c) For f,g,h � S#���c
#n� , f � g � g � f and f � �g � h� � �f � g� � h.

Definition 3.4. Suppose that f � S#���c
#n�,T � S#
���c

#n� and let
�
f �x� denote the

function, f��x�. Then, the convolution of T and f denoted T � f is the distribution in ,
S#
���c

#n� given by �T � f���� � T
�
f � � for all � � S#���c

#n�.

The fact that g�
�
f � g is a #-continuous transformation guarantees that

T � f � S#
���c
#n�.

Abbreviation 3.1.Let fy denote the function fy�x� � f�x � y� and
�
f y the function

f�y � x�.When f is given by a longe expression �
 
 
�, we will sometimes write �
 
 
�~

rather than �
�
 
�.
Theorem 3.4. For each f � S#���c

#n� the map T � T � f is a weakly #-continuous
map of S#
���c

#n� into S#
���c
#n� which extends the convolution on S#���c

#n�.
Furthermore,
(a) T � f is a polynomially bounded C�# function. In fact, �T � f��y� � T

�
f y and

D#��T � f� � �D#�T� � f � T � D#�f;
(b) �T � f� � g � T � �f � g�;

(c) T � f � �2
#�n/2
�
f
�
T.



Theorem 3.5. Let T � S#
���c
#n� and f � S#���c

#n�. Then fT � OM
n and

fT �k� � �2
#�n/2T�f�Ext-exp��ik 
 x���. In particular, if T has #-compact support and
� � S#���c

#n� is identically one on a #-neighborhood of the support of T, then
�
T�k� � �2
#�n/2T���Ext-exp��ik 
 x���. �3.15�

Proof By Theorem 3.4.c and the Fourier inversion formula we have

fT � �2
#�n/2
�
f �

�
T.Thus fT � OM

n and fT �k� � �2
#�n/2
�
T

��
f k �

�2
#�n/2T�f�Ext-exp��ik 
 x���.
Remark 3.1.We remark that one can also define the convolution of a distribution
T � D#
���c

#n� with an f � D#���c
#n� by �T � f��y� � T

�
f y .

Definition 3.5. Let j�x� be a positive C�# function whose support lies in the sphere of
radius one about the origin in ��c

#n and which satisfies Ext-���c
#n

j�x�d#nx � 1. The

function j ��x� � ��nj�x/��,� � 0 is called an approximate identity.
Proposition 3.1. Suppose T � S#
���c

#n� and let j ��x� be an approximate identity. Then
T � j ��x� �# T weakly as � �# 0.
Proof. If � � S#���c

#n�, then �T � j ����� � T
�
j � � � , so it is sufficient to show that

�
j � � � �# � in S#���c

#n�.To do this it is sufficient to show that �2
#�n/2
�
j �� �# � in

S#���c
#n�.Since

�
j ��	� � j��	� and j�0� � �2
#�n/2, it follows that �2
#�n/2

�
j ��x�

#-converges to 1 uniformly on #-compact sets and is uniformly bounded. Similarly,
D#�

�
j � #-converges uniformly to zero. We conclude that �2
#�n/2

�
j �� �# �.

Theorem 3.6 (The generalized Plancherel theorem) The Fourier transform extends
uniquely to a unitary map of �2

#���c
#n� onto �2

#���c
#n�. The inverse transform extends

uniquely to its adjoint.
Proof The corollary to Theorem 3.1 states that if f � S#���c

#n�, then �f�2 �
�
f

2
.

Since ��S#� � S# is a surjective isometry on �2
#���c

#n�.
Theorem 3.7 (The generalized Riemann-Lebesgue lemma) The Fourier transform
extends uniquely to a bounded map from �1

#���c
#n� into C�#

���c
#n�, the #-continuous

functions vanishing at �#.
Proof For f � S#���c

#n�, we know that
�
f � S#���c

#n� and thus
�
f � C�#

���c
#n�. The

estimate is trivial. The Fourier transform is thus a bounded linear map from a
#-dense set of �1

#���c
#n� into C�#

���c
#n�. By the generalized B.L.T. theorem, extends

uniquely to a bounded linear transformation of C�#
���c

#n� into C�#
���c

#n�.
Remark 3.2.We remark that the Fourier transform takes �1

#���c
#n� into, but not onto

C�#
���c

#n�.
A simple argument with test functions shows that the extended transform on �1

#���c
#n�

and �2
#���c

#n� is the restriction of the transform on S#
���c
#n�, but it is useful to have an

explicit integral representation. For f � �1
#���c

#n�, this is easy since we can find
fm � S#���c

#n� so that #-limm��#�f � fm�1 � 0.Then, for each 	,



f�	� � #- limm��#

�
f m�	� �

#- limm��#
1

�2
#�n/2
Ext- �

��c
#n

�Ext-exp��ik 
 x��fm�x�d#x �

1
�2
#�n/2

Ext- �
��c

#n

�Ext-exp��ik 
 x��f�x�d#x .

�3.16�

So, the Fourier transform of a function in �1
#���c

#n� is given by the usual formula.
Next, suppose f � �2

#���c
#n� and let

�R�x� �
1 if |x|  R

0 if |x| � R
�3.17�

Then �Rf � �1
#���c

#n� and #-limR��# �Rf � f in �2
#, so by the generalized Plancherel

theorem #-limR��# �Rf �
�
f in �2

#.Thus

f�	� � #- limR��#
1

�2
#�n/2
Ext- �

|x|R

�Ext-exp��ik 
 x��f�x�d#x �3.18�

where by #-limR��# we mean the #-limit in the �2
#-norm. Sometimes we will dispense

with |x|  R and just write

f�	� � #- limR��#
1

�2
#�n/2
Ext- ��Ext-exp��ik 
 x��f�x�d#x �3.19�

for functions f � �2
#���c

#n�.
We have proven above that � : �2

#���c
#n� � �2

#���c
#n� and � : �1

#���c
#n� � ��#

# ���c
#n�

and in both cases is a bounded operator.
Theorem 3.8 (Generalized Hausdorff-Young inequality) Suppose 1  q  2,
and p�1 � q�1 � 1. Then the Fourier transform is a bounded map of �p

#���c
#n� to

�q
#���c

#n� and its norm is less than or equal to �2
#�n�1/2�1/q�.

Chapter III.Hilbert Spaces over field ��c
#.

§ 1. Hilbert Spaces over field ��c
# Basics.

Definition 1. Let H be external hyper infinite dimensional vector space over field
��c

# � ��c � i ��c.An inner product on H is a ��c
#-valued function,

�
, 
# : H � H � ��c, such that
(1) �ax� by,z# � a�x,z � b�y,z#, i.e. x � �x,z# is linear.
(2) �x,y# � �y,x#.
(3) �x�#

2 � �x,x# � 0 with equality �x�#
2 � 0 iff x � 0.

Notice that combining properties (1) and (2) that x � �z,x is anti-linear for
fixed z � H, i.e. �z,ax� by# � a�z,x# � b�z,y#.
The following formula useful:

�x � y�#
2 � �x � y,x � y# � �x�#

2 � �y�#
2 � �x,y# � �y,x# � �x�#

2 � �y�#
2 � 2Re�x,y# �1.1�

Theorem 1. (Generalized Schwarz Inequality). Let �H,�
, 
#� be an inner product



space, then for all x,y � H

|�x,y#| �x�#�y�# �1.2�

and equality holds iff x and y are linearly dependent.
Proof. If y � 0, the result holds trivially. So assume that y � 0. First off notice that if
x � αy for some α � ��c

#, then �x,y � α�y�#
2 and hence |�x,y#|� |α|�y�#

2 � �x�#�y�#

Note that in this case α � �x,y�y�2.Now suppose that x � H is arbitrary, let
z � x � �y�#

�2�x,y#y. So z is the orthogonal projection of x onto y. Then

0  �z�#
2 � x �

�x,y#

�y�#
2 y

#

2

� �x�#
2 �

|�x,y#|
2

�y�#
4

�y�#
2 � 2Re x,

�x,y#

�y�#
2 y �

� �x�#
2 �

|�x,y#|
2

�y�#
2 .

�1.3�

from (1.3) it follows that 0  �y�#
2�x�#

2 � |�x,y#|
2 with equality iff z � 0 or

equivalently iff x � �y�#
�2�x,y#y.

Corollary 1. Let �H,�
, 
� be an inner product space and �x�# :� �x,x# . Then

�
�# is a ��c-valued #-norm on H. Moreover �
, 
# is #-continuous on H � H, where
H is viewed as the #-normed space �H,�
�#�.
Proof. The only non-trivial thing to verify that �
�# is a #-norm is the triangle
inequality:
�x � y�2 � �x�2 � �y�2 � 2Re�x,y#  �x�2 � �y�2 � 2�x�#�y�# � ��x�# � �y�#�

2

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows �x � y�  �x� � �y�. For the #-continuity assertion:
|�x,y# � �x


,y
 #|� |�x � x
,y# � �x
,y � y
 #| �y�#�x � x
�# � �x
�#�y � y
�#

 �y�#�x � x
�# � ��x�# � �x � x
�#��y � y
�# � �y�#�x � x
�# � �x�#�y � y
�#

� �x � x
�#�y � y
�# from which it follows that �
, 
 is #-continuous.

Definition 2. Let �H,�
, 
#� be an inner product space, we say x,y � H are
orthogonal and write x � y iff �x,y# � 0. More generally if A � H is a set,
x � H is orthogonal to A and write x � A iff �x,y � 0 for all y � A. Let
A� � �x � H : x � A� be the set of vectors orthogonal to A. We also say that a
set S� H is orthogonal if x � y for all x,y � Ssuch that x � y. If S further
satisfies, �x�# � 1 for all x � S, then S is said to be orthonormal.
Proposition 1. Let �H,�
, 
#� be an inner product space then
(1) (Parallelogram Law)

�x � y�#
2 � �x � y�#

2 � 2�x�#
2 � 2�y�#

2 �1.4�

for all x,y � H.
(2) (Pythagorean Theorem) If S� H is a finite orthonormal set, then

�
x�S

x
#

2

��
x�S

�x�#
2 �1.5�

(3) If A � H is a set, then A� is a #-closed linear subspace of H.
Proof. I will assume that H is a complex Hilbert space with ��c -valued inner
product, the real case being easier. Statements (1) and (2) are proved by the
following elementary computations:



�x � y�#
2 � �x�#

2 � �y�#
2 � 2Re�x,y# � �x�#

2 � �y�#
2 � 2Re�x,y# � 2�x�#

2 � 2�y�#
2 and

§ 3.#-Analytic vectors.Generalized Nelson’s #-analytic
vector theorem.

Let H# be a #-complex Hilbert space over field ��c
#.The most natural way to construct

a #-continuous one-parameter unitary group U�t� : H# � H# is to try to make sense

of the power series Ext-�
n�0

�#

�itA�n on a #-dense set of vectors. Notice that this can

certainly be done if A is self-adjoint. For let E� be the family of spectral projections for

A.Then on each of the spaces E��M,M�, A is a bounded operator and Ext-�
n�0

�#

�itA�n/n!

#-converges to Ext-exp�itA� in norm. In particular, for any � � �M�0
E��M,M�,

#- limN��# Ext-�
n�0

N �itA�n

n!
� Ext-exp�itA�. �3.1�

Since �M�0
E��M,M� is #-dense in H#, we see that the group generated by a self-adjoint

operator A is completely determined by the well-defined action of the hyper infinite

series Ext-�
n�0

�#

�itA�n/n! on a #-dense set. We will prove the #-converse: namely,

if A is symmetric and has a #-dense set of vectors to which Ext-�
n�0

�#

�itA�n/n! can be

applied, then A is essentially self-#-adjoint. We need several definitions.
Definition1.1. Let A be an operator on a non-Archimedean Hilbert space H#. The set

C�#
�A� ��n�0

�#

D�An� is called the C
�#

-vectors for A. A vector � � C�#
�A� is called an

#-analytic vector for A if

Ext-�
n�0

�# �An��tn

n!
� �� �3.2�

for some t � 0.If A is self-adjoint, then C�#
�A� will be #-dense in D�A�. However, in

general, a symmetric operator may have no C�#
-vectors at all even if A is essentially

self-#-adjoint. We caution the reader to remember that #-analytic vectors and vectors
of

uniqueness (defined below) must be C
�#

- vectors for A. A vector � � D�A� can be an
#-analytic vector for an extension of A but fail to be an #-analytic vector for A because
it is not in C�#

�A�.
Definition1.2.Suppose that A is symmetric. For each � � C�#

�A�, define

D� � Ext-�n�0
N �nAn� N � ��,�n � ��c

# . �3.3�

Let H�
# � #-D� and define A� : D� � D� by A� Ext-�n�0

N �nAn� � Ext-�n�0
N �nAn�1�.

� is called a vector of #-uniqueness if and only if A� is essentially self-#-adjoint on D�

as an operator on H�
# .

Finally, a subset S� H# is called #-total if the set of hyperfinite linear combinations of



elements of S is #-dense in H#.
Lemma (Generalized Nussbaum’s lemma) Let A be a symmetric operator and
suppose that D�A� contains a #-total set of vectors of #-uniqueness. Then A is
essentially self-#-adjoint.
Proof We will show that Ran�A � i� are #-dense in H#. By the fundamental criterion
this will show that A is essentially self-#-adjoint. Suppose � � H# and � � 0 are given
and let Sdenote the set of vectors of #-uniqueness. Since S is #-total we can find
��n�n�1

N and ��n�n�1
N with �n � Sso that

� � Ext-�n�1
N �n�n

#
 �/2. �3.4�

Since �n is a vector of #-uniqueness, there is a �n � D�n so that

��n � �A � i��n�# 
�
2

Ext-�n�1
N |�n|

�1
. �3.5�

Setting � � Ext-�n�1
N �n�n we have � � D�A� and �� � �A � i���# � �.

Thus Ran�A � i� is #-dense. The proof for �A � i� is the same.
Theorem 3.1. (Generalized Nelson’s #-analytic vector theorem) Let A be a symmetric
operator on a non-Archimedean Hilbert space H#. If D�A� contains a #-total set of
#-analytic vectors, then A is essentially self-#-adjoint.
Proof By Generalized Nussbaum’s lemma, it is enough to show that each #-analytic
vector � is a vector of #-uniqueness. First notice that А� always has self-#-adjoint
extensions, since the operator

C : Ext-�n�0
N �nAn� �3.6�

extends to a conjugation on H�
# which commutes with А�. Suppose that B is a

self-#-adjoint extension of А� on H�
# and let �# be the spectral #-measure for B

associated to �. Since � is an #-analytic vector for A,

Ext-�n�0
N �An��#/n! � �� �3.7�

for some t � 0. Let 0 � s � t. Then

Ext-�n�0

�� sn

n!
Ext- �

��c
#

|x|nd#�# 

 Ext-�n�0

�� sn

n!
Ext- �

��c
#

x2nd#�#

1/2

Ext- �
��c

#

d#�#

1/2

�

���#Ext-�n�0

�� sn

n!
�An��# � ��.

�3.8�

Therefore by generalized Fibini’s theorem

Ext- �
��c

#

Ext-�n�0

�� sn

n!
|x|n d#�# � Ext- �

��c
#

Ext-�s|x|�d#�# � ��. �3.9�

As a result, the function

��,�Ext-exp�itB���# � Ext- �
��c

#

�Ext-exp�itx��d#�# �3.10�



has an #-analytic continuation

Ext- �
��c

#

�Ext-exp�izx��d#�# �3.11�

to the region |Imz|� t. Since

d#

d#z

k

Ext- �
��c

#

�Ext-exp�izx��d#�#

z�0

�

� Ext- �
��c

#

Ext-exp�ix�k d#�# � �,�iA�k�
#
,

�3.12�

we obtain

��,�Ext-exp�isB���# � Ext-�n�0

�� �is�n

n!
� �,�iA�k�

#
�3.13�

for |s|� t. Thus, for |s|� t (and therefore for all s), the function ��1,�Ext-exp�isB���2#

is completely determined by the numbers ��1,An�2#,n �
��.

Similar proof shows that ��1,�Ext-exp�isB���2# is determined by the numbers
��1,An�2#,n �

��for any �1,�2 � D�. Since D� is #-dense in H�
# and Ext-exp�isB�

is unitary, Ext-exp�isB� is completely determined by the numbers ��1,An�2#,n �
��

for any �1,�2 � D�.Thus, all self-#-adjoint extensions of A� generate the same unitary
group, so by generalized Stone’s theorem A� has at most one self-#-adjoint extension.
As we have already remarked, A� has at least one self-#-adjoint extension. Thus A� is
essentially self-#-adjoint and � is a vector of uniqueness.
Corollary 3.1 A #-closed symmetric operator A is self-#-adjoint if and only if D�A�
contains a #-dense set of #-analytic vectors.
The statement of Corollary 1 is not true if “self-#-adjoint” is replaced by “essentially
self-#-adjoint.” A self-#-adjoint operator A may be essentially self-#-adjoint on a
domain D � D�A� and D may not even contain any #-vectors.
Corollary 3.2 Suppose that A is a symmetric operator and let D be a #-dense linear
set contained in D�A�. Then, if D contains a #-dense set of #-analytic vectors and if D
is invariant under A, then A is essentially self-#-adjoint on D.
Proof Since D is invariant under A, each #-analytic vector for A in D is also an
#-analytic vector for А � D. Thus, by Theorem 3.1 А � D is essentially self-#-aadjoint.
The reason that one needs the invariance condition in Corollary 2 is that for a vector
� � D to be #-analytic for А � D, it must first be C

�� for А � D. This requires that
Аn � D for all n � ��.

§4.The generalized Spectral Theorem

§ 4.1.The #-continuous functional calculus
In this section, we will discuss the generalized spectral theorem in its many guises.
This structure theorem is a concrete description of all self-#-adjoint operators. There
are several apparently distinct formulations of the spectral theorem. In some sense



they are all equivalent.
The form we prefer says that every bounded self-#-adjoint operator is a multiplication
operator. (We emphasize the word bounded since we will deal extensively with
unbounded self-#-adjoint operators in the next chapter; there is a spectral theorem for
unbounded operators which we discuss in Section § 4.3)
This means that given a bounded self-#-adjoint operator A on a non-Archimedean
Hilbert space H# over field ��c

# or ��c
#, we can always find a #-measure �# on

a #-measure space M and a unitary operator U : H# � L2
#�M,d#�#� so that

�UAU�1f��x� � F�x�f�x� �4.1.1�

for some bounded real-valued #-measurable function F on M.
In practice, M will be a union of copies of ��c

# and F will be x so the core of the proof of
the theorem will be the construction of certain #-measures. This will be done in

Section
§ 4.2 by using the generalized Riesz-Markov theorem. Our goal in this section will be

to
make sense out of f�A�, for f a #-continuous function.
In the next section, we will consider the #-measures defined by the functionals

f � ��, f�A��# �4.1.2�

for fixed � � H#.
Given a fixed operator A, for which f can we define f�A�? First, suppose that A is an
arbitrary bounded in��c

# operator. If f�x� � Ext-�n�1
N cnxn, N � ��is a polynomial,

we let f�A� � Ext-�n�1
N cnAn. Suppose that f�x� � Ext-�n�1

�� cnxn is a hyper infinite

power series with radius of #-convergence R. If �A�# � R then hyper infinite power

series Ext-�n�1

�� cnAn #-converges in ��H#� so it is natural to set

f�A� � Ext-�n�1

�� cnAn �4.1.3�

In this last case, f was a function #-analytic in a domain including all of ��A�.
The functional calculus we have talked about thus far works for any operator in any
Banach space. The special property of self-adjoint operators or more generally normal
operators is that ||Р�A�||# � sup	���A�|P�	�| for any polynomial P, so that one can use the
B.L.T. theorem to extend the functional calculus to #-continuous functions. Our major
goal in this section is the proof of:
Theorem 4.1.1. (#-continuous functional calculus) Let A be a self-#-adjoint operator on
a Hilbert space H#. Then there is a unique map � : C#���A�� � ��H#� with the
following properties:
(a) � is an algebraic �-homomorphism, that is,

��fg� � ��f���g�,��	f� � 	��f�,��1� � I,��f� � ��f��.

(b) � is #-continuous, that is, ���f��� H#  C�f� ��.

(c) Let f be the function f�x� � x; then ��f� � A.
Moreover, � has the additional properties:
(d) If А� � 	�, then ��f�� � f�	��.
(e) ����f�� � �f�	�|	 � ��A�� [spectral mapping theorem].
(f) If f � 0, then ��f� � 0.
(g)���f��# � �f� ��. [this strengthens (b)].



The proof which we give below is quite simple, (a) and (c) uniquely
determine ��Р� for any hyperfinite polynomial P�x�. By the generalized Weierstrass
theorem, the set of polynomials is #-dense in C#���A�� so the main part of the proof is
showing that

||Р�A�||#op � �P�x��C#���A�� � sup	���A�|P�	�|. �4.1.4�

The existence and uniqueness of � then follow from the generalized B.L.T. theorem.
To prove the crucial equality, we first prove a special case of (e) (which holds for
arbitrary bounded operators):
Lemma 4.1.1.Let P�x� � Ext-�n�1

N cnxn, N � ��. Let Р�A� � Ext-�n�1
N cnAn. Then

��Р�A�� � �P�	�|	 � ��A��. �4.1.5�

Proof Let 	 � ��A�. Since x � 	 is a root of P�x� � P�	�, we have
P�x� � P�	� � �x � 	�Q�x�, so P�A� � P�	� � �A � 	�Q�A�. Since �A � 	� has no
inverse neither does P�A� � P�	� that is, P�	� � ��P�A��.
Conversely, let � � ��P�A�� and let 	1, . . . ,	n be the roots of P�x� � �, that is,
P�x� � � � a Ext-� i�1

n �x � 	 i � . If 	1, . . . ,	n � ��A�, then

�P�A� � ���1 � a�1 Ext-� i�1
n �A � 	 i ��1 �4.1.6�

so we conclude that some 	 i � ��A� that is, � � P�	� for some 	 � ��A�.
Definition Let r�A� � sup	���A� |	|.Then r�A� is called the spectral radius of A.

Theorem 4.1.2. Let X be a Banach space, A � ��X� Then lim n��� n �An�#op exists

and is equal to r�A� . If X is a Hilbert space and A is self-#-adjoint, then r�A� � �A�#op.

Lemma 4.1.2. Let A be a bounded self-#-adjoint operator. Then

||Р�A�||# � sup	���A�|P�	�|. �4.1.7�

Proof By Theorem 4.1.2 and by Lemma 4.1.1 we obtain

||Р�A�||#2 � ||Р�A��Р�A�||# � ||�PР��A�||# �
	�� PР �A�

sup|	| �
	���A�
sup |PР�	�| �

	���A�
sup |Р�	�|

2

.

Proof of Theorem 4.1.1. Let ��Р� � P�A�. Then ���Р��� H# � �P�C#���A�� so � has a

unique linear extension to the #-closure of the polynomials in C#���A��. Since the
polynomials are an algebra containing I, containing complex conjugates, and
separating points, this #-closure is all of C#���A��. Properties (a), (b), (c), (g) are
obvious and if

�
� obeys (a), (b), (c) it agrees with � on polynomials and thus by

#-continuity on C#���A�� To prove (d), note that ��Р�� � Р�	�� and apply
#-continuity. To prove (f), notice that if f � 0, then f � g2 with g ��c

#-valued
and g � C#���A��. Thus ��f� � ��g�2 with ��g� self-#-adjoint, so ��f� � 0.
Remark 4.1.1. In addition:
(1) ��f� � 0 if and only if f � 0.
(2) Since fg � gf for all f,g, �f�A�|f � C#���A��� forms an abelian algebra closed
under adjoints. Since ���f��# � �f� �� and C#���A�� is #-complete, �f�A�|f � C#���A���
is #-norm-#-closed. It is thus an non-Archimedean abelian C� algebra of operators.
(3) Ran��� is actually the non-Archimedean C� algebra generated by A that is, the
smallest C�-algebra containing A.
(4) This result, that C#���A�� and the non-Archimedean C�-algebra generated by A



are #-isometrically isomorphic
(5) (b) actually follows from (a) and Proposition 4.1.1. Thus (a) and (c) alone
determine � uniquely.
Proposition 4.1.1. Suppose that �: C#�X� � ��H#� is an algebraic �-homomorphism,
X a #-compact metric space. Then
(a) If f � 0, then ��f� � 0.
(b) ���f��#  �f� ��.

Theorem 4.1.2. (Generalized Weierstrass Approximation Theorem). Let
f � C#��a,b�, ��c

#�. Then there is a hyper infinite sequence of polynomials
pn�x�,n � �� that #-converges uniformly to f�x� on �a,b�.

Definition 4.1.1 (Hyperfinite Bernstein Polynomials). For each n � ��, the n-th
Bernstein Polynomial Bn

#�x, f� of a function f � C#��a,b�, ��c
#� is defined as

Bn
#�x, f� � Ext-�k�0

n f k
n

n
k

xk�1 � x�k. �4.1.3�

Theorem 4.1.3.(Generalized B.L.T.theorem) Suppose that Z is a normed space, Y
is a non-Archimedean Banach space, and S� Z is a #-dense linear subspace of Z. If
T : S � Y is a bounded linear transformation (i.e. there exists C � �� such that
�Tz�#  C �z�# for all z � S), then T has a unique extension to an element of ��Z,Y�.

§ 4.2.The spectral #-measures
Theorem 4.2.1.(Generalized Riesz-Markov theorem) Let X be a locally #-compact
non-Archimedean metric space endowed with ��c

#-valued metric.Let Cc
#�X� be the

space of #-continuous #-compactly supported ��c
#-valued functions on X.

For any positive linear functional 	 on Cc
#�X�, there is a unique #-measure μ# on X

such that
�f � Cc

#�X� : 	�f� � Ext-�
X

f�x�d#μ#�x�.

Theorem 4.2.2.(Generalized Riesz lemma) Let Y be a #-closed proper vector
subspace of a normed space �X,�
�#� and let α � ��c

# be any real number
satisfying 0 � α � 1.Then there exists a vector u � X of unit #-norm �u�# � 1
such that �u � y�# � α for all y � Y.
We are now introduce the #-measures corresponding to bounded in��c

# self-#-adjoint
operators. Let A be an bounded in��c

# self-#-adjoint operator. Let � � H#. Then

f � ��, f�A��# �4.2.1�

is a positive linear functional on C#���A��. Thus, by the generalized Riesz-Markov
theorem, there is a unique #-measure ��

# �
� on the #-compact set ��A� with the
property

��, f�A��# � Ext- �
��A�

f�	�d#��
# . �4.2.2�

Definition 4.2.1.The #-measure ��
# �
� is called the spectral #-measure associated with

the vector � � H#.
The first and simplest application of the ��

# �
� is to allow us to extend the functional
calculus to B#���c

#�, the bounded in��c
# #-Borel functions on ��c

#. Let g � B#���c
#�.



It is natural to define g�A� so that ��,g�A��# � Ext- �
��A�

g�	�d#��
# . The polarization

identity lets us recover ��,g�A��# from the proposed ��,g�A��# and then
the Generalized Riesz lemma lets us construct g�A�.
Theorem 4.2.1.(spectral theorem-functional calculus form) Let A be a
bounded in��c

# self-#-adjoint operator on H#. There is a unique map
�
� : B#���c

#� � ��H#� so that

(a)
�
� is an algebraic �-homomorphism.

(b)
�
� is #-norm #-continuous:

�
��f�

� H#
 �f� ��.

(c) Let f be the function f�x� � x; then
�
��f� � A.

(d) Suppose fn�x� �# f�x� for each x as n � ��and hyper infinite sequence
�fn� ��,n � �� is bounded in��c

#. Then
�
��fn� �#

�
��f� as n � ��strongly.

Moreover
�
��
� has the properties:

(e) If А� � 	�, then
�
��f� � f�	��.

(f) If f � 0,then
�
��f� � 0.

(g) If BA � AB then
�
��f�В � В

�
��f�.

Remark 4.2.1. Note that: (i) Theorem 4.2.1 can be proven directly by extending
Theorem 4.1.1, part (d) requires the dominated #-convergence theorem. Or,
Theorem 4.2.1 can be proven by an easy corollary of Theorem 4.2.3 below.
The proof of Theorem 4.2.3 uses only the #-continuous functional calculus,

�
�

extends � and as before we write
�
��f� � f�A�. As in the #-continuous functional

calculus, one has f�A�g�A� � g�A�f�A�.
(ii) Since B#���c

#� is the smallest family closed under #-limits of form (d) containing

all of C#���c
#�, we know that any

�
��f� is in the Smallest non Archimedean C�-algebra

containing A which is also strongly #-closed; such an algebra is called a von
Neumann #-algebra or non Archimedean W�-algebra. When we study von Neumann
#-algebras we will see that this follows from (g).
(iii) The #-norm equality of Theorem 4.2.1 carries over if we define �f� ��


 to be the
L ��

# #-norm with respect to a suitable notion of “#-almost everywhere.” Namely, pick
an orthonormal basis ��n�n�1

�� and say that a property is true #-a.e. if it is true #-a.e.

with respect to each ��n
# Then

�
��f�

� H#
� �f� ��


 .

Definition 4.2.2. A vector � � H# is called a cyclic vector for A if gyperfinite linear
combinations of the elements �An��n�0

�� are #-dense in H#.
Not all operators have cyclic vectors, but if they do.
Lemma 4.2.1. Let A be a bounded in��c

# self-#-adjoint operator with cyclic vector �.
Then, there is a unitary operator U : H# � L2

#���A�,d#��
# �, with �UAU�1f��	� � 	f�	�

where equality holds is in the sense of elements of L2
#���A�,d#��

# �.
Proof Define U by U��f� � f where f is #-continuous. U is essentially the inverse
of the map � of Theorem 4.1.1. To show that U is well defined operator we compute
���f���#

2 � ��,���f���f��# � �,� f � f �
#
� Ext-�|f�	�|2d#��

# .

Therefore, if f � g a.e. with respect to ��
# , then ��f�� � ��g��. Thus U is well

defined on ���f��|f � C#���A��� and is #-norm preserving. Since � is cyclic it
#-closure #-���f��|f � C#���A��� � H# so by the generalized B.L.T. theorem U



extends to an #-isometric map of H# into L2
#���A�,d#��

# �. Since C#���A�� is #-dense
in L2

#, Ran U � L2
#���A�,d#��

# �.Finally, if f � C#���A�� one obtains
�UAU�1f��	� � �UA��f���	� � �U��xf���	� � 	f�	�.
By #-continuity, this extends from C#���A�� to L2

#.
To extend this lemma to arbitrary Ay we need to know that A has a family of
invariant subspaces spanning H# so that A is cyclic on each subspace:
Lemma 4.2.2. Let A be a self-adjoint operator on a �-separable Hilbert space H#.

Then there is a direct sum decomposition H# � 

n�1

N

Hn
# with N � �� or H# � 


n�1

��
Hn

#

so that:
(a) A leaves each Hn

# invariant, that is, � � Hn
# implies А� � Hn

#

(b) For each n � ��, there is a �n � Hn
# which is cyclic for A � Hn

#, i.e.
Hn

# � #-�f�A��n|f � C#���A���
Theorem 4.2.3 (spectral theorem-multiplication operator form) Let A
be a bounded in��c

# self-#-adjoint operator on H#, a �-separable Hilbert space.
Then, there exist #-measures ��n

#�n�1
N with N � �� or ��n

#�n�1

�� on ��A� and a

unitary operator U : H# � 

n�1

N

L2
#���c

#,d#�n
#� or U : H# � 


n�1

��
L2

#���c
#,d#�n

#�

so that �UAU�1��n�	� � 	�n�	�

where we write an element � � 

n�1

N

L2
#���c

#,d#�n
#� as an N-tuple ��1�	�, . . . ,�N�	�

or �-tuple
This realization of A is called a spectral representation.
Proof. Use Lemma 4.2.2 to find the decomposition and then use Lemma 4.2.1
on each component.
This theorem tells us that every bounded self-#-adjoint operator is a multiplication
operator on a suitable #-measure space; what changes as the operator changes
are the underlying #-measures. Explicitly:
Corolarly 4.2.1. Let A be a bounded in��c

# self-adjoint operator on a �-separable
Hilbert space H#. Then there exists a finite in��c

# measure space �M,�#, a
bounded in��c

# function F on M, and a unitary map, U : H# � L2
#�M,d#�#� so that

�UAU�1f��m� � F�m�f�m�.
Proof Choose the cyclic vectors �n so that ��n�# � 2�n. Let M � 	n�1

N� �c
#

i.e. the union of N � �� copies of ��c
#. Define � by requiring that its restriction

to the n-th copy of ��c
# be �n. Since ��M� � Ext-�n�1

N �n
#���c

#� � ��, �n is finite

in��c
#. We also notice that this last theorem is essentially a rigorous form of the

formaal Dirac notation. If we write �n � ��х;n�, we see that in the “new
representation defined by U” one has
��,�# � Ext-�n

Ext-�d#�n
#��	;n���	;n� and

��,A�# � Ext-�n
Ext-�d#�n

#��	;n�	��	;n�.

These are the Dirac type formulas familiar to physicists except that the formal
sums of Dirac are replaced with integrals over spectral measures, where we define:
Definition 4.2.3. The #-measures d#�n are called spectral measures; they are just
d#�� for suitable �.
Notice these #-measures are not uniquely determined.



§ 4.3. Spectral projections
In the last section, we constructed a functional calculus, f � f�A� for any #-Borel
function and any bounded in��c

# self-#-adjoint operator A. The most important
functions gained in passing from the continuous functional calculus to the #-Borel
functional calculus are the characteristic functions of sets.
Definition 4.3.1. Let A be a bounded self-#-adjoint operator and � a #-Borel set
of ��c

#. P� � ���A� is called a spectral projection of A.
As the definition suggests, P� is an orthogonal projection since �� � ��

2 � 1
pointwise. The properties of the family of projections P�|� an arbitrary #-Borel set

is given by the following elementary translation of the functional calculus.
Proposition 4.3.1. The family �P�� of spectral projections of a bounded
self-#-adjoint operator A,has the following properties:
(a) Each P� is an orthogonal projection.
(b) P� � 0; P��a,a� � I for some a � ��c

#.

(c) If � � Ext-�n�1

�� �n with �n � �m � � for all n � m then

P� � s-#- limN��� Ext-�n�1
N . �4.3.1�

(d) P�1P�2 � P�1��2.
Definition 4.3.2. A family of projections obeying (a)-(c) is called a projection-valued
#-measure (p.v.#-m.).
We remark that (d) follows from (a) and (c) by abstract considerations.
As one might guess, one can integrate with respect to a p.v.m. If P� is a p.v.m.,
then ��,P��# is an ordinary #-measure for any �. We will use the symbol
d#��,P	�# to mean integration with respect to this #-measure. By generalized Riesz
lemma methods, there is a unique operator B with ��,B�# � Ext-� f�	�d#��,P	�#.

Theorem 4.3.1. If P� is a p.v.#-m. and f a bounded in ��c
# #-Borel function on

supp�P��, then there is a unique operator B which we denote Ext-� f�	�d#P	 so that

��,B�# � Ext- � f�	�d#��,P	�#. �4.3.2�

Theorem 4.3.2.(spectral theorem-p.v.#-m. form) There is a one-one correspondence
between (bounded) self-#-adjoint operators A and (bounded) projection valued
#-measures �P�� given by

A � �P�� � ����A�� �4.3.3�

and

�P�� � A � Ext- �	d#P	. �4.3.4�

Spectral projections can be used to investigate the spectrum of A.
Proposition 4.3.1. 	 � ��A� if and only if P�	��,	����A� for any � � 0.
The essential element of the proof is that ��A � 	��1�

#
� �dist�	,��A����1.

This suggests that we distinguish between two types of spectrum.
Definition 4.3.3. We say that (i) 	 � �ess�A�, the essential spectrum of A if and only
if P�	��,	����A� is hyper infinite dimensional for all � � 0.
(ii) If 	 � ��A� but P�	��,	����A� is hyperfinite dimensional for some � � 0, we say



	 � �disc�A�, the discrete spectrum of A.P is hyper infinite dimensional means
Ran�P� is hyper infinite dimensional.
Thus, we have a second decomposition of ��A�. Unlike the first, it is a
decomposition into two necessarily disjoint subsets. We note that �disc is not
necessarily #-closed, but notice that.
Theorem 4.3.3 �ess�A� is always #-closed.
Proof Let 	n �# 	 with each 	n � �ess�A�. Since any #-open interval I about 	
contains an interval about some 	n,PI�A� is hyper infinite dimensional.
The following three theorems give alternative descriptions of �disc and �ess;
Theorem 4.3.4 	 � �disc if and only if both the following hold:
(a) 	 is an #-isolated point of ��A� that is, for some � � 0,
�	 � �,	 � �� � ��A� � �	�.
(b) 	 is an eigenvalue of hyperfinite multiplicity, i.e., ��|A� � 	�� is hyperfinite
dimensional.
Theorem 4.3.5 	 � �ess if and only if one or more of the following holds:
(a) 	 � �cont�A� � �ac�A� 	 �sing�A�.
(b) 	 is a #-limit point of �pp�A�.
(c) 	 is an eigenvalue of hyper infinite multiplicity.
Theorem 4.3.6 (Generalized Weyl’s criterion) Let A be a bounded in ��c

#

self-#-adjoint operator. Then (i) 	 � ��A� if and only if there exists ��n�n�1

�� with
��n�# � 1and #-lim n�����A � 	��n�# � 0.
(ii)	 � �ess�A� if and only if the above ��n� can be chosen to be orthogonal.
As one might guess, the essential spectrum cannot be removed by essentially
hyperfinite dimensional perturbations. In Section 4.4, we will prove a general
theorem which implies that �ess�A� � �ess�B� if A\B is #-compact.
Finally, we discuss one useful formula relating the resolvent and spectral projections.
It is a matter of computation to see that

f��x� �#

0 if x � �a,b�

1/2 if x � a � x � b

1 if x � �a,b�

if � �# 0, where

f��x� � �2
#i��1 Ext- �
a

b

�x � 	 � i���1 � �x � 	 � i���1 d#	 . �4.3.5�

Moreover, |f��x�| is bounded in x �� �c
# uniformly in � � 0, so by the functional

calculus, one obtains that.
Theorem 4.3.7 (Generalized Stone’s formula) Let A be a bounded in ��c

#

self-#-adjoint operator. Then

s- lim ��# 0�2
#i��1 Ext- �
a

b

�A � 	 � i���1 � �A � 	 � i���1 d#	 �

� 1
2
�P�a,b� � P�a,b� �.

�4.3.6�

§ 4.4.The #-continuous functional calculus related to



unbounded in��c
# self-#-adjoint operators

In this section we will show how the spectral theorem for bounded in��c
#

self-#-adjoint operators which we developed in § 4.3 can be extended to unbounded
in��c

# self-#-adjoint operators. To indicate what we are aiming for, we first prove the
following:
Proposition 4.4.1. Let �M,�# be a #-measure space with �# a hyperfinite
#-measure. Suppose that f is a #-measurable, ��c

#-valued function on M which is
finite or hyperfinite a.e.�#. Then the operator Tf : � � f� on L2

#�M,d#�#� with domain

D�Tf� � ��|f� � L2
#�M,d#�#�� �4.4.1�

is self-#-adjoint and ��Tf� is the essential range of Tf.
Proof Tf is clearly symmetric. Suppose that � � D�Tf

�� and let

�N �
1 if |f�m�|  N

0 otherwise

Then, using the generalized monotone #-convergence theorem,

�Tf
���

#
� #-limN�����NTf

���
#
� #-limN���

���#�1
sup �,�NTf

��
#

�

#-limN���
���#�1
sup |��NTf�,�#| � #-limN���

���#�1
sup |��,�Nf�#| �

#-limN�����Nf��#

Thus, f� � L2
#�M,d#�#�, so � � D�Tf� and therefore Tf is self-#-adjoint. That ��Tf�

is the essential range of f follows as in the bounded case.
With more information about f, one can say something about the domains on which
Tf is essentially self-#-adjoint:
Proposition 4.4.2. Let f and Tf obey the conditions in Proposition 4.4.1. Suppose
in addition that f � Lp

#�M,d#�#� for 2 � p � ��. Let D be any #-dense set in
Lq

#�M,d#�#� where q�1 � p�1 � 1/2. Then D is a #-core for Tf.

Proof Let us first show that Lq
# is a #-core for Tf. By the generalized Holder’s

inequality �g�#2  �1�#p 
 �g�#q, and �fg�#2  �f�#p 
 �g�#q so Lp
# � D�Tf�.

Moreover, if g � D�Tf� let gn,n � �� be that function which is zero where
|g�m�| � n and equal to g otherwise. By the generalized dominated convergence
theorem, gn �# g and fgn �# fg in L2

#. Since each gn is in Lq
#, we conclude

that Lq
# is a #-core for Tf.Now let D be #-dense in Lq

# and let g � Lq
#. Find gn � D

with gn �# g in Lq
#. Since �gn � g�#2  �1�#p 
 �gn � g�#q and

�Tf�gn � g��#2  �f�#p 
 �gn � g�#q, g � #- D�Tf � D�.

Thus Lq
# � D�Tf � D� so D is a #-core. Unless f� L ��

# �M,d#�#� the operator Tf

described in Propositions 4.4.1 and 4.4.2 will be unbounded.
Thus, we have found a large class of unbounded self-#-adjoint operators. In fact,
we have found them all.
Theorem 4.4.1. (spectral theorem-multiplication operator form) Let A be a
self-adjoint operator on a ��-dimensional a non-Archimedean Hilbert space H#

with domain D�A�.Then there is a #-measure space �M,�# with �# a hyperfinite
#-measure, a unitary operator U : H# � L2

#�M,d#�#�, and a ��c
#-valued function f



on M which is finite or hyperfinite �#-a.e. so that
(a) � � D�A� if and only if f�
��U���
� � L2

#�M,d#�#�.
(b) If � � U�D�A��, then �UAU�1���m� � f�m���m�.
Proof It easily verify that A � i and A � i are one to one correspondence and

Ran�A � i� � H#.Since A � i are #-closed, A � i
�1

are #-closed and therefore

bounded in ��c
#. Note that the operators �A � i��1 and �A � i��1 commute. The

equality ��A � i��,�A � i��1�A � i��# � ��A � i��1�A � i��,�A � i��#and the fact that
Ran�A � i� � H# shows that ��A � i��1�� � �A � i��1. Thus the operator �A � i��1 is
normal.
We now use the easy extension of the spectral theorem for bounded in ��c

#

self-#-adjoint operators to bounded in ��c
# normal operators. The proof of this

extension is a straightforward. We conclude that there is a #-measure space �M,�#
with �# a hyperfinite #-measure, a unitary operator U : H# � L2

#�M,d#�#�, and a
#-measurable, bounded, in ��c

# ��c
#-valued function g�m� so that

U�A � i��1U�1��m� � g�m���m� for all � � L2
#�M,d#�#�.Since Кеr��A � i��1� is empty,

g�m� � 0 a.e.�#, so the function f�m� � g�1�m� � i is hyperfinite а.е.�#. Now, suppose
� � D�A�. Then � � �A � i��1� for some � � H# and U� � gU�. Since fg is bounded
in ��c

#, we conclude that f�U�� � L2
#�M,d#�#�. Conversely, if f�U�� � L2

#�M,d#�#�,
then there is a � � H# so that U� � �f � i�U�. Thus, gU� � g�f � i�U� � U�, so
� � �A � i��1� which shows that � � D�A�. This proves (a).
To prove (b) notice that if � � D�A� then � � �A � i��1� for some � � H# and
A� � � � i�. Therefore, �UA���m� � �U���m� � i�U���m� � �g�1�m� � i��U���m�
� f�m��U���m�. Finally, if Im�f� � 0 on a set of nonzero Lebesgue #-measure, there
is a bounded in ��c

# set B in the upper half plane so that S � �x|f�x� � B� has nonzero
Lebesgue #-measure. If ��x� is the characteristic function of S then f� � L2

#�M,d#�#�
and Im��, f� � 0. This contradicts the fact that multiplication by /is self-adjoint
(since it is unitarily equivalent to A). Thus f is ��c

#-valued function.
There is a natural way to define functions of a self-#-adjoint operator by using the
above theorem. Given a bounded in ��c

# #-Borel function h on ��c
# we define

h�A� � UTh�f�U�1 �4.4.2�

where Th�f� is the operator on L2
#�M,d#�#� which acts by multiplication by the function

h�f�m��. Using this definition the following theorem follows easily from Theorem 4.4.1.
Theorem 4.4.2. (spectral theorem-functional calculus form) Let A be a self-#-adjoint
operator on H#. Then there is a unique map

�
� from the bounded #-Borel functions on

��c
# into ��H#� so that

(a)
�
� is an algebraic �-homomorphism.

(b)
�
� is #-norm #-continuous, that is,

�
��h�

� H#
 �h� ��

(c) Let hn�x�,n � �� be a hyper infinite sequence of bounded in ��c
# #-Borel

functions with #-lim n��� hn�x� � x

for each x and |hn�x�|  |x| for all x and n � ��. Then, for any � � D�A�,
#-lim n���

�
��hn�� � А�.

(d) If hn�x� �# h�x� pointwise and if the hyper infinite sequence �hn� ��,n � ��

is bounded in ��c
#, then

�
��hn� �#

�
��h� strongly.

In addition:



(e) If А� � 	� then
�
��h� � h�	��.

(f) If h � 0, then
�
��h� � 0.

The functional calculus is very useful. For example, it allows us to define the
exponential Ext-exp�itA� and prove easily many of its properties as a function of t
(see the next section). In the case where A is bounded in ��c

# we do not need the
functional calculus to define the exponential since we can define Ext-exp�itA� by
the power series which #-converges in #-norm.
The functional calculus is also used to construct spectral #-measures and can be
used to develop a multiplicity theory similar to that for bounded self-#-adjoint
operators.
A vector � � H# is said to be cyclic for A if �g�A��|g � C

�����c
#�� is #-dense in H#.

If � is a cyclic vector, then it is possible to represent H# as L2
#���c

#,d#��
# � where ��

#

is the measure satisfying Ext- �
��c

#

g�x�d#��
# �x� � ��,g�A��#in such a way that A

becomes multiplication by x. In general, H# decomposes into a direct sum of cyclic
subspaces so the #-measure space, M in Theorem 4.4.1 can be realized as a union
of copies of ��c

#. As in the case of bounded in ��c
# operators we can define

�ac�A�,�pp�A�,�sing�A� and decompose H# accordingly.
Finally, the spectral theorem in its projection-valued #-measure form follows easily
from the functional calculus. Let P� be the operator ���A� where �� is the
characteristic function of the measurable set � � ��c

#. The family of operators
�P�� has the following properties:
(a) Each P� is an orthogonal projection.
(b) P� � 0; P����,��� � I .

(c) If � � Ext-�n�1

�� �n with �n � �m � � for all n � m then

P� � s-#- limN��� Ext-�n�1
N P�n . �4.4.3�

(d) P�1P�2 � P�1��2.
Definition 4.4.1.Such a family is called a projection-valued #-measure (p.v.#-m.).
Remark 4.4.1. This is a generalization of the notion of bounded in ��c

# projection-
valued #-measure introduced in § 4.3.In that we only require P����,��� � I rather
than P��a,a� � I for some a � ��c

#. For � � H#,��,P��# is a well-defined Borel
#-measure on ��c

# which we denote by d#��,P	�# as in § 4.3.
The complex ��c

#-valued #-measure d#��,P	�# is defined by polarization. Thus, given
a bounded in ��c

# #-Borel function g we can define g�A� by

��,g�A��# � Ext- ���c
#
g�	�d#��,P	�# �4.4.4�

It is not difficult to show that this map g � g�A� has the properties (a)-(d) of
Theorem 4.4.1, so g�A� as defined by (4.4.4) coincides with the definition of g�A�
given by Theorem 4.4.1. Now, suppose g is an unbounded ��c

#-valued #-Borel
function and let

Dg � �|Ext- ���c
#
g�	�d#��,P	�# � �� . �4.4.5�

Then, Dg is #-dense in H# and an operator g�A� is defined on Dg by

��,g�A��# � Ext- ���c
#
g�	�d#��,P	�#. �4.4.6�



As in § 4.3, we write symbolically

g�A� � Ext- ���c
#
g�	�d#P	. �4.4.7�

In particular, for �,� � D�A�,

��,A��# � Ext- ���c
#
g�	�d#��,P	�#. �4.4.8�

if g is ��c
#-valued, then g�A� is self-#-adjoint on Dg. We summarize:

Theorem 4.4.3. (spectral theorem-projection valued measure form) There is a
one-to-one correspondence between self-#-adjoint operators A and projection-valued
#-measures �P�� on H# the correspondence being given by

A � Ext- ���c
#
	d#P	. �4.4.9�

We use the functional calculus developed above to define Ext-exp�itA�.
Theorem 4.4.4. Let A be a self-#-adjoint operator and define U�t� � Ext-exp�itA�.
Then
(a) For each t � ��c

#,U�t� is a unitary operator and U�t � s� � U�t�U�s� for all
s, t � ��c

#.
(b) If � � H# and t �# t0, then U�t�� �# U�t0��.

(c) For any � � D�A� :
U�t�� � �

t �# iA� as t �# 0.

(d) If #-lim t�# 0
U�t�� � �

t exists, then � � D�A�.

Proof (a) follows immediately from the functional calculus and the corresponding
statements for the complex-valued function Ext-exp�it	�. To prove (b) observe that

�Ext-exp�itA�� � ��#
2 � Ext- ���c

#|Ext-exp�it	� � 1|2d#�P	�,�#. �4.4.10�

Since |Ext-exp�it	� � 1|2 is dominated by the #-integrable function g�	� � 2 and
since for each 	 � ��c

# : |Ext-exp�it	� � 1|2 �# 0 as t �# 0 we conclude that
�U�t�� � ��#

2 �# 0 as t �# 0, by the generalized Lebesgue dominated-#-convergence
theorem. Thus t � U�t� is strongly #-continuous at t � 0, which by the group property
proves t � U�t� is strongly #-continuous everywhere. The proof of (c), which again
uses the dominated #-convergence theorem and the estimate |Ext-exp�ix� � 1|2  |x|.
To prove (d), we define

D�B� � � #- lim t�# 0
U�t�� � �

t exists �4.4.11�

and let

iB� � #- lim t�# 0
U�t�� � �

t . �4.4.12�

A simple computation shows that B is symmetric.By (с), В  A,so B � A.
Definition 4.4.2. An operator-valued function U�t� satisfying (a) and (b) is called a
strongly #-continuous one-parameter unitary group.
Definition 4.4.3. If U�t� is a strongly #-continuous one-parameter unitary group, then
the self-#-adjoint operator A with U�t� � Ext-exp�itA� is called the infinitesimal
generator of U�t�.
Suppose that U�t� is a weakly #-continuous one-parameter unitary group. Then
�U�t�� � ��#

2 � �U�t���#
2 � �U�t��,�# � ��,U�t��# � ���#

2 �# 0 as t �# 0. Thus



U�t� is actually strongly #-continuous. As a matter of fact, to conclude that U�t� is
strongly #-continuous one need only show that U�t� is weakly #-measurable,that is,
that �U�t��,�# is #-measurable for each � and �. This startling result sometimes
useful since in applications one can often show that �U�t��,�# is the #-limit of a
hyper infinite sequence of #-continuous functions;�U�t��,�# is therefore
#-measurable and by generalized von Neumann’s theorem U�t� is then strongly
#-continuous.
Theorem 4.4.5. Let U�t� be a one-parameter group of unitary operators on a hy
infinite dimensional Hilbert space H#. Suppose that for all �,� � H#,�U�t��,�# is
#-measurable. Then U�t� is strongly #-continuous.
Proof. Let � � H#.Then for all � � H#, �U�t��,�# is a bounded in ��c

# #-measurable

function and � � �
0

a

�U�t��,�#d
#t is a linear functional on H# of #-norm less than or

equal to а���#. Thus, by the generalized Riesz lemma there is а �a � H# so that

��a,�# � �
0

a

�U�t��,�#d
#t. �4.4.13�

Note that

�U�b��a,�# � ��a,U��b��# � �
0

a

�U�t��,U��b��#d
#t �

�
0

a

�U�t � b��,�#d
#t � �

b

a�b

�U�t��,�#d
#t.

�4.4.14�

From (4.1.14) we obtain

|�U�b��a,�# � ��a,�#| �

� �
0

b

�U�t��,�#d
#t � �

b

a�b

�U�t��,�#d
#t  2a���#���#

�4.4.15�

and therefore #-lim b�# 0�U�b��a,�# � ��a,�# so that U�b� is weakly and therefore
strongly #-continuous on the set of vectors of the form ��a|� � H#�. It remains only
to show that this set is #-dense, since by by an � � 0,�/3 argument we can then
conclude that t � U�t� is strongly #-continuous on H#. Suppose that
� � ��a|� � H#,a � ��c

#�� and let ���n��n��� be an orthonormal basis for H#.

Then for each n � ��

Ext- �
0

a

�U�t���n�,�#
d#t � �a

�n�,�
#
� 0 �4.4.16�

for all a � ��c
# which implies that �U�t���n�,�#

� 0 except for t � Sn, a set of

Lebesgue #-measure zero. Choose t0 � 	n��� Sn. Then �U�t0���n�,�#
� 0 for all

n � �� which implies that � � 0, since U�t0� is unitary.
Theorem 4.4.6.Suppose that U�t� is a strongly continuous one-parameter unitary
group. Let D be a #-dense domain which is invariant under U�t� and on which U�t� is
strongly #-differentiable. Then i �1 times the strong #-derivative of U�t� is essentially



self-#-adjoint on D and its #-closure is the #-infinitesimal generator of U�t�.
This theorem has a reformulation which is sufficiently important that we state it as a
theorem.
Theorem 4.4.7. Let A be a self-adjoint operator on H# and D be a #-dense linear set
contained in D�A�. If for all t, Ext-exp�itA� : D � D then D is a #-core for A.
Theorem 4.4.8.Let U�t� be a strongly #-continuous one-parameter unitary group on a
Hilbert space H#. Then, there is a self-#-adjoint operator A on H# so that
U�t� � Ext-exp�itA�.
Proof Part (d) of Theorem 4.4.4 suggests that we obtain A by differentiating
U�t� at t � 0. We will show that this can be done on a #-dense set of especially nice
vectors and then show that the #-limiting operator is essentially self-#-adjoint by
using the basic criterion. Finally, we show that the exponential of this #-limiting
operator is just U�t�.Let f � C0

�����c
#� and for each � � H# define

� f � Ext- �
��c

#

f�t�U�t��d#t. �4.4.17�

Since U�t� is strongly #-continuous the integral in (4.4.7) can be taken to be a
Riemann integral. Let D be the set of hyperfinite linear combinations of all such
� f with � � H# and f � C0

�����c
#�. If j ��t� is the approximate identity then

�� j � � ��# � Ext- �
��c

#

j ��t��U�t�� � ��d#t

#



 Ext- �
��c

#

j ��t�d#t
t����,��
sup �U�t�� � ��#.

�4.4.18�

Since U�t� is strongly #-continuous, D is #-dense in H#. We have used the inequality

Ext- �
��c

#

h�t�d#t

#

 Ext- �
��c

#

�h�t��#d
#t �4.4.19�

for non-Archimedean Banach space-valued #-continuous functions on the real line
��c

# (which can be proven using the approximate partial sums as in the ��c
#-valued

case). For � f � D we obtain that

U�s� � I
s � f � Ext- �

��c
#

f�t�
U�s� t� � U�t�

s �d#t �

Ext- �
��c

#

f� � s� � f��
s U���d# �# � Ext- �

��c
#

f#

��U���d# � ��f#


�4.4.20�

since �f�t � s� � f�t��/s #-converges to �f#

�t� uniformly. For � f � D we define

A� f � i �1��f#
 . Note that U�t� : D � D,A : D � D and U�t�A� f � AU�t�� f for � f � D.

Futhermore if � f,�g � D we obtain that

�A� f,�g# � #- lim s�# 0
U�s� � I

is
� f,�g

#
�

� #- lim s�# 0 � f,
I � U��s�

is
�g

#
� 1

i
� f,��g#


#
� �� f,A�g#

�4.4.21�



so A is symmetric. Now we show that A is essentially self-#-adjoint. Suppose that
there is a u � D�A�� so that A�u � iu. Then for each � � D�A� � D

d#

d#t
�U�t��,u# � �iAU�t��,u# � �i�U�t��,A�u# � �i�U�t��, iu# � �U�t��,u# �4.4.22�

Thus, the ��c
#-valued function f�t� � �U�t��,u# satisfies the ordinary differential

equation f#
 � f so f�t� � f�0��Ext-exp�t��. Since U�t� has #-norm one, |f�t�| is bounded,
in ��c

# which implies that f�0� � ��,u# � 0. Since D is #-dense, u � 0. A similar proof
shows that A�u � �iu can have no nonzero solutions. Therefore A is essentially
self-#-adjoint on D.
Let V�t� � Ext-exp�it�#-A��. It remains to show that U�t� � V�t�. Let � � D�A�. Since
� � D��#-A��, V�t�� � D��#-A�� and V#
�t�� � iAV�t�� by (c) of Theorem 4.4.4, We
already know that U�t�� � D � D�#-A� for all� ��c

#. Let w�t� � U�t�� � V�t��. Then
w�t� is a strongly #-differentiable vector-valued function and

w#
�t� � iAU�t�� � i�#-A�V�t�� � iAw�t�. �4.4.23�

Thus

d#

d#t
�w�t��#

2 � �i��#-A�w�t�,w�t�#
� i�w�t�,�#-A�w�t�#

. �4.4.24�

Therefore w�t� � 0 for all t � ��c
# since w�t� � 0. This implies that U�t�� � V�t��

for all t � ��c
#,� � D. Since D is #-dense in H#,U�t� � V�t�.

Remark 4.4.2.Finally, we have the following generalization of Stone’s theorem 4.4.8.
If g is a ��c

#-valued #-BoreI function on ��c
#, then

g�A� � Ext- ���c
#
g�	�d#P	 �4.4.25�

defined on Dg (4.4.5) is self-#-adjoint. If g is bounded, g�A� coincides with
�
��g� in

Theorem 4.4.2.
We conclude with several remarks. First, generalized Stone’s formula, given in
Theorem 4.3.7 relates the resolvent and the projection-valued measure associated
with any self-#-adjoint operator. The proof is the same as in the bounded in ��c

# case.
The spectrum of an unbounded self-#-adjoint operator is an unbounded subset of
the real axis ��c

#. One can define discrete and essential spectrum; Theorem 4.3.6
(Generalized Weyl’s criterion) still holds if one adds the criterion that the vectors ��n�
must be in the domain of A.
Finally, we note that the measure space of Theorem 4.4.1 can always be chosen so

that
Proposition 4.4.2 is applicable.
The following theorem says that every strongly #-continuous unitary group arises
as the exponential of a self-#-adjoint operator.
Theorem 4.4.9. Let U�t� � U�t1, . . . ,tn� be a strongly continuous map of ��c

#n into the
unitary operators on a hyper infinite dimensional Hilbert space H# satisfying
U�t � s� � U�t�U�s� Let D be the set of hyperfinite linear combinations of vectors of
the form

� f � Ext- ���c
#n

f�t�U�t�d#nt �4.4.26�

where � � H#, f � C0
#�����c

#n�.Then D is a domain of essential self-#-adjointness for
each of the generators Aj of the one-parameter subgroups U�0,0, . . . ,t j , . . , 0�, each



Aj : D � D and the Aj commute, j � 1, . . . ,n. Furthermore, there is a projection-valued
#-measure P� on ��c

#n so that

��,U�t��# � Ext- ���c
#n

Ext-exp�i�t,��d#��,P��# �4.4.27�

for all �,� � H#.
Proof Let Aj be the infinitesimal generator of U j�t j� � U�0, . . . ,t j , . . , , 0�.The
procedure used in the proof of Theorem 4.4.8 shows that D � D�Aj�,
Aj : D � D,and U j�t j� : D � D. Theorem 4.4.7 shows that Aj is essentially
self-#-adjoint on D.Because of the relation U�t � s� � U�t�U�s�, U j�t j� commutes
with U i�t i� for all t j , t i � ��c

#.
Therefore, it follows from Theorem 4.5.1, that Ai and Aj commute in the sense
that is, their spectral projections commute.Let P�

j be the projection-valued
#-measure on ��c

# corresponding to Aj . Define a projection valued #-measure

P� on ��c
#n by defining it first on rectangles rn � Ext-�

i�1

n

�ai ,bi � by Prn � Ext-�
i�1

n

P�ai ,bi �
i

and then letting P� be the unique extension to the smallest �#-algebra containing
the rectangles, namely the #-Borel sets. Notice that, by Theorem 4.5.1, the P� j

j

commute since the groups U j commute. For each �,� � H#, ��,P��# is a
��c

#-valued #-measure of hyperfinite mass which we denote by d#��,P��#.
Applying generalized Fubini’s theorem we conclude that

��,U�t��# � �,Ext-�
i�1

n

U�t i��
#

� Ext- ���c
#n

Ext-exp�i�t,��d#��,P��#. �4.4.28�

§ 4.5.
Suppose that A and B are two unbounded self-#-adjoint operators on a
non-Archimedean Hilbert space H#. We would like to find a reasonable definition
for the statement: "A and B commute."
This cannot be done in the straightforward way since AB� BA may not make sense
on any vector � � H# for example, one might have �Ran�A�� � D�B� � � in which
case BA does not have a meaning. This suggests that we find an equivalent
formulation of commutativity for bounded self-#-adjoint operators. The spectral
theorem for bounded self-#-adjoint operators A and B shows that in that case
AB� BA � 0 if and only if all their projections, �P�

A � and �P�
B �, commute, We take

this as our definition in the unbounded case.
Definition 4.5.1.Two possibly unbounded in��c

# self-#-adjoint operators A and B
are said to commute if and only if all the projections in their associated projection-
valued #-measures commute.
Remark 4.5.1.The spectral theorem shows that if A and B commute, then all the
bounded in��c

# #-Borel functions of A and B also commute. In particular, the
resolvents R	�A� and R��B� commute and the unitary groups Ext-exp�itA� and
Ext-exp�isA� commute.
The converse statement is also true and this shows that the above definition of
"commute" is reasonable:
Theorem 4.5.1. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert spaceHilbert space H#.



Then the following three statements are equivalent:
(a) Spectral projections P�a,b�

A and P�c,d�
B , commute.

(b) If Im	 and Im� are nonzero, then R	�A�R��B� � R��B�R	�A� � 0.
(c) For all s, t � ��c

#,�Ext-exp�itA���Ext-exp�isB�� � �Ext-exp�isB���Ext-exp�itA��.
Proof The fact that (a) implies (b) and (c) follows from the functional calculus. The
fact that (b) implies (a) easily follows from the formula which expresses the spectral
projections of A and B as strong #-limits of the resolvents (generalized Stone’s
formula) together with the fact that

s-#- lim ��# 0�i�Ra�i��A�� � P�a�
A . �4.5.1�

To prove that (c) implies (a), we use some simple facts about the Fourier
transform. Let f � S#���c

#�. Then, by generalized Fubini’s theorem,

Ext- ���c
#
f�t���Ext-exp�itA���,�#d

#t �

� Ext- ���c
#
f�t� Ext- ���c

# �Ext-exp��it	��d	
#�P	

A�,�# d#t �

� 2
# Ext- ���c
#

�
f �	�d	

#�P	
A�,�# � 2
# �,

�
f �A��

#
.

�4.5.2�

Thus, using (c) and generalized Fubini’s theorem again,

�,
�
f �A��g�B��

#
�

Ext- ���c
#
Ext- ���c

#
f�t�g�s���,�Ext-exp��itA���Ext-exp��isB���#d

#sd#t �

� �,�g�B�
�
f �A��

#

�4.5.3�

so, for all f,g � S#���c
#�,

�
f �A��g�B� � �g�B�

�
f �A� � 0.

Since the Fourier transform maps S#���c
#� onto S#���c

#� we conclude that
f�A�g�B� � g�B�f�A� for all f,g � S#���c

#�. But, the characteristic function, ��a,b�

can be expressed as the pointwise #-limit of a hyperinfinite sequence fn,n � ��
of uniformly bounded functions in S#���c

#�. By the functional calculus,

s-#- lim n��� fn�A� � P�a,b�
A . �4.5.4�

Similarly,we find uniformly bounded gn � S#���c
#� #-converging pointwise to ��c,d�

and

s-#- lim n��� gn�B� � P�c,d�
B . �4.5.5�

Since the fn and gn are uniformly bounded in��c
# and

fn�A�gn�B� � gn�B�fn�A� �4.5.6�

for each n � ��, we conclude that P�a,b�
A and P�c,d�

B , commute which proves (a).

.

Chapter IV.Non-Archimedean Banach spaces endroved



with��c
#-valued norm.

1.Definitions and examples
A non-Archimedean normed space with��c

#-valued norm (#-norm) is a pair �X,�
�#�
consisting of a vector space X over a non-Archimedean scalar field ��c

#or complex
field ��c

# together with a distinguished norm �
�# : X � ��c
#. Like any norms, this

#-norm induces a translation invariant distance function, called the canonical or (norm)
induced non-Archimedean ��c

#-valued metric for all vectors x,y � X, defined by

d#�x,y� � �x � y�# � �y � x�#. �1.1�

Thus (1.1) makes X into a metric space �X,d#�. A hyper infinite sequence �xn�n�1
�#

is
called d#-Cauchy or Cauchy in �X,d#� or �
�# -Cauchy if for every hyperreal r � ��c

#,
r � 0, there exists some N � �# such that

d#�xn,xm� � �xn � xm�# � r, �1.2�

where m and n are greater than N. The canonical metric d# is called a #-complete
metric if the pair �X,d#� is a #-complete metric space, which by definition means for
every d#-Cauchy sequence �xn�n�1

�#
in �X,d#�, there exists some x � X such that

#- lim n��#�xn � x�# � 0 �1.3�

where because �xn � x�# � d#�xn,x�, this hyper infinite sequence’s #-convergence to x
can equivalently be expressed as: #-lim n��# xn � x in �X,d#�.
Definition 1.1. The normed space �X,�
�#� is a non-Archimedean Banach space
endroved with��c

#-valued norm if the #-norm induced metric d# is a #-complete
metric, or said differently, if �X,d#� is a #-complete metric space. The #-norm �
�# of a
#-normed space �X,�
�#� is called a #-complete #-norm if �X,�
�#� is a
non-Archimedean Banach space endroved with��c

#-valued #-norm.
Remark 1.1.For any #-normed space �X,�
�#�, there exists an L-semi-inner product

�
, 
# :X � X � ��c
# such that �x�# � �x,x# for all x � X ; in general, there may be

infinitely many L-semi-inner products that satisfy this condition. L-semi-inner products
are a generalization of inner products, which are what fundamentally distinguish
non-Archimedean Hilbert spaces from all other non-Archimedean Banach spaces.
Characterization in terms of hyper infinite series,see ref. [1].
The vector space structure allows one to relate the behavior of hyper infinite Cauchy
sequences to that of #-converging hyper infinite series of vectors.
Remark 1.2.A #-normed space X is a non-Archimedean Banach space if and only if

each absolutely #-convergent hyper infinite series Ext-�n�1
�#

vn in X #-converges in

X,i.e., Ext- �
n�1

�#

�vn� � �# implies that Ext- �
n�1

�#

vn #-converges in X.

2.Linear operators,isomorphisms
If X and Y are #-normed spaces over the same ground field ��c

#, the set of all
#-continuous ��c

#-linear maps T : X � Y is denoted by B#�X,Y�. In hyper infinite-
dimensional spaces, not all linear maps are #-continuous. A linear mapping from a
#-normed space X to another normed space is #-continuous if and only if it is
bounded or hyper bounded on the #-closed unit ball of X. Thus, the vector space



B#�X,Y� can be endroved with the operator norm

�T� � sup��Tx�#Y ! x � X,�x�#X  1�. �2.1�

For Y a non-Archimedean Banach space, the space B#�X,Y� is a Banach space with
respect to this #-norm.
If X is a non-Archimedean Banach space, the space B#�X� � B#�X,X� forms a unital
Banach algebra; the multiplication operation is given by the composition of linear

maps.
Definition 2.1.If X and Y are #-normed spaces, they are #-isomorphic #-normed

spaces
if there exists a linear bijection T : X � Y such that T and its inverse T�1 are
#-continuous. If one of the two spaces X or Y is #-complete then so is the other space.
Two #-normed spaces X and Y are #-isometrically isomorphic if in addition, T is an
#-isometry, that is, �T�x�� � �x� for every x � X.
Definition 2.2.Let �X,�
�� be standard Banach space.For x � �X and � � 0,� � 0
we define the open �-ball about x of radius � to be the set
B��x� � �y � �X|��x � y� � ��.

Definition 2.3.Let �X,�
�� be standard Banach space, Y � X thus �Y � �X and let
x � �X.Then x is an �-accumulation point of �X if for every
� � 0,� � 0,Y� �B��x�\�x�� � �.
Definition 2.4.Let �X,�
�� be a standard Banach space, let Y � �X,Y is �-closed if
every �-accumulation point of Y is an element of Y.
Definition 2.5.Let �X,�
�� be standard Banach space.We shall say that internal hyper
infinite sequence �xn�n�1

n��� in �X �-converges to x � �X as n � ��if for any
� � 0,� � 0 there is N � �� such that for any n � N : ��xn � x� � �.
Definition 2.6.Let �X,�
��,�Y,�
�� be a standard Banach spaces. A linear internal
operator A : D�A� � �X � �Yis �-closed if for every internal hyper infinite
sequence �xn�n�1

n��� in D�A� �-converging to x � �X such that Axn � y � �Y as
n � �� one has x � D�A� and Ax � y. Equivalently, A is �-closed if its graph is

�-closed
in the direct sum �X " �Y.
Given a linear operator A : �X � �Y, not necessarily �-closed, if the �-closure of its
graph in �X " �Y happens to be the graph of some operator, that operator is called
the �-closure of A, and we say that A is �-closable. Denote the �-closure of A by �-A.
It follows that A is the restriction of �-A to D�A�.
A �-core (or �-essential domain) of a �-Aclosable operator is a subset C � D�A� such
that the �-closure of the restriction of A to C is �-A.
Definition 2.7. The graph of the linear transformation T : H � H is the set of pairs
���,T�|�� � D�T���.
The graph of T, denoted by ��Т�, is thus a subset of H � H which is a

non-Archimedean
Hilbert space with inner product ���1,�1,��2,�2�.
T is called a #-closed operator if ��T� is a #-closed subset of H � H.
Definition 2.8. Let T1 and T be operators on H. If ��T1�  ��T�, then T1 is said to be

an
extension of T and we write T1  T. Equivalently, T1  T if and only if D�T1�  D�T�



and T1� � T� for all � � D�T�.
Definition 2.9. An operator T is #-closable if it has a #-closed extension. Every

#-closable
operator has a smallest #-closed extension, called its #-closure, which we denote by

#-T.
Theorem 2.1.If T is #-closable, then ��#-T� � #-��T�.
Definition 2.10.Let T be a #-densely defined linear operator on a non-Archimedean
Hilbert space H. Let D�T�� be the set of � � H for which there is an � � H with
�T�,�� � ��,�� for all � � D�T�.
For each � � D�T��, we define T�� � �. T� is called the #-adjoint of T. Note that
� � D�T�� if and only if |�T�,��|  C��� for all � � D�T�. We note that S� T implies
T� � S�.
Theorem 2.2. Let T be a #-densely defined operator on a non-Archimedean Hilbert
space H.
Then:(i) T� is #-closed.
(ii) T is #-closabie if and only if D�T�� is #-dense in which case T � T��.
(iii) If T is #-closabie, then �# � T�� � T�.
Definition 2.11. Let T be a #-closed operator on a Hilbert space H. A complex number
	 � ��c

# is in the resolvent set,��T�,if 	I � T is a bijection of D�T� onto H with a
a finitely or hyper finitely bounded inverse. If 	 � ��T�, R	�T� � �	I � T��1 is called the
resolvent of T at 	.
The definitions of spectrum, point spectrum, and residual spectrum are the same for
unbounded operators as they are for bounded operators. We will sometimes refer to
the spectrum of nonclosed, but closabie operators. In this case we always mean the
spectrum of the closure.

3. Symmetric and self-#-adjoint operators: the basic
criterion for self-#-adjointness.

Definition 3.1. A #-densely defined operator T on a non-Archimedean Hilbert space is
called symmetric (or Hermitian) if T � T�, that is, if D�T� � D�T�� and T� � T�� for
all � � D�T�.
Equivalently, T is symmetric if and only if �T�,�� � ��,T�� for all �,� � D�T�
Definition 3.2. T is called self-adjoint if T � T�, that is, if and only if T is symmetric and
D�T� � D�T��.
A symmetric operator is always #-closable, since D�T��  D�T� is #-dense in H. If T is
symmetric, T� is a closed extension of T so the smallest #-closed extension T�� of T
must be contained in T�. Thus for symmetric operators, we have
T � T�� � T�.For #-closed symmetric operators,T � T�� � T� and, for self-adjoint
operators,T � T�� � T�

From this one can easily see that a #-closed symmetric operator T is self-adjoint if
and only if T� is symmetric.
The distinction between #-closed symmetric operators and self-adjoint operators is

very
important. It is only for self-adjoint operators that the spectral theorem holds
and it is only self-adjoint operators that may be #-exponentiated to
give the one-parameter unitary groups which give the dynamics in



QFT. Chapter X is mainly devoted to studying methods for proving that operators are
self-adjoint. We content ourselves here with proving the basic criterion for

selfadjointness.
First, we introduce the useful notion of essential self-adjointness.
Definition 3.3 A symmetric operator T is called essentially self- #-adjoint if its

#-closure #-T is self- #-adjoint. If T is #-closed, a subset D � D�T� is called a core for T
if

# � T � D � T.
If T is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension.
The importance of essential self-#-adjointness is that one is often given a nonclosed
symmetric operator T. If T can be shown to be essentially self-#-adjoint, then there is
uniquely associated to Ta self-adjoint operator T � T��. Another way of saying this is
that if A is a self-#-adjoint operator, then to specify A uniquely one need not give the
exact domain of A (which is often difficult), but just some #-core for A

Chapter V. Semigroups of operators on a
non-Archimedean Banach spaces.
§1.Semigroups on non-Archimedean Banach spaces and
their generators.

A family of #-bounded operators �T�t�|0 � t � �#� on external hyper infinite
dimensional

non-Archimedean Banach space X endoved with ��c,�
# - valued norm �
�# is called a

strongly #-continuous semigroup if:
(a) T�0� � I
(b) T�s�T�t� � T�s� t� for all s, t � ��c,�

#

(c) For each � � X, t � T�t� is #-continuous mapping.
We will see that strongly continuous semigroups are the “exponentials,”
T�t� � Ext-exp��tA�, of a certain class of operators. .
We begin by studying a special class of semigroups:
Definition 1.1. A family �T�t�|0 � t � �#� of bounded or hyper bounded operators on
external hyper infinite dimensional Banach space X is called a contraction semigroup
if it is a strongly #-continuous semigroup and moreover ||T�t�||# � 1 for all t � �0,�#�.
Note that the all theorems about general strongly #-continuous semigroups are easy
generalizations of the corresponding theorems for #-contraction semigroups. Thus,
we study the special case first. We then briefly discuss the general theory and
conclude the section by studying another special class, #-holomorphic semigroups.
Proposition 1.1. Let T�t� be a strongly #-continuous semigroup on a
non-Archimedean Banach space X and set A� � #-lim r�# 0 Ar� where
D�A� � ��| #-lim r�# 0 Ar� exists�. Then A is
#-closed and #-densely defined. A is called the infinitesimal generator of T�t�. We will
also say that A generates T�t� and write T�t� � Ext-exp��tA�.
Proof.Let T�t� be a contraction semigroup on a Banach space X. We obtain the
generator of T�t� by #-differentiation. Set At � t�1�I � T�t�� and define

D�A� � ��| #-lim t�# 0 At� exists�.
For � � D�A�, we define A� � #-lim t�# 0 At�. Our first goal is to show that D�A� is



#-dense. For � � X, we set

�s � Ext- �
0

s

T�t��d#t. �2.1�

For any r � 0, we get

T�r��s � Ext- �
0

s

T�t � r��d#t �2.2�

thus

Ar�s � � 1
r Ext- �

0

s

�T�t � r�� � T�t���d#t �

� 1
r Ext- �

s

r�s

T�t��d#t � 1
r Ext- �

s

r

T�t��d#t .

�2.3�

From Eq.(2.3) one obtains #-lim r�# 0 Ar�s � �T�s�� � �. Therefore, for each � � X

and s � 0, �s � D�A�. Since s�1�s �# � as �# 0, A is #-densely defined.
Furthermore, if � � D�A�, then ArT�t�� � T�t�Ar�, so T�t� : D�A� � D�A� and

d#

d#t
T�t�� � �AT�t�� � �T�t�A� �2.4�

A is also #-closed, for if �n � D�A�, #-lim n��# �n � �, and #-lim n��# A�n � �, then

#- lim r�# 0 Ar� � #- lim r�# 0 #- lim n��# � 1
r �T�r��n � �n� �

#- lim r�# 0 #- lim n��#
1
r Ext- �

s

r

T�t�A�nd#t �

#- lim r�# 0
1
r Ext- �

s

r

T�t��d#t

�2.5�

so � � D�A� and A� � �.
The formal Laplace transform

1
	 � A

� � Ext- �
0

�#

�Ext-exp��	t���Ext-exp��tA��d#t �2.6�

suggests that all � � ��c
# with Re� � 0 are in ��A�. This is in fact true and the

formula (2.6) holds in the strong sense. For suppose that Re	 � 0. Then, since
�Ext-exp��tA�� � 1, the formula (2.7)

R� � Ext- �
0

�#

�Ext-exp��	t���Ext-exp��tA���d#t �2.7�

defines a hyper bounded linear operator of #-norm less than or equal to �Re	��1.



Moreover, for r � 0,

ArR� � � 1
r Ext- �

0

�#

�Ext-exp��	t���Ext-exp���t � r�A� � Ext-exp��tA���d#t �

1 � Ext-exp�	r�
r Ext- �

0

�#

�Ext-exp��	t���Ext-exp��tA���d#t �

Ext-exp�	r�
r Ext- �

0

r

�Ext-exp��	t���Ext-exp��tA���d#t

�2.8�

so as r �# 0,ArR� �# �� � 	R��. Thus R� � D�A� and AR� � � � 	R� which
implies �	 � A�R� � �. In addition, for � � D�A� we have AR� � RA� since

A Ext- �
0

�#

�Ext-exp��	t���Ext-exp��tA���d#t �

Ext- �
0

�#

�Ext-exp��	t��A�Ext-exp��tA���d#t �

Ext- �
0

�#

�Ext-exp��	t���Ext-exp��tA��A�d#t.

�2.9�

The first equality follows by approximation with external hyperfinite Riemann
sums (see [1]) from the facts that �Ext-exp��	t���Ext-exp��tA��� and
A�Ext-exp��	t���Ext-exp��tA�� are #-integrable, A is #-closed. Thus, for � � D�A�,
R�	 � A�� � � � �	 � A�R� which implies that

R � �	 � A��1. �2.10�

The properties of A which we have derived are also sufficient to guarantee that A
generates a contraction semigroup. In fact, we only need information about real
positive A.
Theorem 1.1. (Generalized Hille-Yosida theorem) A necessary and sufficient
condition that a #-closed
linear operator A on a Banach space X generate a contraction semigroup is that
(i) ���#, 0� � ��A�
(ii) ��	 � A��1�# for all 	 � 0.

Furthermore, if A satisfies (i) and (ii), then the entire #-open left half-plane is
contained in ��A� and

�	 � A��1� � �Ext- �
0

�#

�Ext-exp��	t���Ext-exp��tA��d#t �2.11�

for all � � X and 	 with Re	 � 0. Finally, if T1�t� and T2�t� are contraction semigroups
generated by A1 and A2 respectively, then T2�t� � T1�t� for some t implies that

A1 � A2.
Proof. Since we showed above that conditions (i) and (ii) are necessary and that

(2.11)



holds, we need only show sufficiency. So, suppose that A is a #-closed operator on X
satisfying (i) and (ii). For 	 � 0, define A�	� � 	 � 	2�	 � A��1. We will show that as
	 � �#, A�	� �# A strongly on D�A� and then construct Ext-exp��tA� as the strong
#-limit of the semigroups Ext-exp��tA�	��.For � � D�A�, A�	�� � 	�	 � A��1A�.
Moreover, by (ii),

#- lim 	��#�	�	 � A��1� � �� � #- lim 	��#���	 � A��1A�� � 0. �2.12�

By condition (ii) the family �	�	 � A��1|	 � 0� is #-uniformly hyperfinitely bounded
in #-norm, so since D�A� is #-dense, #-lim 	��#�	�	 � A��1�� � � for all � � X.
Thus #-lim 	��# A�	�� � A� for all � � D�A�.Since A is hyperfinitely bounded, the
semigroups Ext-exp��tA�	�� can be defined by hyper infinite power series. Since

�Ext-exp��tA�	���#
� ��Ext-exp��	t���Ext-exp�t	2�	 � A��1���# 

 �Ext-exp��	t�� Ext-�
n�0

�#

tn	2n

n!
��	 � A��1�#

n  1
�2.13�

they are contraction semigroups. For all �,	, t � 0, and all � � D�A�, we have

�Ext-exp��tA�	���� � �Ext-exp��tA������ �

Ext- �
0

t

d#

d#s
�Ext-exp��sA�	�����Ext-exp���t � s�A�	�����d#s

�2.14�

so,

��Ext-exp��tA�	���� � �Ext-exp��tA�������#


Ext- �
0

t

��Ext-exp��sA�	�����Ext-exp���t � s�A�	�����#
�A���� � A�	���

#
d#s 

 t�A���� � A�	���
#
.

�2.15�

We have used the fact that Ext-exp��tA�	�� and �Ext-exp���t � s�A����� commute
since �A�	�|	 � 0� is a commuting family. Since we have proven above that
#-lim 	��# A�	�� � A�,�Ext-exp��tA�	��� is Cauchy as 	 � �# for each t � 0 and
� � D�A�. Since D�A� is #-dense and the Ext-exp��tA�	�� are uniformly hyperfinitely
bounded, the same statement holds for all � � X. Now, define

T�t�� � #- lim 	��#�Ext-exp��tA�	����. �2.16�

T�t� is a semigroup of contraction operators since these properties are preserved
under strong #-limits. The above inequality shows that the #-convergence in Eq.(2.16)
is uniform for t restricted to a hyperfinite interval, so T�t� is strongly #-continuous since
Ext-exp��tA�	�� is. Thus, T�t� is a contraction semigroup.It remains to show that the

infinitesimal generator of T�t�, call it A, is equal to A. For all t
and � � D�A�,

�Ext-exp��tA�	���� � � �� � Ext- �
0

t

�2.17�

so, since #-lim 	��# A�	�� � A�, we have



T�t�� � � � � Ext- �
0

t

T�s�A�d#s . �2.18�

Thus, At� �# A� as t �# 0. Therefore D A  D�A� and A � D�A� � A. For 	 � 0,

�	 � А��1 exists by hypothesis and 	 � А
�1

exists by the necessity part of the

theorem.
.

§2 Hypercontractive semigroups
In the previous section we discussed �#

p-contractive semigroups. In this section we will
prove a self-adjointness theorem for operators of the form A � V where V is a
multiplication operator and A generates an �#

p-contractive semigroup that satisfies a
strong additional property.
Definition 2.1. Let �M,�# be a #-measure space with �#�M� � 1 and suppose that A
is a positive self-adjoint operator on �#

2�M,d#�#�. We say that Ext-exp��tA� is a
hypercontractive semigroup if:
(i) Ext-exp��tA� is �#

p-contractive;
(ii) for some b � 2 and some constant Cb, there is a T � 0 so that
�Ext-exp��tA���b  Cb���2 for all � � �#

2�M,d#�#�.
By Theorem X.55, condition (i) implies that Ext-exp��tA� is a strongly #-continuous
contraction semigroup for all p � �#.Holder’s inequality shows that

�
�q  �
�p �1�

if p � q.Thus the �#
p-Spaces are a nested family of spaces which get smaller as p gets

larger; this suggests that (ii) is a very strong condition. The following proposition
shows

that b plays no special role.
Proposition 2.1. Let Ext-exp��tA� be a hypercontractive semigroup on �#

2�M,d#�#�.
Then for all p,q � �1,�#�, there is a constant Cpq and a tpq � 0 so that if t � tpq then
�Ext-exp��tA���p  Cpq���q for all � � �#

q.

Proof. The case where p � q follows immediately from (i) and (1). So suppose that
p � q. Since Ext-exp��tA� : �#

2 � �#
b and Ext-exp��tA� : �#

�#
� �#

�#
, the generalized

Riesz-Thorin theorem implies that there is a constant C so that for all r � 2,
�Ext-exp��tA���r  C���br/2. We now consider two cases. First, if q � 2 we choose

n large enough so that 2�b/2�n � p. Then �Ext-exp��nTA���2�b/2�n  C���2 so the

conclusion follows if 2 � q,p � 2�b/2�n, by using (1), and hypothesis (i). If 1 � q � 2,
then we choose n large enough so that 2�b/2�n � p and q � c where
c�1 � �2�b/2�n��1 � 1. Since A is self-adjoint and Ext-exp��nTA�� is a bounded or hyper
bounded map from �#

2 to �#
2�b/2�n

,�Ext-exp��nTA��� � Ext-exp��nTA� is a bounded or
hyper bounded map from �#

c to �#
2. Thus Ext-exp��2nTA� is a bounded or hyper

bounded map from �#
c to �#

2�b/2�n

. Since c � q � p � 2�b/2�n, (1) implies the proposition.
Theorem 2.1. The operator � 1

2 d#2/d#x2 � xd#/d#x on �#
2 ��c

#,
#
�1/2Ext-exp��x2�d#x

is positive and essentially self-adjoint on the set of hyperfinite linear combinations of
Hermite polynomials, and generates a hypercontractive semigroup.



As a preparation for our main theorem, we prove the following result.
Theorem 2.2 Let �M,� be a #-measure space with ��M� � 1 and let H0 be the
generator of a hypercontractive semigroup on �#

2�M,d��. Let V be a real-valued
measurable function on �M,�# such that V � �#

p�M,d#�#� for all p � �1,�#� and
Ext-e�tV � �#

1�M,d#�#� for all t � 0. Then H0 � V is essentially self-#-adjoint on
C�#

�H0� � D�V� and is bounded below. C�#
�H0� � �p��# D�H0

p�
.

Chapter VI. Singular Perturbations of Selfadjoint

Operators on a non-Archimedean Hilbert space.

§1. Introduction
We study the sum A � B of two #-selfadjoint operators on a non-Archimedean
Banach spaces, and we find sufficient conditions for C � A � B to be #-selfadjoint.
Our technique is to approximate B by a hyperinfinite sequence of bounded

#-selfadjoint
operators Bn,n � �� and so to approximate C by #-selfadjoint operators Cn � A � Bn.
We answer three questions separately:
1.When do the operators Cn have a #-lim C? 2.When is C a #-selfadjoint operator?
3.When is C � A � B?
In Theorem 8 we give a set of estimates on the relative size of A and B which
ensure a positive answer to all three questions. Hence these estimates show that
A � B � C is #-selfadjoint. In another paper [5], we use Theorem 2.8 to prove
the existence of a self-interacting, causal quantum field in 4-dimensional
space-time. Formally this field theory is Lorentz covariant and has non-trivial
scattering; this application was the motivation for the present work.
In order to investigate the meaning of #-lim n��� Cn, we give a new definition for
the strong #-convergence of a hyperinfinite sequence of operators. Consequences
of this definition
are worked out in Section 2. In Section 3 we give estimates on operators Cn

which are sufficient to ensure that the #-lim n��� Cn � C exists and that C is maximal
symmetric or #-selfadjoint. This result is given in Theorem 5 and Corollary 6.
In Section 4 we investigate whether #-lim n��� Cn � C is equal to A � B.
We combine this work in Theorem 8, our second main theorem, where B is
a singular, but nearly positive #-selfadjoint perturbation of a positive #-selfadjoint
operator A. To illustrate this theorem, let A � I and let B be essentially #-selfadjoint on

D# � �n��� D�An�. �1.0�

Assume now that, for some � � 0 and some �,

A��1���BA��1��� and A�BA� �1.1�

are #-densely defined, bounded operators. Also, for some positive a,� � ��c�
#

satisfying 2a � � � 1, suppose that there is a constant b � ��c
# such that, as bilinear

forms on D � D,

0  aA� B � b �1.2�



and

0  �A2 � �A1/2,�A1/2,B�� � b. �1.3�

Then A � B is #-selfadjoint.
We see from this example that neither the operator B nor the bilinear form B
need be bounded relative to A.
While it may not appear evident, the conditions (1.1)-(1.3) are closely related
to a more easily understandable estimate on D# � D#,

A2 � B2c�A � B�2 � c. �1.4�

In fact, estimates (1.1)-(1.3) are chosen because they allow us not only to prove (1.4),
but also the similar inequality where B is replaced by Bn.
Let us now see that if A � B is #-selfadjoint, then (1.4) must hold for every
vector in D�A � B� � D�A� � D�B�.
Proposition 1.1. Let A and B be #-closed operators. Then A � B is #-closed if and
only if there is a constant c � ��c

# such that for all � � D�A � B�

�A��# � �B��#  ��A � B���# � c���# �1.5�

and (1.5) is equivalent to (1.4) on D�A � B� � D�A � B�.
Proof: Certainly (1.5) implies that A � B is #-closed. Conversely, assume that
A � B is #-closed and introduce the #-norms on D�A � B� � D�A� � D�B�,

���#1 � ���# � �A��# � �B��# �1.6�

and

���#2 � ���# � ��A � B���# �1.7�

Then D�A � B�,�
�#2 is a non-Archimedean Banach space because A � B is #-closed.
The identity map from D�A � B�,�
�#2 to D�A � B�,�
�#1 has a #-closed graph because
A,B, and A � B are c#-losed. By the #-closed graph theorem, the identity map is
#-continuous; hence

���#1  c���#2. �1.7
�

Proposition 1.2.Let A � I,B be #-selfadjoint operators with D# � D(B) and
suppose (1.2) and (1.3) hold. Then (1.4) is valid on D# � D#.
Proof The operators A2,B2,AB,BA, and A1/2BA1/2 define bilinear forms
on D# � D#. Using (1.2) and (1.3), we have the inequality:
A2 � B2 � �A � B�2 � 2A1/2BA1/2 � �A1/2,�A1/2,B��  �A � B�2 � �2a � ��A2 � 2Ab� b
which establishes (1.4).

§2. Strong #-Convergence of Operators

Let ��C� be the graph of the operator C. For any hyperinfinite sequence �Cn�,n � ��
of #-densely defined operators we define

� ���C� � ��,�|� � #- lim n��� �n,�n � D�Cn�,� � #- lim n��� Cn�n�. �8�

In general, � �� will not be the graph of an operator. If the hyperinfinite sequence
�Cn

��, n � ��#-converges strongly on a #-dense domain D to an operator C�, namely,

C�� � #- lim n��� Cn
��,� � D,

then � �� is the graph of some operator C�. In particular, if each Cn is self #-adjoint,



and if the Cn #-converge on a #-dense set D to an operator C defined on D,
then � �� � � ���C��� and C�� is a symmetric extension of C.
Definition 2.1. G #-CONVERGENCE. The hyperinfinite sequence of operators
Cn,n � �� #-converge strongly to C�� in the sense of graphs, written

Cn �#G C�� �8
�

if � �� is the graph of a #-densely defined operator C�� .
Remark 2.1.Note that for a hyperinfinite sequence of uniformly bounded operators
�Cn

��n��� such that Cn �#G C��, C�� is the usual strong #-limit of the operators

Cn,n � �� and is everywhere defined.
Definition 2.2.R #-CONVERGENCE. Let the resolvents Rn�z� � �Cn � z��1,n � ��
exist for some z � ��c

#, and be uniformly bounded in n. The operators Cn #-converge
strongly to C�� in the sense of resolvents, written

Cn �#R C�� �8

�

if the resolvents Rn�z� #-converge strongly to an operator R�z�, which has a #-densely
defined inverse.
Remark 2.2.Note thatIn that case, the operator C�� � R�1�z� � z exists for all z � ��c

#

for which the strong #-limit of the Rn�z� exists, and R�1�z� � z is independent of z.
Remark 2.3.Note that G #-convergence is weaker than R #-convergence, in the case
Cn � Cn

� at least, because, as we shall show, in this case Cn �#R C�� implies
Cn �#G C��. It seems likely that G #-convergence is strictly weaker than
R #-convergence; this could be established by giving an example for which
Cn
� � Cn �#G C�� with C�� not maximal symmetric. The importance of

G #-convergence is that it is technically easier to verify-and gives less information
about the #-limit-than R #-convergence, whiIe automatically selecting the correct
domain in the case that R #-convergence also holds. The most familiar examples of
G #-convergence occur where there is Cn strong #-convergence on a #-dense domain.
A less trivial example occurs where there is D�Cn� is independent of n,but apparently

D�C� � D�Cn� � �0�.

We have the following connection between G and R #-convergence for a hyperinfinite
sequence of #-selfadjoint operators.
Proposition 3.Let Cn,n � �� be #-selfadjoint.
(a) The domain D �� � �|��,�� � � �� for some � is #-dense in H and oniy if

Cn �#G C��,and in this case C�� is necessarily symmetric.
(b) If Rn�z� � �Cn � z��1,n � �� #-converges to a bounded operator R�z� for an
unbounded set of z’s with �zR,�z��# bounded uniformly in z � ��c

# and n � ��
and if Cn �#G C��, then each R�z� is invertible.
(c) If Rn�z� #-converges to an invertible R�z�, then Cn �#R C.
(d) If Cn �#R C, then Cn �#G C��,� �� � ��C�,and C is maximal symmetric.
(e) Conversely, if Cn �#G C, where C is maximal symmetric, then Cn �#R C.

In case the #-limit of the Cn,n � �� is actually selfadjoint, there are further
connections between G and R #-convergence.
Theorem 4.
(a) Cn �#G C, and C � C�.



(b) Cn �#R C, and C � C�.
(c) The hyper infinite sequences �Rn�z�� and ��Rn�z����,n � �� #-converge
strongly and #-lim n��� Rn�z� is invertible for some z.
(d) Statement (c) holds for all non-real z � ��c

#

§3.Estimates on a G #-convergent hyper infinite
sequence

In this section we give estimates which are sufficient to assure that it G #-convergent
sequence of operators is R #-convergent, and that the limit is maximal symmetric or
selfadjoint. In order to measure the rate of #-convergence, we introduce a selfadjoint
operator N � I and the associated non-Archimedean Hilbert spaces H	 with the scalar
product

��,�#	 � �N	/2�,N	/2�#
. �3.1�

By standard identifications we have for 	 � 0 : H	 � H0 � H�1 and H0 � H.
If D : H� � H� is a #-densely defined, bounded operator from H� to H�, we let
�D�#�,� denote its #-norm. Setting �D�# � �D�#0,0 we obtain

�D�#�,� � �N�/2DN��/2�. �3.2�

Let Cn,n � �� be a hyper infinite sequence of selfadjoint operators, and consider
the following three conditions.
(i) Suppose that Cn � Cm is a #-densely defined, bounded operator from H	to H�	, for
some 	,and that as n,m � ��

�Cn � Cm�#	,�	 �# 0. �3.3�

(ii) Suppose that, for some p and for an unbounded set of z � x � iy � ��c
# in the

sector |x|  const� |y|,

�Rn�z��#�,	  M�z�, �3.4�

where the bound M�z� is uniform in n � ��.
(iii) Suppose that, for the above z’s,

�Rn�z��#�,	  M�z�. �3.5�

Theorem 5. Let Cn,n � �� be a hyper infinite sequence of #-selfadjoint operators
with a common domain, such that

Cn �#G C.
If conditions (i) and (ii) hold, then

Cn �#R C
and C is maximal symmetric.
Corollary 6. If in addition to the hypothesis of Theorem 5, condition (iii) also holds,
then C is #-selfajoint.
Remark 3.1.(1) If � � 0 in (ii), then the resolvents #-converge uniformly.
(2) If the Cn are uniformly semibounded from below, then we may choose
the z in condition (ii) to be infinite large negative numbers. In that case the conclusion
of Theorem 5 is that Cn �#R C � C�.



§ 4.Estimates for singular perturbations
In this section we consider a singular perturbation B of a #-selfadjoint operator A.
We give estimates on B which ensure that the sum A � B is #-selfadjoint.
Abbreviation 4.1.We abbreviate A#� instead #-A.
Definition 4.1. A #-core of an operator C is a domain D contained in D�C� such
that C � �C � D�#�.
Lemma 7. Let A,An,n � ��,B,Bn,n � �� and Cn � A,�Bn,n � �� be
#-selfadjoint operators with a common #-core D. Assume the hypotheses of
Theorem 5 and Corollary 6 for Cn,n � �� and suppose also that, for � � D,

��A � An���# � ��B � Bn���# �# 0 as n � �� �4.9�

and

�An��#
2 � �Bn��#

2  const.����#
2 � const.��Cn��#

2, �4.10�

with constants independent of n. Then A � B is #-selfadjoint and Cn �#R A � B.
Remark 4.1.As hypothesis for our next theorem, our second main result, we assume
that N  A and that N and A commute. Let

D
���A� � �n��� A�An� �4.11�

the elements of D
���A� are called C

�� vectors for A. Assume that D
���A� is a #-core

for the #-selfadjoint operator B. Also assume that, as bilinear forms on D
�� � D

��,
and for some � and � in the indicated ranges,

0  �N � B � const. , 0  � � 1/2 �4.12�

and

0  �A2 � const� B � �A1/2,�A1/2,B�� � const. , 2� � � � 1. �4.13�

Let B be a bounded operator from Hv to H�v and from H� to H� for some �, � and
v,� � 0 (H� is defined following Theorem 4.) If v � 2, assume that for all � � 0

0  �N��2 � �N���1�/2,�N���1�/2,B�� � const. �4.14�

as bilinear forms on D
�� � D

��, for some � � v � 2.
Theorem 8. Under the above hypothesis, A � B is #-selfadjoint.

Chapter V.
§1.Free scalar field

Let H# be a #-complex Hilbert space over field �c
# and let ��H#� � 


n�0

�#

H#
�n�

(where H#
�n� � 


k�1

n

H#) be the Fock space over H#. Our goal is to

define the abstract free field on �s�H#�, the Boson subspace of ��H#�; to do this we
need to introduce several other families of operators and some terminology. Let f � H#

be



fixed. For vectors in H#
�n� of the form � � �1 � �2 � 
 
 
 ��n we define a map b��f� :

H#
�n� � H#

�n�1� by

b��f�� � �f,�1���2 � 
 
 
 ��n� �1�

b��f� extends by linearity to finite linear combinations of such �, the extension is well
defined, and ||b��f��|| ||f||�||�||. Thus b��f� extends to a bounded map (of norm ||f||) of
H#

�n� into H#
�n�1�. Since this is true for each n (except for n � 0 in which case we define

b��f� : H#
�0� � 0), b��f� is in a natural way a bounded operator of norm ||f|| from ��H#�

to
��H#�. It is easy to check that b��f� � �b��f��� takes each H#

�n� into H#
�n�1� with the

action

b��f�� � f � �1 � �2 � 
 
 
 ��n �2�

on product vectors. Notice that the map f � b��f� is linear, but f � b��f� is antilinear.

Let Sn be the symmetrization operators introduced in Section II.4. Then S � 

n�0

�#

Sn is

the projection onto the symmetric Fock space �s�H#� � 

n�0

�#

SnH#�n� We will write

SnH#�n� � Hs
#�n� and call Hs

#�n� the n-particle subspace of �s�H#�. Notice that b��f� takes

�s�H#� into itself, but that b��f� does not. A vector � � ���n��n�1
�#

for which ��n� � 0

for all except finitely many n is called a finite particle vector. We will denote the set of
finite particle vectors by F0. The vector �0 � �1,0,0, . . . plays a special role; it is
called the vacuum.
Let A be any self-adjoint operator on H# with domain of essential selfadjointness D.
Let DA � � � F0|��n� � �k�1

n D for each n � �# and define d�#�A� on DA � Hs
#�n� as

d�#�A� � A� I 
 
 
 �I � I � A� 
 
 
 �I � 
 
 
 � �I 
 
 
 �I � A. �3�

Note that d�#�A� is essentially self-adjoint on DA ; d�#�A� is called the second
quantization of A. For example, let A � I. Then its second quantization N � d�#�I� is
essentially self-adjoint on F0 and for � � Hs

#�n�,N� � n�. N is called the number
operator. If U is a unitary operator on H#, we define d�#�U� to be the unitary operator
on �s�H#� which equals Ext-�k�1

n U when restricted to Hs
#�n� for n � 0, and which

equals
the identity on Hs

#�0�. If Ext-exp�itA� is a #-continuous unitary group on H#, then
�#�Ext-exp�itA�� is the group generated by d�#�A�, i.e., �#�Ext-exp�itA�� �
Ext-exp�itd�#�A��.
Deinition1.1. We define the annihilation operator a��f� on �s�H#� with domain F0 by

a��f� � N � 1 b��f� �4�

a��f� is called an annihilation operator because it takes each �n � 1�-particle
subspace into the n-particle subspace. For each � and � in F0,

N � 1 b��f��,� � �,Sb��f� N � 1 . �5�

Then Eq.(5) implies that

�a��f��� � F0 � Sb��f� N � 1 �6�

The operator �a��f��� is called a creation operator. Both a��f� and a��f�� � F0 are



#-closable; we denote their #-closures by a��f� and a��f�� also.
Example 1.1. If H# � L2

#�M,d#��, then � i�1
n L2

#�M,d#�� � L2
#�� i�1

n M,� i�1
n d#�� and that

S� i�1
n L2

#�M,d#�� � L2,s
# �� i�1

n M,� i�1
n d#��,where L2,s

# is the set of functions in L2
# which

are invariant under permutations of the coordinates. The operators a��f� and a��f��

are given by

a��f���n��m1, . . . ,mn� � n � 1 Ext- �
M

f��m���n�1��m,m1, . . . ,mn�d#�

a��f����n��m1, . . . ,mn� � 1
n
�

i�1

n
f�mi ���n�1��m1, . . . ,m� i , . . . ,mn�

�7�

where m� i means that mi is omitted. If A operates on L2
#�M,d#�� by multiplication by the

��c
#-valued function ��m�, then

�d�#�A����n��m1, . . . ,mn� � �
i�1

n
��mi� ��n��m1, . . . ,mn� �8�

Eq.(6) implies that the Segal field operator �S
#�f� on F0 defined by

�S
#�f� � 1

2
�a��f� � a��f�� � �9�

is symmetric and essentially self-#-adjoint. The mapping from H# to the self-#-adjoint
operators on �s�H#� given by

f � �S
#�f� �10�

is called the Segal quantization over H#. Notice that the Segal quantization is a real
(but not complex) linear map since f � a��f� is antilinear and f � a��f�� is linear. The
following theorem gives the properties of the Segal quantization.
Theorem 1.1. Let H# be hyper infinite dimensional Hilbert space over field
��c � ��c

# � i ��c
#and �S

#�f� the corresponding Segal quantization. Then:
(a) (self-adjointness) For each f � H# the operator �S

#�f� is essentially self-adjoint on
F0,

the hyperfinite particle vectors.
(b) (cyclicity of the vacuum) �0 is in the domain of all hyperfinite products
� i�1

n
�S

#�f i �,n � �#

and the set � i�1
n

�S
#�f i ��0 f i and n arbitrary is #-total in �s�H#�.

(c) (commutation relations) For each � � F0 and f,g � H#

��S
#�f��S

#�g� � �S
#�g��S

#�f��� � i Im�f,g�H#�. �11�

Further, if W�f� denotes the external unitary operator Ext-exp�i�S
#�f�� then

W�f � g� � Ext-exp
�i Im�f,g�H#

2
W�f�W�g� �12�

(d) (#-continuity) If �fn�n�1
�#

is hyper infinite sequence such as #-lim n��# fn � f in H#,
then: (i) #-lim n��# W�fn�� exists for all � � �s�H#� and

#- lim n��# W�fn�� � W�f�� �13�

(ii) #-lim n��# �S
#�fn�� exists for all � � F0 and

#- lim n��# �S
#�fn�� � �S

#�f��. �14�

(e) For every unitary operator U on H#,�#�U� : D �S
#�f� � D �S

#�Uf� and for

� � D �S
#�Uf�



�#�U��S
#�f��#�U��1� � �S

#�Uf�� �15�

for all f � H#.
Proof. Let � � Hs

#�n�. Since �S
#�f� : F0 � F0, � is in С�#

��S
#�f��. Further, it follows

from Eq.(5)-Eq.(6), and the fact that ||b��f�||� ||f||, that

�a��f��k�
#
 Ext-� i�1

k p � i �f�#
k���# �16�

where a��f� represents either a��f� or a��f��. Therefore,

��S
#�f�k��

#
 2k/2��n � k�!�1/2�f�#

k���# �17�

Since Ext-�k�0

�� tk2k/2��n � k�!�1/2�f�#
k���# � �� for all t,� is an #-analytic vector

for �S
#�f�.Since F0 is #-dense in �s�H#� and is left invariant by �S

#�f� is essentially
self-adjoint on F0 by generalized Nelson’s analytic vector theorem (Theorem ).
The proof of (b) is obviously.
To prove (c) one first computes that if � � F0, then

a��f�a��g��� � a��g��a��f�� � �f,g�� �18�

Eq.(11) follows immediately. Although Eq.(11) and Eq.(12) are formally equivalent,
Eq.(11) by itself does not imply Eq.(12) We sketch a proof of Eq.(12) which uses
special properties of the vectors in F0.Let � � Hs

#�p�. Then

��S
#�f�n�S

#�g�m��
#
 2�n�m�/2 Ext-� i�1

n�m p � i �f�#
n�g�#

m���# �19�

which implies that hyper infinite series Ext-�n�0,m�0
�#

��S
#�f�n�S

#�g�m��
#
/n!m!

#-converges for all t � ��c
#.Since � is an #-analytic vector for �S

#�g�,

Ext-�m�0
�#

��i�S
#�g�m�/m!�� � �Ext-exp�i�S

#�g����.Further, for each n � �#,

�Ext-exp�i�S
#�g���� is in the domain of �S

#�f�
n
since any finite and hyperfinite sum

Ext-exp�
m�0

M �i�S
#�g�m�
m!

�

with M � �# is in it and �S
#�f�n Ext-�m�0

M ��i�S
#�g�m�/m!�� #-converges as M � �#.

Thus the estimate Ext-�n�0,m�0
�#,�#

��S
#�f�n�S

#�g�m��
#
/n!m! tntm  �# shows that

�Ext-exp�i�S
#�g���� is an #-analytic vector for �S

#�f� and therefore can be computed by
the external hyper infinite power series. Thus

�Ext-exp�i�S
#�f����Ext-exp�i�S

#�g���� � Ext-�n�0,m�0
�#,�# �i�S

#�f��n�i�S
#�g��m

n!m!
�. �20�

Similarly one obtains

Ext-exp � it 2

2
Im�f,g�H# �Ext-exp�it�S

#�f � g���� �

Ext-�n�0,m�0
�#,�# 1

n!m!
� it 2

2
Im�f,g�H#

m
�it�S

#�f � g��n �
�21�

where the hyper infinite series in RHS of Eq.(21) #-converges absolutely. Direct
computations using Eq.(11) now show that Eq.(12) holds by a term-by-term
comparison of the #-convergent external hyper infinite power series.
To prove (d) let � � Hs

#�k� and suppose that #-lim n��# fn � f in H#. Then

��S
#�fn�� � �S

#�f���  2�k � 1� �fn � f���� �22�

so #-lim n��# �S
#�fn� � �S

#�f�. Thus, Ф5(/„) #-converges strongly to �S
#�f� on F0.



Since F0 is a core for all �S
#�fn� and �S

#�f�, Theorems VIII.21 and VIII.25 imply that
#-lim n��#�Ext-exp�it�S

#�fn���� � Ext-exp�it�S
#�f��� for all � � �s�H#�.

To prove (e), let � � H#�n� be of the form � � �1 � 
 
 
 ��n. Then
�#�U�b��f��#�U��1� � �#�U�b��f��U�1�2 � 
 
 
 �U�1�n� �
�#�U��f,U�1�1��U�1�2 � 
 
 
 �U�1�n� � �Uf,�1���2 � 
 
 
 ��n� � b��Uf��.
Since finite linear combinations of such � are dense in H#�n� and b��g� has norm
�g�, we conclude that �#�U�b��f��#�U��1 � b��Uf�. But N and S commute with
�#�U� so this immediately implies that �#�U�a��f��#�U��1 � a��Uf� on F0. Taking
adjoints and restricting to F0 we also have �#�U��a��f����#�U��1 � �a��Uf���.
Thus for � � F0, �#�U��S

#�f��#�U��1� � �S
#�Uf��. Since the operators on both the

right- and left-hand sides of this equality are essentially self-#-adjoint on F0, we
conclude that �#�U��S

#�f��#�U��1 � �S
#�Uf�.

Remark 1.1. Henceforth we use �S
#�f� to denote the #-closure of �S

#�f�.
Definition 1.1. For each m � 0,m � ��c,fin

# let

Hm
# � �p � ��c

#4p 
 p� � m2,p0 � 0�, �23�

where p� � �p0,�p1,�p2,�p3�.The sets Hm
# , which are called mass hyperboloids, are

invariant under ���
� . Let jm be the #-homeomorphism of Hm

# onto ��c
#3 (or in the case

m � 0 onto ��c
#3\�0�) given by jm : �p0,p1,p2,p3 � �p1,p2,p3 � p. Define a

#-measure �m
# on Hm

# by

�m
# �E� � Ext- �

j m�E�

d#3p

|p|2 � m2
�24�

for any measurable set E � Hm
# . The measure �m

# �E� can easily be seen to be
���

� -invariant. In fact, up to a constant multiple, �m
# is the only ���

� -invariant measure
on Hm

# . Furthermore, every polynomially bounded ���
� -invariant measure on V� is the

sum of a multiple of � and an integral of the measures �m
# . We state this fact as a

theorem.
Theorem 1.2. Let �# be a polynomially bounded #-measure with support in V� . If �# is
�
��

� -invariant, there exists a polynomially bounded #-measure � on �0,�#� and a
constant c so that for any f � S#���c

#4�

Ext- �
��c

#4
f d#�# � cf�0� � Ext- �

0

�#

d#�#�m� Ext- �
Hm

#
fd#�m

# . �25�

Theorem 1.3.
We can now use the Segal quantization to define the free Hermitian scalar field of
mass m. We take H# � �2

#�Hm
# ,d#�m,�

# �, where Hm
# ,m � 0, is the mass hyperboloid in

��c
#4 consisting of those p � ��c

#4 satisfying p 
 p� � m2 � 0 and p0 � 0, and d#�m
#

is the Lorentz invariant #-measure.
For each f � S#���c

#4� we define Ef � H# by Ef � 2
#
�
f � Hm

# where the Fourier
transform

�2
#��2 Ext- � Exp-exp i p 
 x� f�x�d#4x �26�

is defined in terms of the Lorentz invariant inner product p 
 x�. The reason for the
extra 2
# in our definition of E and the plus sign in the definition of Fourier transform

is that if f is the distribution f�x� � g�x��#�t�, then 2
#
�
f is the ordinary



three-dimensional
Fourier transform of g. If �S

#�
� is the Segal quantization over �2
#�Hm

# ,d#�m,�
# �, we

define
for each ��c

#-valued f � S#���c
#4�

	m,�
# �f� � �S

#�Ef�. �27�

For ��c
#-valued function f � S#���c

#4� we define

	m,�
# �f� � 	m,�

# �Ref� � i	m,�
# �Im f� �28�

The mapping f � 	m
# �f� is called the free Hermitian scalar field of mass m.

On �2
#�Hm

# ,d#�m� we define the following unitary representation of the restricted
Poincare group:

�Um�a,�����p� � Exp-exp i p 
 ã ����1p� �29�

where we are using � to denote both an element of the abstract restricted Lorentz
group

and the corresponding element in the standard representation on ��st
4 � �4.

Remark 1.3. Recall that a #-conjugation on a Hilbert space H# is an antilinear
#-isometry C# so that C#2 � I.
Definition 1.2. Let H# be a ��c

#-complex Hilbert space, �S
#�
� the associated Segal

quantization. Let C# be a #-conjugation on H# and define HC#
# � �|C#f � f�. For each

f � HC#
# we define �#�f� � �S

#�f� and 
#�f� � �S
#�if�. The map f � �#�f� is called the

canonical free field over the doublet �H#,C# and the map f � 
#�f� is called the
canonical conjugate momentum. We often drop the �H#,C# and just write H# if the
intended #-conjugation is clear.
Remark 1.4.Note that the set of elements of H# for which the maps f � �#�f� and
f � 
#�f� are defined depends on the #-conjugation C#.
Theorem 1.4. Let H# be a ��c

#-complex Hilbert space with #-conjugation C#. Let
�#�
� and 
#�
� be the corresponding canonical fields. Then:
(i) For each f � HC#

# ,�#�f� is essentially self-adjoint on F0.
(ii) ��#�f�|f � HC#

# � is a commuting family of self-adjoint operators.
(iii) �0 is a #-cyclic vector for the family ��#�f�|f � HC#

# �.
(iv) If #-lim n��# fn � f in HC#

# , then
#-lim n��# �#�fn�� � �#�f�� for all � � F0

and
#-lim n��#�Exp-exp�i�#�fn���� � Exp-exp�i�#�f��� for all � � �s�H#�

(v) Properties (i)-(iv) hold with �#�f� replaced by 
#�f�.
(vi) If f,g � HC#

# , then

�#�f�
#�g�� � 
#�g��#�f�� � i�f,g�� �30�

for all � � F0 and

Exp-exp i�#�f� Exp-exp i
#�g� �

�Exp-exp�i�f,g��� Exp-exp i
#�g� Exp-exp i�#�f� .
�31�

Proof. (i) and (iv) follow immediately from the corresponding properties
of �S

#�
� proven in Theorem 1.1. To see that ��#�f�|f � HC#
# � is a commuting family,



notice that (12) implies

Exp-exp it�#�f� Exp-exp is�#�g� �

�Exp-exp��itsIm�f,g��� Exp-exp is�#�g� Exp-exp it�#�f�
�32�

where we have used the fact that �#�
� is real linear. If f,g � HC#
# , then it follows

from polarization that �f,g� � �C#f,C#g� � �g, f�,so Im�f,g� � 0. Thus

Exp-exp it�#�f� Exp-exp is�#�g� �

Exp-exp is�#�g� Exp-exp it�#�f�
�33�

for s and t. Therefore, by Theorem VIII. 13, �#�g� and �#�f� commute.
The proof of (b) is similar to the proof of (a). (X.70) and (X.71) follow immediately from
(X.64), (X.65), and the fact that if f,g � HC#

# , then Im�f, ig� � Re�f,g� � �f,g�.
Definition 1.3.We write f � �2

#�Hm
# ,d#�m,�

# � as f�p0,p� and define now the
#-conjugation by �C#f��p0,p� � f�p0,�p�.
Remark 1.4.Note that C# is well-defined on �2

#�Hm
# ,d#�m,�

# � since �p0,p � Hm
# if

and only if �p0,�p � Hm
# . C# is clearly a #-conjugation.

Definition 1.4.We denote the canonical fields corresponding to C# by �#�
� and

#�
� and define �m

# �f� � �#�Ef� and 
m
# �f� � 
#��Ef�,� � p2 � m2 for ��c

#-valued

f � ����c
#4�, extending to all of ����c

#4� by linearity. In terms of a��f�,

�m
# �f� � ��a��Ef��� � a��C#Ef��/ 2 ,


m
# �f� � i��a��Ef��� � a��C#�Ef��/ 2 .

�34�

Remark 1.5.Note that the a’s in these last formulas differ from those most often
used in discussing the free field and that the correct space-time free field is �m

# and
not �m

# as we will discuss below, �m
# and 
m

# are useful for discussing the time-zero
field. The maps f � �m

# �f� and f � 
m
# �f� are complex linear and �m

# �f�,
m
# �f� are

self-adjoint if and only if Ef � HC#
# .

Because of the projection E we can extend the class of functions on which �m
# �
� and


m
# �
� are defined to include distributions of the form ��t � t0�g�x1,x2,x3� where

g � ��c
#3. In particular, if t0 � 0,g is ��c

#-lvalued, and Ext-�g is the usual Fourier
transform on ��c

#3, then

C#E�g �p0,�p� � �2
#��1/2�g��p� � �2
#��1/2�g��p� � E�g. �35�

Thus E��g� and �E��g� are in HC#
# . Therefore �m

# ��g� and 
m
# ��g� are self-adjoint if

g � ����c
#3� is real. For obvious reasons, the maps g � �m

# ��g�,g � 
m
# ��g� are

called the time-zero fields. From now on we will only use test functions of the form �g
in �m

# �
� and 
m
# �
� and write �m

# �g� and 
m
# �g� if g � S#��c

#3 instead of �m
# ��g� and


m
# ��g�.
If f and g are ��c

#-valued functions in ����c
#3�, then

(X.70) implies that for � � F0,

��m
# �f�,
m

# �g��� � i Ext- �
Hm

�
f �p��g�p���p��d�m,�

# . �36�

For convenience and also so that our notation coincides with the standard
terminology,



we now transfer the fields we have constructed from the Fock space built up from
�2

#�Hm
# ,d�m,�

# � to the Fock space built up from �2
#���c

#3�. For notational simplicity, we
define for f � �2

#�Hm
# ,d�m,�

# �

a��f� � �a��f���,a�f� � a��C#f�. �37�

First notice that each function f�p� � �2
#�Hm

# ,d�m,�
# � is in a natural way a function

f�p� � f���p�,p� on ��c
#3. For each f � �2

#�Hm
# ,d�m,�

# �, we define

�Jf��p� � f���p�,p�/ ��p� . �38�

J is a unitary map of �2
#�Hm

# ,d�m,�
# � onto �2

#���c
#3�, so �#�J� is a unitary map of

�s��2
#�Hm

# ,d�m,�
# �� onto �s��2

#���c
#3��. The annihilation and creation operators on

�s��2
#���c

#3��, �a�
�, �a��
�, are related to a�
� and a��
� by the formulas

�a
f�p�

��p�
� �#�J�a�f��#�J��1

�a� f�p�

��p�
� �#�J�a��f��#�J��1

�39�

We use the unitary map �#�J� to carry the Wightman fields over to �s��2
#���c

#3�� by
defining:(i) for ��c,fin

# -valued f � �fin
# ���c

#4�

	m,��f� � �#�J�	m,��f��#�J��1 �

1
2

�a C�
# Ef

�
� ã� Ef

�

�40�

(ii) for ��c,fin
# -valued f � �fin

# ���c
#3�

�m,��f� � �#�J��m,��f��#�J��1 �

1
2

�a C�
# E�f��

�
� ã� E�f��

�

�41�

where C�
#
� JC#J�1 acts by C�

#
g �p� � g��p�. Having established this

correspondence,
we now drop the ~ and the bold face letters; from now on we will only deal with the

fields
on �s��2

#���c
#3�� and three-dimensional momenta. Further, we recall that the

restriction of
the four-dimensional Fourier transform that we have been using in this section to
functions of the form ��x0�g�x1,x2,x3� the usual three-dimensional Fourier transform.
Notice that

�
f � Ext-h� ,h � C#f� �42�

so C#f� � f� if and only if f is ��c
#-valued.

For f and g ��c
#-valued, (36) becomes

��m
# �f�,
m

# �g�� � i Ext- � f�x�g�x� d#3x. �43�



(43) is the space form of the canonical commutation relations (CCR).
In the Appendix to this section we prove that for each m � 0, this representation of the
CCR is irreducible and for different m, the representations are inequivalent. Thus, the
time-zero fields in the free scalar field theories give rise to different representation of

the
CCR.
As a final topic before turning to interacting fields we will show how the structures
developed above are related to the “fields” and “annihilation and creation
operators” introduced in physics texts. We let now

DSfin
# � �|� � F0,��n� � Sfin

# ���c
#3n�,n � � �44�

and for each p � ��c
#3 we define an operator a�p� on �s��2

#���c
#3�� with domain

DSfin
# by

�a�p����n��k1, . . . ,kn� � n � 1��n�1��p,k1, . . . ,kn�. �45�

The adjoint of the operator a�p� is not a #-densely defined operator since it is given
formally by

�a��p����n��k1, . . . ,kn� � 1
n
�
i�1

n

��p � ki ���n�1��p,k1, . . . ,ki�1,ki�1, . . . ,kn�. �46�

However, a��p� is a well-defined quadratic form on D�fin
# � D�fin

# . For example, if

�1 � �0,��1�, 0, . . .�,and �2 � �0,0,��2�, 0, . . .�, then

��2,a��p��1� � 1
2

Ext- � ��2��k1,p���1��k1� � ��2��p,k1���1��k1� d#k1 . �47�

Remark 1.1.Note that the formulas

a�g� � Ext- �
��c

#3
a�p�g��p�d#p �48�

and

a��g� � Ext- �
��c

#3
a��p�g�p�d#3p �49�

hold for all g � Sfin
# ���c

#3� if the equalities are understood in the sense of quadratic
forms. That is, (48) means that for �1,�2 � DSfin

# we have

��1,a�g��2� � Ext- �
��c

#3
��1,a�p��2�g��p�d#3p �50�

and similarly for (X.76b).
Since a�p� : D�fin

# � D�fin
# the powers of a�p� are well-defined operators on D�fin

# .

As before we can write down a formal expression for �a��p��n, but it does not make
sense as operator, only as ��c

#-valued quadratic form on D�fin
# � D�fin

# .

Notice that

��1,�a��p��n�2� � ��a�p��n�1,�2� �51�

so for each n, �a��p��n and �a�p��n are formally adjoints in the sense of ��c
#-valued

quadratic forms. We could of course have defined the quadratic form �a��p��n by (50)
and then calculated that it arises by taking the n-th power of the formal object given by
(45). Since a�p1� : D�fin

# � D�fin
# ,��1,a��p2�a�p1��2� is a well-defined ��c

#-valued



quadratic form for all �p1,p2 � ��c
#3 � ��c

#3. Notice, however, that
��1,a�p1�a��p2��2� does not make sense since a��p2� is only a quadratic form. In
general any product � i�1

N1 a�f i� is a

well-defined operator from D�fin
# to D�fin

# and� i�1
N1 a��f i� is a well-defined quadratic

form on D�fin
# � D�fin

# . Thus

�1, �
i�N1�1

N2

a��pi� �
i�1

N1

a���pi� �2 �52�

is also well-defined ��c
#-valued quadratic form on D�fin

# � D�fin
# . One can check

directly that if f � �fin
# ���c

#3� then as ��c
#-valued quadratic forms

�
i�N1�1

N2

a��f i� �
i�1

N1

a��f i� �

Ext- �
��c

#3N2
�

i�N1�1

N2

a��pi� �
i�1

N1

a���pi� �
i�1

N2

f i�pi � d#p1. . .d#pN2

�53�

and

N � Ext- �
��c

#3
a��p�a�p�d#p �54�

The generator of time translations in the free scalar field theory of mass m is given by

H0 � Ext- �
��c

#3
��p�a��p�a�p�d#p �54�

H0 is called the free Hamiltonian of mass m. (52), (53), and (54) involve no formal
manipulations, but are mathematical statements about quadratic forms.
Theorem X.44 Let n1 and n2 be nonnegative integers and suppose that
W � �2

# ��c
#3�n1�n2� . Then there is a unique operator TW on �s��2

#���c
#3�� so that

D�fin
# � D�TW� is a core for TW and

(a) as ��c
#-valued quadratic forms on D�fin

# � D�fin
#

TW � Ext- �
��c

#3�n1�n2�
W�k1, . . . ,kn1,p1, . . . ,pn2 � �

i�1

n1

a��ki� �
i�1

n2

a�pi� d#n1kd#n2p �55�

(b) If m1 and m2 are nonnegative integers so that m1 � m2 � n1 � n2, then
�1 � N��m1/2TW�1 � N��m2/2 is a bounded operator with

��1 � N��m1/2TW�1 � N��m2/2� � C�m1,m2��W��2
#. �56�

In particular, if m1 � n1 and m2 � n2, then

��1 � N��n1/2TW�1 � N��n2/2� � C�m1,m2��W��2
#. �57�

(c) As ��c
#-valued quadratic forms on D�fin

# � D�fin
#

TW
� � Ext- �

��c
#3�n1�n2�

W�k1, . . . ,kn1,p1, . . . ,pn2 � �
i�1

n2

a��ki� �
i�1

n1

a�pi� d#n1kd#n2p �58�

(d) If Wn �# W in �2
# ��c

#3�n1�n2� , then TWn �# TW strongly on D�fin
# .

(e) F0 is contained in D�TW� and D�TW
� �, and on vectors in F0, TW and TW

� are given



by the explicit formulas

�TW���l�n2�n1� � K�l,n1,n2�S �

Ext- �
��c

#3n2
W�k1, . . . ,kn1,p1, . . . ,pn2 ���l ��p1, . . . ,pn2,kn1�1, . . . ,kn1�l�n2 �d#n2p

�59�

�TW��n � 0 if n � n1 � n2

�TW
� ���l�n1�n2� � K�l,n2,n1�S �

Ext- �
��c

#3�n1�
W�k1, . . . ,kn1,p1, . . . ,pn2 ���l ��k1, . . . ,kn1,pn2�1, . . . ,pn2�l�n1 �d#n1k

�60�

�TW
� ��n � 0 if n � n2 � n1 where S is the symmetrization operator and

K�l,n1,n2� �
l!�l � n1 � n2�!
��l � n2�!�2

1/2

. �61�

Proof. For vectors in D�fin
# , we define TW� by the formula (X.82a). By the Schwarz

inequality and the fact that S is a projection,

�TW���l�n2�n1� 2
 K�l,n1,n2����l ��2�W�2. �62�

If we now define an operator TW
� �, on D�fin

# by using the formula in (62),

then for all � and � in D�fin
# one easily verifies that ��,TW�� � �TW

� �,��.

Thus, TW is #-closable and TW
� is the restriction of the adjoint of TW to D�fin

# .

From now on we will use TW to denote TW and TW
� to denote the adjoint of TW.

By the definition of TW,D�fin
# is a #-core and further, since TW is bounded on the

l-particle vectors in D�fin
# , we have F0 � D�TW�. Since the right-hand side of (59) is

also bounded on the l-particle vectors, (X.82a) represents TW on all l-particle vectors.
The proof of the statements in (e) about TW

� are the same.
To prove (b), let � � D�fin

# . Then by the above computation

��1 � N��m1/2TW�1 � N��m2/2���l�n2�n1� 2


K�l,n1,n2�

�1 � l � n2 � n1�m1/2�1 � l�m2/2

2

���l ��2�W�2
�63�

so that

��1 � N��m1/2TW�1 � N��m2/2���l�n2�n1� 

l��

sup
K�l,n1,n2�

�1 � l � n2 � n1�m1/2�1 � l�m2/2
���l ���W�  C�m1,m2����l ���W�

�64�

where

C�m1,m2� �
l��

sup
K�l,n1,n2�

�1 � l � n2 � n1�m1/2�1 � l�m2/2
� �# �65�

since m1 � m2 � n1 � n2. In all the sup’s only l so that l � n2 � n1 � 0 occur since
the other terms are annihilated by the action of TW. Thus, �1 � N��m1/2TW�1 � N��m2/2

extends to a hyper bounded operator on �s�H#� with norm less than or equal to
C�m1,m2�. If m1 � n1 and m2 � n2, then C�m1,m2� � 1.



To prove (d) we need only note that if � � �0, . . . ,��l �, 0, . . .� � D�fin
# and Wn �# W in �2

#,

then

�TWn� � TW�� � ��TWn�W���  K�l,n1,n2��Wn � W����, �66�

where #-lim n��# K�l,n1,n2��Wn � W���� � 0.
Since D�fin

# consists of finite linear combinations of such vectors, we have shown that

TWn #-converges strongly on D�fin
# to TW if Wn �# W in �2

#.

To prove (a) let �1,�2 � D�fin
# with �1 � �0, . . . ,��l�n2�n1�, 0, . . .� and �1 �

�0, . . . ,��l �, 0, . . .�.
Then, if W � � i�1

n1 f i�ki � � i�1
n2 gi�ki � the definition of the form

� i�1
n1 a��ki � � i�1

n2 ai�ki � shows that

��1,TW�2� � Ext- �
��c

#3n2
W�k1, . . . ,kn1,p1, . . . ,pn2 � �

�1, � i�1
n1 a��ki � � i�1

n2 ai�ki � �2 d#n1kd#n2p
�67�

Since both sides of (X.83) are linear in W, the relationship continues to hold for the all
such W’s that are hyperfinite linear combinations of such products. Since

�1, � i�1
n1 a��ki � � i�1

n2 ai�ki � �2 � �2
# ��c

#3�n1�n2� �68�

and since (d) holds, both the right- and left-hand sides of (X.83) are continuous linear
functionals on ��c

#3�n1�n2�. Since they agree on a #-dense set, they agree everywhere.
Finally, (68) extends by linearity to all of D�fin

# � D�fin
# .

This proves (a); the proof of (c) is similar. |
Finally, we note that as quadratic forms on D�fin

# we can express the free scalar field

and the time zero fields in terms of a��k� and a�k� :

	m,��x, t� �

1
�2
#�3/2 �

|p|�

��Ext-exp���p�t � ipx��a��p� � �Ext-exp����p�t � ipx��a�p��
d#3p

2��p�
�69�

�m,�
# �x� � 1

�2
#�3/2 �
|p|�

��Ext-exp��ipx��a��p� � �Ext-exp�ipx��a�p��
d#3p

2��p�
�70�


m,�
# �x� � 1

�2
#�3/2 �
|p|�

��Ext-exp��ipx��a��p� � �Ext-exp�ipx��a�p��
��p�

2
d#3p. �71�

5.2.Q#-space representation of the Fock space structures
In this section the construction of Q#-space and L2

#�Q#,d#��, another representation
of the Fock space structures are presented. In analogy with the one degree of
freedom case where �#���c

#� is isomorphic to L2
#���c

#,d#x� in such a way that 	S�1�
becomes multiplication by x, we will construct a #-measure space �Q#,�#, with
��Q#� � 1,and a unitary map S : �s

#���c
#� � L2

#�Q#,d#�� so that for each f � HC#
# ,

S�#�f�S�1 acts on L2
#�Q,d#�#� by multiplication by a #-measurable function. We can

then
show that in the case of the free scalar field of mass m in 4-dimensional space-time,



V � SHI�g�S�1 is just multiplication by a function V�q� which is in Lp
#�Q,d#�� for each

p � �#.Let �fn�n�1
�#

be an orthonormal basis for H# so that each fn � H�#
# and let

�gk�k�1
N ,N � �# be a finite or hyperfinite subcollection of the �fn�n�1

�#
. Let PN be a set of

the all external hyperfinite polynomials Ext-P�u1, . . . ,uN� and �N
# be the #-closure of the

set

�Ext-P��#�g1�, . . . ,�#�gN��|P � PN� �1�

in �s
#�H#� and define F0

N � �N
# � F0 From Theorem X.43 (and its proof) it follows that

�#�gk� and 
#�gl�, for all 1  k, l  N are essentially self-adjoint on F0
N and that

�Ext-exp�it�#�gk����Ext-exp�is
#�gl��� �

�Ext-exp��ist�kl ���Ext-exp�is
#�gl����Ext-exp�it�#�gk���.
�2�

Thus we have a representation of the generalized Weyl relations in which the vector
�0 satisfies ��#�gk��

2 � �
#�gk��
2 � 1 �0 � 0 and is #-cyclic for the operators

��#�gk��k�1
N ,N � �#.Therefore there is a unitary map

�
S
�N�

: �N
# � L2

#���c
#N� so that

�
S
�N�

�#�gk�
�
S
�N� �1

� xk

�
S
�N�


#�gk�
�
S
�N� �1

� 1
i

d#

dxk
#

�3�

and

�
S
�N�

Q0 � 
#
�N/4 Ext-exp � Ext-�

k�1

N
xk

2

2
. �4�

It is convenient to use the Hilbert space

L2
# ��c

#N,
#
�N/2d#Nx Ext-exp � Ext-�k�1

N xk
2

2

instead of L2
#���c

#N� so let d#�k � 
#
�1/2exp��xk

2/2� d#xk and define

�Tf��x� � 
#
N/4 Ext-exp Ext-�k�1

N xk
2

2
f�x�. �5�

Then T is a unitary map of L2
#���c

#N� onto L2
# ��c

#N,Ext-�k�1
N d#�k

# and if we let

S�N� � T
�
S
�N�

we get

S�N� : �N
# � L2

# ��c
#N,Ext-�k�1

N d#�k
# ,

S�N��#�gk��S�N��
�1

� xk,

S�N�
#�gk��S�N��
�1

� � xk

i
� 1

i
d#

d#xk
,

S�N�Q0 � 1,

�6�

where 1 is the function identically one.Note that each �k
# has mass one, which

implies that



Q0, Ext-�k�1
N Pk��#�gk�� Q0 �

�
��c

#N

Ext-�k�1
N Pk�xk� Ext-�k�1

N d#�k
# �

Ext-�k�1
N �

��c
#

P�xk�d#�k
# � Ext-�k�1

N �
��c

#

�Q0,Pk��#�gk��Q0,

�7�

where P1, . . . ,PN are external hyperfinite polynomials. This formula (7) can also be
proven by direct computations on �s

#�H#�.
Now it is easy to see how to construct �Q#,d#�#. We define Q# � �k�1

�# ��c
#.Take the

�#-algebra generated by hyper infinite products of #-measurable sets in ��c
# and set

�# � �k�1
�#

�k
#.We denote the points of Q# by q � �q1,q2, . . .. Then �Q#,d#�# is a

#-measure space and the set of functions of the form P�q1,q2, . . .�, where P is a
polynomial and n � �# is arbitrary, is #-dense in �2

#�Q#,d#�#�. Let P be a polynomial in
N � �# variables

P�xk1, . . . ,xkN � � Ext- �
l 1,...,l N

cl 1,...,l Nxk1

l 1 , . . . ,xkN

l N �8�

and define

S : P��#�fk1�, . . . ,�#�fkN��Q0 � P�qk1, . . . ,qkN �. �9�

Then

P��#�fk1�, . . . ,�#�fkN��Q0 � Ext-�
l,m

clcm�Q0,�
#�fk1� l 1�m1, . . . ,�#�fkN� l N�mNQ0� �

Ext-�
l,m

clcm �
��c

#N

qk1

l 1�m1 
 
 
qkN

l N�mN Ext-�
i�1

N

d#�ki
# � �

Q#

|P�xk1, . . . ,xkN �|
2d#�#

�10�

by (X.92) and the fact that each �k
# has mass one. Since Q0 is cyclic for polynomials

in the fields (Theorem X.42), S extends to a unitary map of �s
#�H#� onto �2

#�Q#,d#�#�.
Clearly

S�#�fk�S�1 � qk and SQ0 � 1. �11�

Theorem 1. Let �m,�
# �f�,� � ��c

#\��c,fin
# be the free scalar field of mass m (in

4-dimensional space-time) at time zero. Let g � �1
#���c

#3� � �2
#���c

#3� and define

HI,�,	�g� � 	��� � g�x�: �m,�
# �x�4 :d#3x, �12�

where 	��� � ��c
#,	��� � 0. Let S denote the unitary map of �s

#�H#� onto �2
#�Q#,d#�#�

constructed above. Then V � SHI,�,	�g�S�1 is multiplication by a function V�,	�q� which
satisfies:
(a) V�,	�q� � �p

#�Q#,d#�#� for all p � �#.
(b) Ext-exp��tV�,	�q�� � �1

#�Q#,d#�#� for all t � �0,��.
Proof. We will prove (a). By Eq.() we get

�m,�
# �x� � 1

�2
#�3/2 �
|p|�

��Ext-exp��ipx��a��p� � �Ext-exp�ipx��a�p��
d3p

2��p�
. �13�

Then �m,�
# �x� is a well-defined operator-valued function of x � ��c

#3. We define



: �m,�
# �x�4 : by moving all the a�’s to the left in the formal expression for �m,�

# �x�4.

By Theorem X.44 : �m,�
# �x�4 : is also a well-defined operator for each x � ��c

#3 and

: �m,�
# �x�4 : takes F0 into itself. Thus for each x � ��c

#3,

: �m,�
# �x�4 : � �m,�

# �x�4 � d2����m,�
# �x�2 � d0��� �14�

where the coefficients d2��� and d0��� are independent of x. For each x � ��c
#3,

S�m,�
# �x�S�1 is just the operator on #-measurable space �2

#�Q#,d#�#� which operates by
multiplying by the function

Ext-�
k�1

�#

ck�x,��qk �15�

where

ck�x,�� � �2
#��3/2 fk,Ext-exp�ipx����p���1/2 . �16�

Furthermore,

Ext-�
k�1

�#

|ck�x,��|2 � �2
#��3/2 ���p���1/2
2

2
, �17�

so S�m,�
# �x�4S�1and S�m,�

# �x�2S�1 are in �2
#�Q#,d#�#� and the �2

#�Q#,d#�#� norms are
uniformly bounded in x. Therefore, since g � �1

#���c
#3�, SHI,�,	�g�S�1 operates on

�2
#�Q#,d#�#� by multiplication by an �2

#�Q#,d#�#� function which we denote by V�,	�q�.
Consider now the expression for HI,��g�Q0.This is a vector �0,0,0,0,��4�, 0, . . .�

��4��p1,p2,p3,p4� � Ext- �
��c

#3

	g�x� Ext-exp �ix� i�1
4 pi d#3x

�2
#�3/2� i�1
4 �2��pi ��1/2

�

�
	�g � i�1

4 ki

�2
#�9/2� i�1
4 �2��pi ��1/2

�18�

where |pi |  �, 1  i  4.We choose now the parameter 	 � 	��� � 0 such that
���4��

2
� �, thus

�HI,�,	����g�Q0�2 � �, �19�

since �HI,�,	����g�Q0�2 � ���4��
2
. But, since SQ0 � 1, we get

�HI,�,	����g�Q0�2 � �SHI,�,	����g�S�1�
�2

# Q#,d#�# � �V�,	����q���2
# Q#,d#�# �20�

From (19) and Eq.(20) we get that �V�,	����q���2
# Q#,d#�# is finite. It is easily verify that

each P�q1,q2, . . . ,qn�,n � �# is in the domain of V�,	����q� and SHI,�,	����g�S�1 � V�,	����q�
on that domain. Since Q0 is in the domain of �HI,�,	����g��

p for all n � �#, 1 is in the
domain of �V�,	����q��

n for all n � �#. Thus, for all n � �#,V�,	��� � �2n
# �Q#,d#�#�. Since

�#�Q#� � �#, V�,	��� � �p
#�Q#,d#�#� for all p � �#.
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