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Abstract

We present an alternating direction method of multipliers (ADMM) for a generic overlapping
group lasso problem, where the groups can be overlapping in an arbitrary way. Meanwhile, we
prove the lower bounds and upper bounds for both the ¢; sparse group lasso problem and the £
sparse group lasso problem. Also, we propose the algorithms for computing these bounds.

This work was largely inspired by ( ).

1 Generic /, sparse overlapping group lasso

The generic ¢y sparse overlapping group lasso problem is defined as

. 1 2 -
F(z):=— ||z — A A . 1
Tglll,g{ (@) = 5 llz = vlI” + dollzlo+ 1;I|xc,,|2} (1
where m denotes the number of groups, and G; C {1,2,...,n} contains the feature indices of the
i-th group. Here s is the step size employed to get v from the old x. Note that ﬂi:{l,”. m} Gi # 0.
Now consider the problem,

minimize, ennern o 12— v? + dollzllo+h Ty e 2
subject to g, —2 =0, i=12,...,m

(2)

where z¢,; and z are primal variables, and yg, are dual variables. Note that z; € R™ is defined
by (2:); = za(,5) = 2. Here, G(4,j) = g denotes the global index (location) of the j-th element
in the set (group) G;. Hence, z is a linear function of z;,7 € {1,...,m}.

Let g(2) = & ||z — v||*+Xolz]lo and f(z) = A\t 31", ||z, ||2. Then the augmented Lagrangian
for (2) is

i 1
Ly(ac;, 2 96,) = Y [Mllza, letvd, (@6, — 2) + Zllza, — zll3] + 52 Il = vl* + Xollzllo. (3)
=1

:B]é —argmln ()\1||:rGi||2+:rgiy?;i + < ||a:c; — 23 ) i=1,2,....m (4)
1 —argmm< I = ol + Dollllo+ 3 (2l |T?JG)> (5)
i=1
v =yo, +plee =2 (6)

The x-update is actually a group lasso problem and can be solved with the proximal operator
of group lasso as follows.

2 = argmin (A2, la+28,y6, + 2llac, —=)3)

ra,
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e
= argmin (|xg —zk+1\|2+xg zl + ?ch |2>

za,

k
_ . 1 k41 Y&, 2, M
= argmin (leci (2 p 2+ P [EZeR [P

vG,
=S, (el =TSy =12, m
p
where Si(-) is a soft-thresholding operator defined as
a
Sx(a) = (lall2=A) 47—
llall2

Now we derive the solution to the z-update.

21 = argmin ( Iz = oll3 + Aollzllo + Z (Bt — 203 - z?ya)>

= axgmin 3 o Ga =) Fhollzallo+ D7 (B0 = ()i (a0); — pla s (20)5)

G(i,j)=g

1 kqp
o=z =) + dollzgllo + 2223 =z 30 ((h)y + et

G(i,5)=g

n

= argmin E
z 9:1

n

= argmin E
z g—1

1 1 kgp
25 =yt gt =z 3 (W e ) + ol

G(i,5)=g

G(i,j)=g

1 kqgp v k k
(5o + D)z =z [ 24+ 3 (Wb +e@™y) | +2llzlo

= argminz ((21 + %)23 - v?gzg — Zg Z ((yz) +p(z k+1) ) + Xollzgllo

g=1 G(i,5)=g
n k:+1
. . 15 vg/s+ ZG(i,j):g ((yz) +p(zi); ) Ao
_arg?un; 2Zg—Zg 1/8+/€gp +1/8+l€ || ¢]H0
equivalently,
1 vg/5+ZG": ((yz) + p(z k+1)) A
k41 _ 1.2 (i,5)=9 0
Zg argzznln (Zzg Zg /s + kyp + s+ k,ngZg”O
2
arganin [ 1 (= 222 Setn=s (00 + ol ™7),) 20|
B gzg 2\ 1/s+kgp 1/3+kgp Follo

I Ug/SJFZG(i,j):g ((yz) + p(z k“) ) v 19
VAT (1/5FHegP) /s + kgp o Voeih2n)

where Hy(+) is a hard-thresholding operator defined as follows.

Hi(u) = {u, if Jul> A

0, otherwise.

15 Note that when w is a vector, Hx(-) is an element-wise hard-thresholding operator.
Thus, we obtain the final update formulas for z, z and y as follows.

k
x’éfl =5\, p(zlﬂ'1 y%), Vie{1,2,...,m}
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k1 _ g U9/5+ZG(¢,j):g ((i‘/z) + p(z k+1) ) vg e (1,2 )
Zg - \/2A0/(1/s+kgp) 1/S+kgp ) g s 4y,

el =6, Folxst =T, Vie{l,2,...,m}

1.1 The matrix form of the /, sparse overlapping group lasso

Define = [z&,,26,,...,26,,]" € R and Z = [24,,28,, ..., 25, ] € R™ where ft = 3.1 | n.
Then Z can be represented as

Z2=Gz
where each row of G has only one entry being 1 and other entries being 0. The corresponding
definition of z-update becomes

. 1 - .
47— angumin (o1 1= ol + dollello + 51 - ol - (7762
. 1 ZTZ T ~T T
= argmin | 5 T+pz G Gz | — —Jr( NGz + (557 Gz ) + Xollzllo

= argmin (%ZT <£ + pGT > ( (pi*)'Gz + (¥ )TGZ) + )\0||Z||0)
1 T
= argmin (2 < + pG G> ( T(pz* 43 )) z+)\o\|z||o)

where § = [yg1 , y£2, e ,ygm}T € R™. We observe that GG is a diagonal matrix of which the
g-th diagonal entry corresponds to the number of groups that the global variable z4 involves.
Since GT'G is positive semidefinite and s,p > 0, I/s + pGT G is definitely a positive definite
matrix. Let /s + pGTG = diag(c1,...,cn) and C = diag(y/c1, .. .,/cn) Where ¢g = 1/s + kgp.
Thus, CTC = I/s + pGTG. With this setting, we have

T
#71 = angmin (3270702 — (L +.67 (st +3) 00z 4 Aulel
(1 . -
= argmin (5”02 —-c! (% +GT (pz" + yk)) 13+ )\OHZHO)

Since C is diagonal, the z-update reduces to n subproblems as follows.

1 1 v 2
k+1 . T, ~k , ~k
z = argmin | = [ \/cg2 f—-[erG pT” + 9 ] ) + Xollz4]lo
9 ) <2 ( 929 ey ( ) . llzgl

2
- A
= argmin ( ( [Z + G (pi* + yk)] ) + 700 ||Zg||0>
g g

Zg

_ 1O, ook o
_H,/zxo/cg (cg [5+G (pT" +7 )]g)

which is exactly the same as the previous counterpart result.

1.2 Solving the dual problem via ADMM
The dual of (2) is,

Jnin o IIZ— oll” + Xollzllo+X1 ZH%G H2+Zya - 2)

i=1 i=1

= min ( Iz = vll* + Aollzllo— Zyc z) +min <Z(Alllxcill2+ygirci)>

1=1 =1

(1 7 .
=min (—(ZTZ — 20Tz 40" Tz + )\0HZ||0> + E min ()\1||xci Hz—‘,—ygimci)
z 28 =1 IG«L
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. 1
= min (%(z z2— 20"z — 255 Gz +v"v) + )\onHg) + me ( lza; ll24ye,za )
=min i(z 2200+ sGTH 2z +0"v) 4+ Xollzllo ) + Zmln ()qH;rG l2+ye, za )
z 2s Gi
=min (o (Jlz = (0 + 5GP P +0T0 — 0+ 56T (0 +5G7H)) + dollzll +me (Mllze,ll+48,26.)
z 2s
(1 -
=i (g = (04 sGT DI ollllo ) + 3 min (Nl e, ) + 5 (ol Il +56731)
i=1
_ 1 T -~ 1 T
=min ( o[z = (v + G )P +ollzllo | = 5-llv+sGTGIP+ ol llyell2< My =1
After dropping the constant term, the dual problem of (2) becomes
max min {9() = gl = (0 567D+ Nalafo— 5o+ 56731} ")

where Q is defined as follows:
Q={7eR" | |lyc,|2< A\1,i =1,2,...,m}.

For a given ¢, the optimal z minimizing ¥ (z,¢) in (7) is given by

Plugging (8) into (7), we get the following minimization problem with respect to §:
max {w®) = —Y(H jzax; (v + sGTH), )} 9)

Our methodology for minimizing the problem defined in (2) is that after solving (9), we then
construct the solution to (2) via (8).

minimize, ; errizern g5 12— 0l + Aofl2llo+A L, |z 2
subject to g, —2 =0, 1=1,2,...,m
Substituting f(z) and g(z) into the scaled form of ADMM,

zg; = arginin <A1 > llwalet+Ellee, — 26, + uﬂ%) L i=1,2...9 (10)
i=1
41 = anganin (o [ = I3 + Dol 50" -2+ ) ()
z
B I (12)

Why not update z first and then update x? See section 6.4. We can think of our g(z) as
f(x) in sec. 6.4.

1.3 The bounds on the optimal value of the overlapping group
lasso
Before presenting the results regarding to the bounds of the optimal value of the ¢y sparse group

lasso, we introduce three lemmas which lead to the upcoming theorem. The first lemma is also
known as the fact that the quadratic mean (QM) is no less than the arithmetic mean (AM).

Lemma 1.1 (QM>AM). Given x € R", the following

D1 T} > il

n - n

holds. The equality holds if and only if x1 = x2 = ... = xp.
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Proof. According to Cauchy-Schwartz inequality which says that given two vectors x,y € R",
lIx|2]ly[]2> |x"y|, we have

n .
=1
Sl S
- n p n )
where the equalities in the first and second inequalities hold if and only if |z1|= |z2|= -+ = |2n]
and ©1 = 2 = -+ - = T, respectively. This completes the proof. O

1.3.1 Lower bound on the overlapping group lasso

Lemma 1.2 (lower bound on the overlapping group lasso). Givenx € R", w € R, and
some groups G; C {1,2,...,n},i =1,2,...,m, let Ic,(j) denote an indicator function whose
value is 1 if j € G; and 0 otherwise. Then, the following

m
ILx [ <> willxe, |2

=1

holds, where L = diag(l) with elements l; =3 ", \/Té—l OI(jeGi),j=1,...,nand I(e) =1

if e is true, 0 otherwise. The equality holds if and only if for every G, the entries of xa, are
identical.

Proof.

S willxallz = wilxg, o+ + wnllxa, |l
i=1

G

il a2
|Gil

;]2 =D wi/|Gil

j=1 i=1

S1 o] o
UHVAZZT' |(L| j{: qu?f j{:|J|
(Ve

)) |51
j=1i=1

[
&

s
I
—

hNE

1

<
Il

3

where I(e) is an indicator function defined as follows:

{1, if e is true

0, otherwise.

The second line follows from the definition of p-norm (p > 1) and the third line from Lemma 1.1.
The equality holds if and only if the entries belonging to the same group are identical for all the

groups. Let L = diag(l), the diagonal matrix with elements {; = >~ | \/% Ol € Gi),j=

1,...,n, so we have
m
> willxa,ll2> | Lx]y (13)
i=1

O



3 1.3.2 Computing the lower bound on the overlapping group lasso

Since we have found the lower bound on the overlapping group lasso operator, the overlapping
group lasso problem reduces to solving a weighted lasso problem as follows.

xER™

) 1
min {fGLJb(x) = 5||x - v||§+)\\|LxH1} (14)

Since ferab(x) is separable w.r.t x, this is equivalent to solving the following subproblem for
each 1.

3 Pp— 1 PR . 2 . .
mé%{fGL,lb(xz) = i(xz vi)” + Allzxz\}

If z; > 0, then forin(zi) = (i — vi)® + Aliz;. By the first-order optimality condition,
Vicraw(@i) =z —vi+ My =0<=z; =v; — Al; > 0 <= v; > A;.

For z; < 0, we have the following similar argument.
VicLw () =x; —vi =AM =0<=z; = v; + \; < 0 <= v; < —\l;.

In the case of z; = 0, let v be the subdifferential of |z;| at z; = 0, then v = [-1,1]. Thus,

(%
Al;
where the RHS follows from the fact that |v|< 1. To sum up, the solution to the subproblem is
Vi — )\lz, if v; > A
z; =140, if Jui|< Ay 1=1,2,...,n. (15)
v + A, if vy < —Al;.

0 € dfcLan(0) =0 —v; + Av <= Ev <= |v;|< Al;

37 1.3.3 Upper bound on the overlapping group lasso

Lemma 1.3 (upper bound on the overlapping group lasso). Given x € R", w € R},
and some groups G; C {1,2,...,n},i =1,...,m, denote the total number of appearances in all
groups by k;j,j =1,...,n, and let U = diag(Vk1||w||2, ..., Vkn||W|2). Then, the following

m
> willxc, [2< [ Ux]|2

i=1

38 holds. The equality holds if and only if w =... = lxcnlz

Wm

Proof.

m
> willxa, ll2 = willxe l2+ - -+ wmlxa, |12
i=1

IN

Vot iy Ixe 3+ + %3

N B S
i—1 g—1

g=1 i=1

where the second line follows from Cauchy-Schwarz inequality and the equality holds if and only

if ”xgi l2 _ L= Hxi%'” Let Uy = diag(v'k1,...,Vkn) and w = (w1, ..., wm), then we have
> willxe, 12 < [|Wlla-/XT diag(ks, . .., kn)x = [wll2-[|Uox|l2 (16)

i=1
By the positive homogeneity of ||-||2, ||w||2 can be absorbed into Uy as follows.

m

Y willxe, < [ Ux|l2 (17)
i=1
39 where U = diag(u) and u = (VE1||w||2, ..., VEn|W]2). O
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1.3.4 Computing the upper bound on the overlapping group lasso

After replacing the overlapping group lasso operator with |[Ux||2, the upper bound on the
overlapping group lasso is equal to the optimal value of the following problem.

xeR™

. 1
min {fGL,ub(x) = §||x — v||§+)\|\Ux||2} (18)

Let s be an element of the subdifferential of ||-||2 at 0. Then if x = 0, solving the following zero
subgradient equation gives

0-v+AU's=0=v=AU"s <= U 'v=2s < |[U 'v[2< A

Thus, we obtain that if |[U™'v||2< ), the optimal minimizer is O.
When x # 0, we have

2UTUx \UTU 2UuTu\ !
VfGL,ub(x):x—v+7:O<:>(I+7>x:v<:>x:<1+ ) v
[[Ux][2 Ux]|2 [Ux]|2

Thus, we reformulate the optimality condition as x = T'(x) for the case of x # 0, where T is the
operator

769 = (1+ g,

Then we have the following result concerning 7T'(x).

AUTU)l 19)

Theorem 1.4. T'(x) has a unique fized point x*. In other words, the corresponding fized point
iteration

xFHD = T(x<k))

converges to a unique X*.

Proof. Since U is a diagonal matrix, UTU = U?% Let G =1+ %, then G is a diagonal

2
matrix with elements G;; =1 + HG%,Z =1,2,...,n. Thus, G~! is also a diagonal matrix with
elements | | )
UX 2 )\U
0< pi = =1- : < 1. 20
P Oxlata? T U 20)

Then we have x; = p;v; for each i. Let p be a vector whose i-th entry is p; with p; € (0,1). So,
x = p ©® v where © is the element-wise Hadamard product, which indicates x is a contracted

2
version of v. Let p;(y) =1 — in22 with y = ||Ux]|2> 0. Then
: uy
() = — 25
W) = e

which shows p; is a strictly increasing function of y, i.e., ||Ux||2. By (20), a smaller (bigger) ||Ux||2
gives a smaller (bigger) p; for each ¢ which in turn generates smaller (bigger) z; via z; = p;v; for
each i, and then small (greater) ||[Ux||2. Thanks to this interplay between ||[Ux||2 and p, the
sequences regarding ||[Ux||2 and p generated by performing 7'(x) are monotone. For example, let
us start the iteration with x(® # 0. Then x* = p(® © v. Suppose [[Ux?|>> [[UxM||2, then

2 2

O _q_ A A ) 21
& [OXO[o4Xu? [UxOflaaa ~ 70 P75 ey
Thus,

xz(?) = pgl)vi < pgo)vi = xil), 1 =1,2,...,n.

Since U is a diagonal matrix with nonnegative diagonal entries u;, we have

n n

[Ux® o= | > (wiat®)? < | > (wiz?)2 = [UxP

i=1 i=1
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So, [UxQ|2> [UxDW o> [[UxP||2. Substituting [[Ux™M |2 and |[Ux® |2 into (21), we get
pl(-l) > pEQ) > pgg). By repeating this, the contraction interplay between ||[Ux® ||y and p; (k) lead
to that both {|[Ux® |2} and {pgk)}izl,zw,n are decreasing sequences. Also, {||Ux® |5} and

{pgk)} are both bounded below by 0. Since monotone bounded sequences converge, {[|Ux® |2}
(k) _

and {p } are convergent. Assuming hmkﬁooHUx(k) llo=c and limy— oo p; ~ = ps yield
CU; .
T, =——7, =1,2,...,n.
¢+ Au?

Multiplying both sides by u;, squaring both sides and summing over 7 gives

n

2 2N (ewiv)? (uivi)?
= Z(uzxz) Z (c+ Au?) =1 Z (c+ Au?) (22)

1=1

The solution to the equation on the RHS of (22) is ¢ which is unique since ¢ = ||Ux"||2> 0.
We can show this by contradiction. Specifically, suppose ¢’ > c is the solution to (22). Since
Au; >0,i=1,2,...,n, then we get

(uiv;)? (wivi)? N (wivg)? ~  (uvy)?
— =1
CES T A RS VoL D cr v D DA e v

(uivi) 2
i=1 (c/+Au;)2
arguments hold for the case when ¢’ < c¢. Thus, ¢, i.e., ||[Ux*||2 is unique. Furthermore, p is

/\'u,
TOxl a2’ 1=1,2,...,n

which contradicts the supposition ¢’ > ¢ is the solution to (22), i.e., > = 1. Similar

unique because of p; =1 —

For the case of | Ux(?||2< [|[Ux™M||2, similar arguments give increasing and bounded sequences
{Ux®||2} and {pl(.k)}. Thus, they are convergent as well. If |[Ux?||o= [[Ux™M||a, we luckily
hit the fixed point in one step. Finally, x* is unique due to x* = p ® v. Therefore, T'(x) is a
fixed point operator. This completes our proof. O

1.4 The bounds on the optimal value of the ¢/, sparse overlapping
group lasso

We have found the bounds for the overlapping group lasso operator in the previous section. Now
it is natural to transform the bounds on the optimal value of the ¢; sparse overlapping group
lasso into solving two problems.

1.4.1 Lower bound on the optimal value of the ¢; sparse overlapping group
lasso

The lower bound can be obtained by solving the following problem.

xeER™

. 1
min {felstJb(X) = 5llx— VH§+/\IILXH1+)\1HXII1} - (23)
Since L is a diagonal matrix, it can be rewritten as

. 1
i, {0 = I = VIEHIOL + D)l | (24)

which shares the same form as (14) and can be solved in a similar way. For brevity, we present
its solution directly as follows.

V; — /\lz, if v > N + M\
z; = 0, if "U7,|S A + M i=1,2,...,n.
vi + A, if v; < =Xl — A1
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1.4.2 TUpper bound on the optimal value of the ¢; sparse overlapping group
lasso

The upper bound can be obtained by solving the following problem.

. 1
min {fel,GL,uux) =5l - v||§+A||Uxu2+A1ux||1}. (25)

1.4.3 Computing the upper bound on the optimal value of the /; sparse
overlapping group lasso

Let p and v be the subdifferentials of ||x||2 and ||x||1 at x = 0, where ||p]2< 1 and ||V]| < 1.
A and A are defined as

A={peR"||ul<1}, A={reR"||vlws 1}.
If x = 0, using first-order optimality condition gives

0€0-—vHAU pt v <= U 'v e \ut MU v <= U H(v=v) = Ay — max U (v=A1v)]2< A

Since U™! is also a diagonal matrix with positive diagonal entries, the maximum value of
U™ (v — \v)||2 is attained at v = —sgn(v) ® 1. Here, sgn is an elementwise sign function
whose value is 1 for positive inputs, —1 for negative inputs and 0 otherwise, and 1 is a vector
with all entries being 1. With these settings, we have

vi + M1 sgn(v,))2 <

Uq

max [[U™H (v = \iw)le= U (v + Aasgn(v) © 1) = |3 (

i=1
Hence, we get that x = 0 if and only if [U™ (v + A1 sgn(v) © 1) ||2< 1.

Now we talk about the case of x # 0. By the first-order optimality condition, we have

0ex—v+A— + A1X
U]l

where x’ denotes the subdifferential of ||x|| at x # 0 defined as follows.

1, ifz; >0
=4 —1, ifx; <0
vel[-1,1], ifz; =0.

If z; = 0, we have
33¢:O<:>0€0—U¢+0+)\11/<:>U7;E)\1l/<:>‘U¢|S)\1.

By contradiction, if x; # 0, it is clear to see that the optimal x; shares the common sign with v;,
otherwise it will lead to greater objective values. Thus, we get

UTUx

. . UTUx
X+ A =
[Ux]|2

e

—1
=Vv-Asgn(V)0l<=x=Tpy_w (I + A ) (V= 2Arsgn(v) ©1)

where X represents the reduced x after removing zero entries, and v, U are the corresponding
notations. By Theorem 1.4, Ty, w1, (X) is a fixed point operator.
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1.5 The bounds on the optimal value of the /;, sparse overlapping
group lasso

1.5.1 Lower bound on the optimal value of the /; sparse overlapping group
lasso

The lower bound can be obtained by solving the following problem.

. 1
i, { e () = 5lx = vIE+ A+ Aol | (26)

xER™

which is separable and can be divided into subproblems as follows.

. 1
min {sz,GL,lb(xi) = 5(%‘ — )+ /\li\|$i\|1+)\0||$z’|\0} . (27)

x; €
1.5.2 Computing the lower bound on the optimal value of the /; sparse
overlapping group lasso

If z; # 0, then (27) can be reduced to solving the following simpler problem.

. 1
nin feocrap(zs) = 5(96’1 —0)® + M|z [+No

whose solution is given by (15), namely, x; = v; — Al; sgn(v;). In this case, if |v;|> Al;, the
corresponding objective value is

1
fszLJb(’Uz‘ — A sgn(vi)) = 5()\lz)2 + )\lz(vz — A Sgn(’l)i)) + )\07

and if |v;|< Al;, we are done and definitely z; = 0. However, in the case of |v;|> Al;, we still
need to compare %()\li)2 + Ali(vi — Al sgn(vi)) + A1 with fe,_cran(0) = %vf due to the existence
of the additional term Ao. If fo,_cran(0) < foo_crab(vi — Al sgn(v;)), the solution is 0 rather
than v; — Al; sgn(v;).

1.5.3 Upper bound on the optimal value of the ¢; sparse overlapping group
lasso

The upper bound can be obtained by solving the following problem.

. 1
oo, {feo—GLJlb(x) = gl — V||§+>\||UXH2+)\0HX||0} : (28)
By the definition of the induced norm of ||-||4,5, we have ||[Ux||2< ||Ul|2||x||2. When a =b =2,
[lU]|2 is called the spectral norm and it is equal to the maximum singular value of U, denoted as
omax(U). Thus, the upper bound can be relaxed as follows.

. 1
min {feo,cL,uux) = Llx- v||§+Aamax<U>nxumouxno} . (29)
which has a closed-form solution proposed by ( ).
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